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1. SA algorithms for the QAP

1.1. Default settings of the existing SA algorithms
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Algorithm Temperature components Exploration
BR1 IT3(l = 104, k = 1) AC1 CS2(α = 0.5) TL4(k = 2) TR4(α = 1) SC5(n = 10) NE1
BR2 IT3(l = 104, k = 1) AC1 CS2(α = 0.5) TL9(k = 1.1) TR4(α = 1) SC5(n = 1) NE1
CBR1 IT3(l = 104, k = 1) AC1 CS2(α = 0.99) TL5(k = 2) TR1 SC2(n = 50× |N(s)|) NE1
CBR2 IT3(l = 104, k = 1) AC1 CS2(α = 0.99) TL9(k = 1.1) TR1 SC2(n = 50× |N(s)|) NE1
CLM1 IT5(l = 104, k = 1) AC1 CS5(a,b based on the termination) TL1(k = 1) TR1 SC2(n = 50× |N(s)|) NE1
CLM2 IT5(l = 104, k = 1) AC1 CS5(a,b based on the termination) TL1(k = 1) TR1 SC2(n = 50× |N(s)|) NE2
Q87 IT5(l = 104, k = 1) AC1 CS6(a,b,m based on the termination) TL1(k = 1) TR1 SC2(n = 50× |N(s)|) NE2
Jaj IT6(l = 104, k = 1, p = 0.8) AC1 CS2(α = 0.9) TL6(n = 10, max = 100) TR1 SC4(n = 100) NE1
Bin IT2(k = 0.005) AC1 CS2(α = 0.9) TL4(k = 100) TR2(n = 1) SC1(n = 10s) NE2
Tam IT6(l = 104, k = 1, p = 0.6) AC1 CS2(α = 0.95) TL2(k = 2) TR1 SC1(n = 50× |N(s)|) NE1

Table 1: Default settings for the ten algorithms of Section 5 of the main paper.



1.2. Results for longer runtimes
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Figure 1: Overview of some of the SA algorithms for solution quality and anytime behaviour
on the random QAP scenario, for results obtained in 10, 30 and 100 seconds. The results
are reported in terms of average percentage deviation from the best known solutions. The
first plot is a comparison of four of the existing algorithms with the three runtimes in the
default and the tuned settings, and the automatically designed ones with the tree runtimes;
the second and third plot are respectively a direct comparison of the non-tuned algorithms
(including the automatically designed ones as a reference point) and the tuned ones, inclusing
the automatically designed ones.

In Figures 1 and 2 we show the results obtained by some of our SA algorithms
on the random and structured scenarios respectively, when longer runtimes are
used, namely of 30 and 100 seconds.

It is interesting to note that even a much longer runtime does not necessarily
result in an improved final solution quality. For example, in both the nontuned
and the tuned settings, Tam is not able to improve over the results found in the
ten seconds threshold. The reason for this is that the algorithms has already
converged before the ten seconds limit; as it is clear from Figure 6 (see Subsec-
tion 1.3 of this supplementary material) in the nontuned setting Tam converges
very rapidly, and, while the tuning exploits the entire ten seconds interval, it is
not able to improve after that. For Jaj, instead, in the default settings the ten
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Figure 2: Overview of some of the SA algorithms for solution quality and anytime behaviour
on the structured QAP scenario, for results obtained in 10, 30 and 100 seconds. The results
are reported in terms of average percentage deviation from the best known solutions. The
first plot is a comparison of four of the existing algorithms with the three runtimes in the
default and the tuned settings, and the automatically designed ones with the tree runtimes;
the second and third plot are respectively a direct comparison of the non-tuned algorithms
(including the automatically designed ones as a reference point) and the tuned ones, inclusing
the automatically designed ones.

seconds threshold is too short, and more time proves beneficial. However, once
converged, the algorithm it is not able to escape the best solution found. Again,
the tuning has a “regularization” effect and brings the algorithm to convergence
in the ten seconds limit, but a longer runtime is of little help. For BR1 and
Bin, while the longer runtime does not have much impact in the nontuned set-
ting, it is indeed beneficial after the tuning. Also the automatically generated
algorithms profit by the additional runtime.

Looking at the composition of the algorithms, we observe that the factor
that lets the algorithms benefit from the additional runtime is the presence of
a temperature restart scheme. Jaj and Tam do not employ any, and while the
tuning can bring their performance on par with (and sometimes better than)
the other algorithms in the tuning time threshold, the lack of a temperature
restart strategy prevents them from improving after that time.
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Figure 3: Overview of the automatically designed SA algorithms for solution quality and any-
time behaviour on the two QAP scenarios, for results obtained in 10, 30 and 100 seconds. The
results are reported in terms of average percentage deviation from the best known solutions.

In Figure 3 we compare the SA automatically generated for solution quality
versus the algorithms generated for anytime behaviour. In the long run, the
algorithms generated for anytime behaviour appear to have an edge over the
ones designed for solution quality.

However, as the cost of the tuning for anytime behaviour is much higher than
the (already high) one for solution quality, the user should carefully evaluate
whether it is really necessary to bear such costs to reach such high quality solu-
tions, or a quick sufficiently good solution is enough. The same considerations
apply for the runtime needed. Finally, tuning over a longer runtime is likely to
give further improved results, again at the cost of a much higher computational
effort.
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1.3. Move acceptance
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Figure 4: Ratio for 1000 moves of accepted (in red) versus rejected moves (in blue) for Jaj in
its default settings and after the tuning of its numerical parameters on a size-100 structured
QAP instance, observed over ten seconds. The black line indicates the progress of the solution
quality.

In figures 4–6 we report the proportion of accepted versus rejected moves for
three algorithms exhibiting different convergence behaviours, namely Jaj, Bin,
and Tam, in both their default settings and after the tuning of their numerical
parameters, on a structured QAP instance of size 100. In Figure 7 we show the
same profile for one of the SA algorithms automatically designed for solution
quality and for a SA algorithm automatically designed for anytime behaviour.
Those convergence profiles show the proportion of accepted moves (in red) versus
rejected moves (in blue) aggregated over 1000 moves evaluated. As a reference,
the black line gives the progress of the solution quality during the search (we
report the trend observed over the acceptance, rather than the exact value).

A clear indication of these plots is that the effect of the tuning is a careful
balance between exploration and exploitation. In Figure 4, we observe that the
tuning of Jaj enforces a stricter acceptance in the beginning of the search. For
Tam (Figure 6), instead, a too strict acceptance policy is the cause of a pre-
mature convergence that results in a very poor performance using the default
settings; the tuning instead allows the search to accept more worsening moves,
which translates in a much improved quality of the final solution. This slow
acceptance might however become a problem if the test settings differ from the
tuning ones (e.g. a much shorter runtime), and this is one of the main rea-
sons to aim for a good anytime behaviour (see Section 3 of the Supplementary
Material). The effect of the tuning for Bin (Figure 5) is instead a sharper alter-
nance between intensification and exploitation; in particular, we notice how the
greater improvement of the solution quality comes with the first intensification
phase.
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Figure 5: Ratio for 1000 moves of accepted (in red) versus rejected moves (in blue) for Bin in
its default settings and after the tuning of its numerical parameters on a size-100 structured
QAP instance, observed over ten seconds. The black line indicates the progress of the solution
quality.

In Figure 7 we show instead the acceptance and convergence behaviour of
one of the automatically generated SA algorithms. In this case, there is a
strong. but not too strong, initial intensification, and a stronger intensification
is observed for the anytime behaviour case (right plot). A small diversification
is anyway ensured throughout the search in both cases.
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Figure 6: Ratio for 1000 moves of accepted (in red) versus rejected moves (in blue) for Tam in
its default settings and after the tuning of its numerical parameters on a size-100 structured
QAP instance, observed over ten seconds. The black line indicates the progress of the solution
quality.
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Figure 7: Ratio for 1000 moves of accepted (in red) versus rejected moves (in blue) for
an automatically generated SA for solution quality and an automatically generated SA for
anytime behaviour on a size-100 structured QAP instance, observed over ten seconds. The
black line indicates the progress of the solution quality.
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Figure 8: Average Relative Percentage Deviation (ARPD) from the optimal or best known
solutions obtained by the automatically generated SA algorithms on the entire QAPlib for 10,
100 and 600 seconds of runtime.

1.4. Results on the QAPlib
Here we report the results obtained by the SA algorithms automatically

generated on the random QAP instances scenario, both for solution quality
and anytime behaviour (15 and 3 algorithm respectively), when ran on the
QAPlib benchmark for different runtimes (10, 100, 600 seconds), divided by
instance subgroup. The QAPlib is a benchmark containing instances of different
characteristics, therefore a more diverse scenario with respect to the random
and structured instances we have considered in the rest of the paper. As the
algorithms are designed for uniformly random instances, they will not be able
to exploit the particular structures of some instance classes, but they are more
likely to outperform the algorithms designed for the structured instances. In
Tables 2–4 and Figures 8, 9 we show our results, reporting for each instance
the average percentage deviation from the optimal or best known solutions, the
number of times an optimal or best known solution has been obtained, and the
best deviation from the optimal or best known solutions, for the algorithms
designed for solution quality (sq) and anytime behaviour (ab).

1.4.1. 10 seconds runtime

Instance avg RPD sq avg RPD ab # solved sq # solved ab best RPD sq best RPD ab
bur26a 0.1600171 0.2913082 2 /15 0 /3 0 0.001657739
bur26b 0.2388516 0.2951834 1 /15 0 /3 0 0.0004685881
bur26c 0.1591424 0.1837426 2 /15 0 /3 0 0.0004418814
bur26d 0.1724351 0.5016192 1 /15 0 /3 0 0.0002009827
bur26e 0.08798292 0.02997407 4 /15 0 /3 0 0.0001962175
bur26f 0.1364412 0.524399 2 /15 0 /3 0 0.000231092
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bur26g 0.2340977 0.1835263 4 /15 0 /3 0 0.0001409485
bur26h 0.2574618 0.3386274 3 /15 0 /3 0 0.0001924307
chr12a 30.50112 65.42434 7 /15 1 /3 0 0
chr12b 16.60166 20.29015 9 /15 2 /3 0 0
chr12c 18.24071 23.90343 7 /15 1 /3 0 0
chr15a 22.72972 35.06467 5 /15 1 /3 0 0
chr15b 27.37922 38.28118 6 /15 1 /3 0 0
chr15c 32.83389 43.44837 6 /15 1 /3 0 0
chr18a 33.44987 22.97111 5 /15 1 /3 0 0
chr18b 4.632768 11.69057 8 /15 1 /3 0 0
chr20a 18.94769 10.88808 2 /15 1 /3 0 0
chr20b 17.36002 12.53264 2 /15 1 /3 0 0
chr20c 45.99915 67.83105 3 /15 1 /3 0 0
chr22a 7.24713 8.05718 3 /15 0 /3 0 0.04158545
chr22b 6.559036 7.426542 2 /15 0 /3 0 0.042299
chr25a 19.92624 24.6751 1 /15 0 /3 0 0.02423604
els19 12.21875 14.98959 1 /15 0 /3 0 0.04227079
esc16a 0.1960784 0 14 /15 3 /3 0 0
esc16b 0 0 15 /15 3 /3 0 0
esc16c 0 0 15 /15 3 /3 0 0
esc16d 0 0 15 /15 3 /3 0 0
esc16e 0 0 15 /15 3 /3 0 0
esc16f 0 0 15 /15 3 /3 0 0
esc16g 0 0 15 /15 3 /3 0 0
esc16h 0 0 15 /15 3 /3 0 0
esc16i 0 0 15 /15 3 /3 0 0
esc16j 0 0 15 /15 3 /3 0 0
esc32a 6.153846 5.641026 7 /15 1 /3 0 0
esc32b 5.079365 11.11111 10 /15 1 /3 0 0
esc32c 0 0 15 /15 3 /3 0 0
esc32d 0.6666667 2.333333 11 /15 2 /3 0 0
esc32e 0 0 15 /15 3 /3 0 0
esc32g 0 0 15 /15 3 /3 0 0
esc32h 1.065449 1.369863 8 /15 2 /3 0 0
esc64a 0 0 15 /15 3 /3 0 0
esc128 2.916667 0 9 /15 3 /3 0 0
had12 0.4923325 0.2421308 8 /15 1 /3 0 0
had14 0.0783162 0.7342144 13 /15 1 /3 0 0
had16 0.1971326 0.483871 6 /15 2 /3 0 0
had18 0.3682966 0.6470076 5 /15 1 /3 0 0
had20 0.6741789 0.2215159 5 /15 1 /3 0 0
kra30a 2.896138 4.836895 7 /15 0 /3 0 0.01338583
kra30b 1.883614 2.79297 7 /15 1 /3 0 0
kra32 2.866592 5.114619 7 /15 1 /3 0 0
lipa20a 0.9937551 1.592904 8 /15 1 /3 0 0
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lipa20b 4.647658 4.237455 10 /15 2 /3 0 0
lipa30a 0.7178631 1.09273 8 /15 1 /3 0 0
lipa30b 4.06271 4.952694 11 /15 2 /3 0 0
lipa40a 1.098284 1.284095 0 /15 0 /3 0.005740162 0.005740162
lipa40b 3.242065 10.87839 12 /15 1 /3 0 0
lipa50a 0.41411 0.5620601 8 /15 1 /3 0 0
lipa50b 3.271384 10.55076 12 /15 1 /3 0 0
lipa60a 0.2918664 0.4660287 9 /15 1 /3 0 0
lipa60b 5.836468 5.858985 10 /15 2 /3 0 0
lipa70a 0.3313403 0.4039154 7 /15 1 /3 0 0
lipa70b 4.916859 6.370793 11 /15 1 /3 0 0
lipa80a 0.4397138 0.3628297 3 /15 1 /3 0 0
lipa80b 6.46078 6.751695 10 /15 1 /3 0 0
lipa90a 0.4462006 0.5053194 2 /15 0 /3 0 0.004966309
lipa90b 10.45023 13.19174 7 /15 1 /3 0 0
nug12 1.914648 1.730104 9 /15 2 /3 0 0
nug14 2.064431 2.761341 7 /15 1 /3 0 0
nug15 1.310145 1.565217 7 /15 1 /3 0 0
nug16a 1.995859 3.602484 6 /15 1 /3 0 0
nug16b 1.903226 2.795699 8 /15 1 /3 0 0
nug17 1.147036 1.847575 8 /15 1 /3 0 0
nug18 1.360967 2.38342 7 /15 1 /3 0 0
nug20 0.8871595 1.997406 7 /15 1 /3 0 0
nug21 1.53131 1.121138 7 /15 1 /3 0 0
nug22 1.171672 1.575825 4 /15 1 /3 0 0
nug24 1.043578 1.75841 8 /15 1 /3 0 0
nug25 0.8796296 0.8725071 8 /15 1 /3 0 0
nug27 1.413833 0.9552923 7 /15 2 /3 0 0
nug28 1.099497 1.638921 8 /15 1 /3 0 0
nug30 0.5617244 1.404311 5 /15 1 /3 0 0
rou12 2.242281 3.657598 8 /15 1 /3 0 0
rou15 2.415479 1.754703 7 /15 1 /3 0 0
rou20 1.131415 1.779592 7 /15 1 /3 0 0
scr12 2.409424 2.774063 10 /15 2 /3 0 0
scr15 4.253422 4.719072 7 /15 1 /3 0 0
scr20 4.350692 3.740798 7 /15 1 /3 0 0
ste36a 5.058437 9.43383 3 /15 0 /3 0 0.0247743
ste36b 12.70418 15.53957 4 /15 1 /3 0 0
ste36c 4.596085 5.840016 5 /15 0 /3 0 0.03973366
sko42 0.7867442 1.323889 2 /15 0 /3 0 0.004553504
sko49 0.6533824 1.049061 2 /15 0 /3 0 0.007953476
sko56 0.7421595 1.437499 1 /15 0 /3 0 0.009228626
sko64 0.6818151 1.418615 1 /15 0 /3 0 0.009278733
sko72 0.7564598 1.130967 0 /15 0 /3 0.0001811157 0.00908597
sko81 0.617889 1.026396 0 /15 0 /3 0.0001098925 0.006747401
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sko90 0.6835506 1.166179 0 /15 0 /3 0.0006405041 0.004050756
sko100a 0.6334127 0.8078841 0 /15 0 /3 0.0004868357 0.002276286
sko100b 0.6360387 1.036671 0 /15 0 /3 3.898889e-05 0.006303204
sko100c 0.8661229 1.283178 0 /15 0 /3 1.352613e-05 0.01078032
sko100d 0.7215953 0.9471216 0 /15 0 /3 0.0006418142 0.005134514
sko100e 0.6877193 1.336462 1 /15 0 /3 0 0.01067382
sko100f 0.7334246 0.812779 0 /15 0 /3 5.367831e-05 0.003824579
tai10a 2.580601 4.029288 8 /15 1 /3 0 0
tai12a 3.512524 4.509482 9 /15 1 /3 0 0
tai15a 1.325764 1.620756 7 /15 1 /3 0 0
tai17a 1.607118 3.21261 7 /15 1 /3 0 0
tai20a 1.828296 1.827197 3 /15 1 /3 0 0
tai25a 1.195442 1.942961 1 /15 1 /3 0 0
tai30a 1.435646 1.200564 2 /15 1 /3 0 0
tai35a 1.17521 1.419735 1 /15 0 /3 0 0.00376548
tai40a 1.056161 1.146302 0 /15 0 /3 0.003777191 0.006593043
tai50a 1.168933 1.462826 0 /15 0 /3 0.006996442 0.01112984
tai60a 1.017502 1.097267 0 /15 0 /3 0.007549859 0.008605097
tai80a 1.16212 1.126424 0 /15 0 /3 0.008452659 0.009826075
tai100a 1.121996 1.182306 0 /15 0 /3 0.008782629 0.009902688
tai10b 4.576609 7.085558 8 /15 1 /3 0 0
tai12b 5.835181 5.762965 8 /15 1 /3 0 0
tai15b 0.4384698 0.5468152 3 /15 0 /3 0 0.004048564
tai20b 9.068211 11.93523 3 /15 0 /3 0 0.01787806
tai25b 6.512946 7.879769 5 /15 0 /3 0 0.01736179
tai30b 7.64588 9.709667 2 /15 0 /3 0 0.03758459
tai35b 4.68597 6.990417 2 /15 0 /3 0 0.02191215
tai40b 7.128245 5.275997 2 /15 0 /3 0 0.02276873
tai50b 4.12182 3.532311 0 /15 0 /3 0.0005867358 0.01966091
tai60b 3.577894 5.855074 1 /15 0 /3 0 0.0179717
tai80b 3.472607 3.834669 0 /15 0 /3 0.0001543373 0.01599609
tai100b 3.380434 3.226662 0 /15 0 /3 0.001073137 0.02709011
tai150b 2.082348 2.663557 0 /15 0 /3 0.005737577 0.02283725
tai64c 0.2029964 0.008405498 5 /15 2 /3 0 0
tai256c 0.4572899 0.4745353 0 /15 0 /3 0.002471978 0.004268298
tho30 1.457155 1.981734 3 /15 0 /3 0 0.005255576
tho40 1.083559 1.759273 0 /15 0 /3 0.0001081009 0.01170816
tho150 0.9878053 1.700913 0 /15 0 /3 0.001870313 0.007448547
wil50 0.4782585 0.6077242 1 /15 0 /3 0 0.004588659
wil100 0.401214 0.6438664 0 /15 0 /3 3.662494e-05 0.00287872

Table 2: Results obtained on the QAPlib for 10 seconds of runtime.

1.4.2. 100 seconds runtime
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Instance avg RPD sq avg RPD ab # solved sq # solved ab best RPD sq best RPD ab
bur26a 0.1550552 0.2862468 2 /15 0 /3 0 0.001505896
bur26b 0.2209864 0.2902941 2 /15 0 /3 0 0.0003219088
bur26c 0.1392092 0.1768447 2 /15 0 /3 0 0.0002349453
bur26d 0.1717111 0.5001276 2 /15 0 /3 0 0.0001598964
bur26e 0.08028644 0.02868699 4 /15 0 /3 0 0.0001576052
bur26f 0.1334129 0.5190844 3 /15 0 /3 0 7.165438e-05
bur26g 0.177315 0.1788873 4 /15 0 /3 0 0.0001409485
bur26h 0.2537343 0.3369557 4 /15 0 /3 0 0.0001422804
chr12a 28.65159 54.78085 8 /15 1 /3 0 0
chr12b 16.60166 20.29015 9 /15 2 /3 0 0
chr12c 14.7042 23.90343 7 /15 1 /3 0 0
chr15a 21.90245 35.06467 6 /15 1 /3 0 0
chr15b 27.2257 38.28118 6 /15 1 /3 0 0
chr15c 32.34848 43.40629 6 /15 1 /3 0 0
chr18a 30.62053 21.78771 5 /15 1 /3 0 0
chr18b 4.380704 11.69057 8 /15 1 /3 0 0
chr20a 18.23601 10.88808 5 /15 1 /3 0 0
chr20b 15.20743 12.53264 4 /15 1 /3 0 0
chr20c 42.58521 67.83105 3 /15 1 /3 0 0
chr22a 6.434914 6.779294 4 /15 0 /3 0 0.005523067
chr22b 5.695835 7.017544 2 /15 0 /3 0 0.03002906
chr25a 17.67475 22.56762 3 /15 1 /3 0 0
els19 12.12866 14.98356 1 /15 0 /3 0 0.04208999
esc16a 0.1960784 0 14 /15 3 /3 0 0
esc16b 0 0 15 /15 3 /3 0 0
esc16c 0 0 15 /15 3 /3 0 0
esc16d 0 0 15 /15 3 /3 0 0
esc16e 0 0 15 /15 3 /3 0 0
esc16f 0 0 15 /15 3 /3 0 0
esc16g 0 0 15 /15 3 /3 0 0
esc16h 0 0 15 /15 3 /3 0 0
esc16i 0 0 15 /15 3 /3 0 0
esc16j 0 0 15 /15 3 /3 0 0
esc32a 5.948718 5.641026 7 /15 1 /3 0 0
esc32b 4.920635 11.11111 10 /15 1 /3 0 0
esc32c 0 0 15 /15 3 /3 0 0
esc32d 0.6666667 2.333333 11 /15 2 /3 0 0
esc32e 0 0 15 /15 3 /3 0 0
esc32g 0 0 15 /15 3 /3 0 0
esc32h 1.065449 1.369863 8 /15 2 /3 0 0
esc64a 0 0 15 /15 3 /3 0 0
esc128 2.291667 0 10 /15 3 /3 0 0
had12 0.4923325 0.2421308 8 /15 1 /3 0 0
had14 0.05384239 0.7342144 14 /15 1 /3 0 0
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had16 0.1756272 0.483871 6 /15 2 /3 0 0
had18 0.2811995 0.6470076 6 /15 1 /3 0 0
had20 0.6684003 0.09631128 6 /15 2 /3 0 0
kra30a 2.512186 4.390701 7 /15 1 /3 0 0
kra30b 1.694013 2.282506 7 /15 1 /3 0 0
kra32 2.753852 4.340474 7 /15 1 /3 0 0
lipa20a 0.8579962 1.592904 8 /15 1 /3 0 0
lipa20b 4.647658 4.237455 10 /15 2 /3 0 0
lipa30a 0.7082511 1.052259 8 /15 1 /3 0 0
lipa30b 1.976367 4.952694 13 /15 2 /3 0 0
lipa40a 0.9985756 1.233072 0 /15 0 /3 0.005740162 0.005740162
lipa40b 1.065982 10.42859 14 /15 1 /3 0 0
lipa50a 0.3460401 0.537366 9 /15 1 /3 0 0
lipa50b 1.066264 0 14 /15 3 /3 0 0
lipa60a 0.269793 0.2145162 9 /15 2 /3 0 0
lipa60b 3.473213 0 12 /15 3 /3 0 0
lipa70a 0.2606894 0.365625 8 /15 1 /3 0 0
lipa70b 1.233446 0 14 /15 3 /3 0 0
lipa80a 0.2350494 0.1640369 8 /15 2 /3 0 0
lipa80b 2.561015 0 13 /15 3 /3 0 0
lipa90a 0.2905101 0.4772204 6 /15 0 /3 0 0.004578099
lipa90b 2.593604 0 13 /15 3 /3 0 0
nug12 1.914648 1.730104 9 /15 2 /3 0 0
nug14 1.959237 2.761341 7 /15 1 /3 0 0
nug15 1.275362 1.507246 8 /15 1 /3 0 0
nug16a 1.648033 2.691511 6 /15 1 /3 0 0
nug16b 1.623656 2.795699 10 /15 1 /3 0 0
nug17 1.016166 1.847575 8 /15 1 /3 0 0
nug18 1.126079 2.38342 8 /15 1 /3 0 0
nug20 0.8041505 1.945525 9 /15 1 /3 0 0
nug21 1.482089 1.121138 7 /15 1 /3 0 0
nug22 1.108639 1.575825 4 /15 1 /3 0 0
nug24 0.9594801 1.75841 8 /15 1 /3 0 0
nug25 0.8475783 0.730057 8 /15 1 /3 0 0
nug27 1.375621 0.9552923 7 /15 2 /3 0 0
nug28 0.8878565 1.638921 9 /15 1 /3 0 0
nug30 0.5399521 1.262791 8 /15 1 /3 0 0
rou12 2.242281 2.864769 8 /15 1 /3 0 0
rou15 2.305676 0.6931858 7 /15 1 /3 0 0
rou20 1.084994 1.231665 7 /15 1 /3 0 0
scr12 2.406028 2.774063 10 /15 2 /3 0 0
scr15 4.066484 4.719072 7 /15 1 /3 0 0
scr20 4.022176 3.700203 8 /15 1 /3 0 0
ste36a 4.21863 7.425292 4 /15 0 /3 0 0.0247743
ste36b 9.907478 12.54521 5 /15 1 /3 0 0
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ste36c 3.961442 4.252466 5 /15 0 /3 0 0.02815668
sko42 0.6206257 1.218484 3 /15 0 /3 0 0.002023779
sko49 0.4772086 0.5416346 2 /15 0 /3 0 0.003164286
sko56 0.606342 1.274982 4 /15 0 /3 0 0.009112543
sko64 0.4629744 0.8880091 2 /15 0 /3 0 0.005690956
sko72 0.5707156 0.8995412 0 /15 0 /3 0.0001811157 0.008029461
sko81 0.5030147 0.8740119 1 /15 0 /3 0 0.003208862
sko90 0.5945724 0.7051315 0 /15 0 /3 6.924369e-05 0.00225042
sko100a 0.5382385 0.6254304 0 /15 0 /3 0.0001578927 0.0002894699
sko100b 0.4736717 0.7689475 1 /15 0 /3 0 0.001715511
sko100c 0.7048915 0.9508866 0 /15 0 /3 1.352613e-05 0.005491607
sko100d 0.5329732 0.7314008 0 /15 0 /3 0.0001337113 0.001283628
sko100e 0.5661415 0.8434462 2 /15 0 /3 0 0.00177003
sko100f 0.5885826 0.7747569 2 /15 0 /3 0 0.002952307
tai10a 2.580601 4.029288 8 /15 1 /3 0 0
tai12a 2.99842 4.509482 10 /15 1 /3 0 0
tai15a 1.263736 1.620756 8 /15 1 /3 0 0
tai17a 1.529663 2.860849 7 /15 1 /3 0 0
tai20a 1.701024 1.827197 5 /15 1 /3 0 0
tai25a 0.9845312 1.885733 4 /15 1 /3 0 0
tai30a 1.057399 0.6986971 4 /15 1 /3 0 0
tai35a 0.7992947 0.9826306 4 /15 1 /3 0 0
tai40a 0.7290677 0.8281067 0 /15 0 /3 0.003170063 0.003347805
tai50a 0.9267711 0.6344866 0 /15 0 /3 0.004267437 0.002995467
tai60a 0.8352491 0.6907891 0 /15 0 /3 0.005183486 0.006052766
tai80a 0.8902721 0.8702798 0 /15 0 /3 0.007287848 0.008381395
tai100a 0.8786334 0.8283273 0 /15 0 /3 0.006881664 0.007368923
tai10b 4.576609 7.085558 8 /15 1 /3 0 0
tai12b 5.835181 5.762965 8 /15 1 /3 0 0
tai15b 0.3677806 0.5086319 3 /15 0 /3 0 0.003095319
tai20b 8.891616 11.76788 4 /15 0 /3 0 0.01285766
tai25b 6.352692 7.68787 5 /15 0 /3 0 0.01160482
tai30b 7.558016 9.536209 4 /15 0 /3 0 0.03374976
tai35b 4.567697 5.780727 3 /15 0 /3 0 0.01626727
tai40b 6.784171 5.141299 4 /15 0 /3 0 0.02276873
tai50b 3.943679 3.285393 1 /15 0 /3 0 0.01620332
tai60b 3.416735 5.771464 2 /15 0 /3 0 0.01629278
tai80b 3.292134 3.800812 0 /15 0 /3 1.299952e-05 0.01498373
tai100b 3.2773 2.993834 0 /15 0 /3 0.0007184206 0.02053136
tai150b 1.966695 2.608316 0 /15 0 /3 0.003486343 0.02149772
tai64c 0.2013153 0.008405498 6 /15 2 /3 0 0
tai256c 0.4419218 0.4434937 0 /15 0 /3 0.002471978 0.004268298
tho30 1.140309 1.275655 5 /15 1 /3 0 0
tho40 0.862479 1.009496 0 /15 0 /3 0.0001081009 0.005587986
tho150 0.7639087 1.419817 0 /15 0 /3 0.0001989328 0.006362163
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wil50 0.43046 0.4943734 3 /15 0 /3 0 0.001843658
wil100 0.3392934 0.5503507 0 /15 0 /3 2.197496e-05 0.001897172

Table 3: Results obtained on the QAPlib for 100 seconds of run-
time.

1.4.3. 600 seconds runtime

Instance avg RPD sq avg RPD ab # solved sq # solved ab best RPD sq best RPD ab
bur26a 0.1524287 0.2417812 2 /15 0 /3 0 0.0008154172
bur26b 0.2175866 0.2847413 2 /15 0 /3 0 0.0001553229
bur26c 0.1333691 0.173276 2 /15 0 /3 0 0.000127884
bur26d 0.1694535 0.4954781 2 /15 0 /3 0 2.04123e-05
bur26e 0.07600195 0.02581581 4 /15 0 /3 0 0.0001576052
bur26f 0.1326408 0.5181413 3 /15 0 /3 0 4.33628e-05
bur26g 0.1738905 0.1788873 4 /15 0 /3 0 0.0001409485
bur26h 0.2487503 0.3368618 4 /15 0 /3 0 0.000139463
chr12a 27.51256 54.78085 8 /15 1 /3 0 0
chr12b 16.60166 20.29015 9 /15 2 /3 0 0
chr12c 14.41257 23.90343 7 /15 1 /3 0 0
chr15a 21.31501 35.06467 7 /15 1 /3 0 0
chr15b 25.38006 38.28118 6 /15 1 /3 0 0
chr15c 31.21072 43.40629 6 /15 1 /3 0 0
chr18a 26.9454 21.78771 5 /15 1 /3 0 0
chr18b 4.380704 11.69057 8 /15 1 /3 0 0
chr20a 17.40268 10.37105 5 /15 1 /3 0 0
chr20b 14.84189 12.09748 4 /15 1 /3 0 0
chr20c 42.34007 67.83105 3 /15 1 /3 0 0
chr22a 6.064544 5.847953 4 /15 0 /3 0 0.005523067
chr22b 5.065117 6.296416 2 /15 0 /3 0 0.008395221
chr25a 15.96417 22.56762 4 /15 1 /3 0 0
els19 11.98951 14.98356 1 /15 0 /3 0 0.04208999
esc16a 0.1960784 0 14 /15 3 /3 0 0
esc16b 0 0 15 /15 3 /3 0 0
esc16c 0 0 15 /15 3 /3 0 0
esc16d 0 0 15 /15 3 /3 0 0
esc16e 0 0 15 /15 3 /3 0 0
esc16f 0 0 15 /15 3 /3 0 0
esc16g 0 0 15 /15 3 /3 0 0
esc16h 0 0 15 /15 3 /3 0 0
esc16i 0 0 15 /15 3 /3 0 0
esc16j 0 0 15 /15 3 /3 0 0
esc32a 5.74359 5.641026 8 /15 1 /3 0 0
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esc32b 4.920635 11.11111 10 /15 1 /3 0 0
esc32c 0 0 15 /15 3 /3 0 0
esc32d 0.6666667 2.333333 11 /15 2 /3 0 0
esc32e 0 0 15 /15 3 /3 0 0
esc32g 0 0 15 /15 3 /3 0 0
esc32h 1.065449 1.369863 8 /15 2 /3 0 0
esc64a 0 0 15 /15 3 /3 0 0
esc128 1.875 0 10 /15 3 /3 0 0
had12 0.4358354 0.2421308 8 /15 1 /3 0 0
had14 0.05384239 0.7342144 14 /15 1 /3 0 0
had16 0.1684588 0.4480287 7 /15 2 /3 0 0
had18 0.2811995 0.6470076 6 /15 1 /3 0 0
had20 0.6395069 0.09631128 7 /15 2 /3 0 0
kra30a 2.382452 4.390701 7 /15 1 /3 0 0
kra30b 1.637862 2.136659 7 /15 1 /3 0 0
kra32 2.68696 4.340474 7 /15 1 /3 0 0
lipa20a 0.6824147 1.592904 9 /15 1 /3 0 0
lipa20b 4.618851 4.237455 10 /15 2 /3 0 0
lipa30a 0.6288258 0.9864926 9 /15 1 /3 0 0
lipa30b 1.967474 4.952694 13 /15 2 /3 0 0
lipa40a 0.9921976 1.205434 0 /15 0 /3 0.005740162 0.005740162
lipa40b 0 5.342429 15 /15 2 /3 0 0
lipa50a 0.2694882 0.2582148 10 /15 2 /3 0 0
lipa50b 1.062684 0 14 /15 3 /3 0 0
lipa60a 0.1727944 0 11 /15 3 /3 0 0
lipa60b 2.313638 0 13 /15 3 /3 0 0
lipa70a 0.1837157 0.3548251 10 /15 1 /3 0 0
lipa70b 1.203453 0 14 /15 3 /3 0 0
lipa80a 0.1006076 0 12 /15 3 /3 0 0
lipa80b 0 0 15 /15 3 /3 0 0
lipa90a 0.2175452 0.1440997 8 /15 2 /3 0 0
lipa90b 2.586771 0 13 /15 3 /3 0 0
nug12 1.730104 1.730104 9 /15 2 /3 0 0
nug14 1.867193 2.695595 7 /15 1 /3 0 0
nug15 1.275362 1.507246 8 /15 1 /3 0 0
nug16a 1.407867 2.691511 7 /15 1 /3 0 0
nug16b 1.516129 1.88172 10 /15 1 /3 0 0
nug17 1.016166 0.9237875 8 /15 1 /3 0 0
nug18 1.126079 2.176166 8 /15 1 /3 0 0
nug20 0.8041505 1.037613 9 /15 2 /3 0 0
nug21 1.082855 1.121138 9 /15 1 /3 0 0
nug22 1.045606 1.483129 5 /15 1 /3 0 0
nug24 0.9174312 1.509939 9 /15 1 /3 0 0
nug25 0.8226496 0.3917379 8 /15 1 /3 0 0
nug27 1.304292 0.8024455 7 /15 2 /3 0 0
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nug28 0.8646277 1.638921 9 /15 1 /3 0 0
nug30 0.5399521 1.230133 8 /15 1 /3 0 0
rou12 1.575694 2.864769 8 /15 1 /3 0 0
rou15 2.231558 0.6931858 9 /15 1 /3 0 0
rou20 0.8133362 0.8867179 7 /15 1 /3 0 0
scr12 2.055821 2.774063 10 /15 2 /3 0 0
scr15 3.917351 4.612176 7 /15 1 /3 0 0
scr20 4.015269 3.700203 8 /15 1 /3 0 0
sko42 0.4932962 0.7251876 3 /15 0 /3 0 0.00101189
sko49 0.4447105 0.4333077 3 /15 0 /3 0 0.00068417
sko56 0.5618434 1.033142 4 /15 0 /3 0 0.004875501
sko64 0.4484034 0.4879926 3 /15 0 /3 0 0.002598045
sko72 0.5260404 0.7979152 1 /15 0 /3 0 0.004980681
sko81 0.4448449 0.7611889 1 /15 0 /3 0 0.003208862
sko90 0.4985545 0.6670475 2 /15 0 /3 0 0.001765714
sko100a 0.4870989 0.4868357 0 /15 0 /3 0.0001578927 0.0002631544
sko100b 0.4208201 0.7238937 1 /15 0 /3 0 0.001442589
sko100c 0.6203983 0.5847795 1 /15 0 /3 0 0.00132556
sko100d 0.4849263 0.6409228 0 /15 0 /3 0.0001337113 0.0006551853
sko100e 0.5050844 0.7862331 2 /15 0 /3 0 6.70466e-05
sko100f 0.5192481 0.7237625 2 /15 0 /3 0 0.002724174
ste36a 4.110855 6.242564 6 /15 0 /3 0 0.0247743
ste36b 9.602994 11.38027 5 /15 1 /3 0 0
ste36c 3.150458 3.974313 6 /15 0 /3 0 0.02815668
tai10a 2.580601 4.029288 8 /15 1 /3 0 0
tai12a 2.665051 3.139408 10 /15 1 /3 0 0
tai15a 1.255218 1.444392 8 /15 1 /3 0 0
tai17a 1.435264 1.968774 7 /15 1 /3 0 0
tai20a 1.470495 1.827197 5 /15 1 /3 0 0
tai25a 0.8939256 1.885733 5 /15 1 /3 0 0
tai30a 0.9405625 0.6986971 4 /15 1 /3 0 0
tai35a 0.6004729 0.8238088 5 /15 1 /3 0 0
tai40a 0.5665595 0.7347971 0 /15 0 /3 0.0007428242 0.003170063
tai50a 0.7720127 0.5231774 0 /15 0 /3 0.00404957 0.002995467
tai60a 0.6608195 0.5340578 1 /15 0 /3 0 0.004950345
tai80a 0.7868229 0.6665341 0 /15 0 /3 0.006330605 0.00579961
tai100a 0.6683562 0.7062926 0 /15 0 /3 0.004689902 0.00636315
tai10b 3.557393 7.085558 8 /15 1 /3 0 0
tai12b 5.835181 5.762965 8 /15 1 /3 0 0
tai15b 0.3499952 0.4676546 3 /15 0 /3 0 0.001866
tai20b 8.853299 11.76788 4 /15 0 /3 0 0.01285766
tai25b 6.286803 7.595594 5 /15 0 /3 0 0.008836559
tai30b 7.373084 9.530083 4 /15 0 /3 0 0.03356596
tai35b 4.502475 5.654832 3 /15 0 /3 0 0.01249043
tai40b 6.766405 5.141299 4 /15 0 /3 0 0.02276873
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tai50b 3.909013 3.245417 1 /15 0 /3 0 0.015539
tai60b 3.312533 5.761051 3 /15 0 /3 0 0.01598039
tai80b 3.206649 3.800812 0 /15 0 /3 1.299952e-05 0.01498373
tai100b 3.100179 2.969815 0 /15 0 /3 0.0002411779 0.02026677
tai150b 1.86853 2.360226 0 /15 0 /3 0.00175396 0.0155608
tai64c 0.2013153 0.008405498 6 /15 2 /3 0 0
tai256c 0.4187034 0.4196998 0 /15 0 /3 0.002471978 0.003876558
tho30 1.088109 1.258759 5 /15 1 /3 0 0
tho40 0.7353634 0.7957891 1 /15 0 /3 0 0.002993564
tho150 0.6994698 1.061721 0 /15 0 /3 0.000154425 0.002404653
wil50 0.4072435 0.312739 4 /15 0 /3 0 0.001843658
wil100 0.3144861 0.4424293 1 /15 0 /3 0 0.001259898

Table 4: Results obtained on the QAPlib for 60 seconds of runtime.

1.4.4. Discussion
Overall, we can consider the algorithms to perform quite well across the en-

tire QAPlib benchmark. The algorithms designed for solution quality obtain in
general better results than the algorithms designed for anytime behaviour. This
can be explained with the fact that the combinations/configurations that yield
a good anytime behaviour are probably very sensitive to instance characteris-
tics, therefore robust when scaling the instance size, but less so when applied
to different instance classes; this might be anyway a consequence of the lower
number of algorithms considered (three versus fifteen).

The average percentage deviation from the optimal or best known solutions
is often low. The only exception is for the chr and els instances, probably
due to their very particular structure; still, several of our algorithms obtain the
optimal solutions for those instances too. On many instances our algorithms
are able to find the optimal or best known solutions, and when this does not
happen the best algorithm finds solutions very close to the bound or optimum.
From the split view of Figure 9 we notice how the instance classes for which
we obtain the best results are the ones closer to random instances, while worse
average results are obtained on instance classes with specific structures.

Another interesting observation is that the optimal or best solutions are
usually obtained very quickly, in few seconds or even fractions of a second.
Notably, for the largest QAPlib instance, tai256c, a solution that is worse
with respect to the best known one by 0.0025% can be found by one of our
algorithms in 370555 moves (0.67 seconds in our computational environment).
While a longer runtime is in general beneficial to the algorithms (see Figure
8), in particular for certain instance classes, this observation suggests that a
selection (or switching) strategy with early termination might indeed be more
a efficient policy.

While our results seem to compare unfavourably against those reported for
a recent state-of-the-art algorithm in [1], Breakout Local Search (BLS), we have
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to note that BLS is a more complex hybrid stochastic local search that has
been overtuned for the QAPlib (and in particular a critical parameter is set to
different values for different instance classes) and that is run for a much longer
runtime; the time required for finding the best solution for the large instances
by BLS is often several minutes. Therefore, a direct comparison, performed in
the same way as in the main paper for our set of algorithms, is neither really
possible nor meaningful in this case.

We have instead observed how simple SA algorithms, designed over uni-
formly random instances, can be applied to a more diverse benchmark and still
obtain satisfactory results in many cases.
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Figure 9: Average Relative Percentage Deviation (ARPD) from the optimal or best known
solutions obtained by the automatically generated SA algorithms on the several instance
classes of the QAPlib for 10, 100 and 600 seconds of runtime.

22



2. SA algorithms for the PFSP
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Algorithm Temperature components Exploration Neighbourhood
OP-IR IT9(k = 1, df = 5) AC1 CS5(a,b based on the termination) TL1(k = 1) TR1 SC3(n = 1) NE1 Exchange
OP-SR IT9(k = 1, df = 5) AC1 CS5(a,b based on the termination) TL1(k = 1) TR1 SC3(n = 1) NE1 Insert
OP-IO IT9(k = 1, df = 5) AC1 CS5(a,b based on the termination) TL1(k = 1) TR1 SC3(n = 1) NE2 Exchange
OP-SO IT9(k = 1, df = 5) AC1 CS5(a,b based on the termination) TL1(k = 1) TR1 SC3(n = 1) NE2 Insert
OS-E IT6(l = 104, k = 1, p = 0.2) AC5(r = 0.75) CS2(α = 0.75) TL2(k = 50) TR1 SC4(n = 15) NE1 Exchange
OS-I IT6(l = 104, k = 1, p = 0.2) AC5(r = 0.75) CS2(α = 0.75) TL2(k = 50) TR1 SC4(n = 15) NE1 Insert
CH1 IT1(k = 1) AC3(φ = 001%5) CS2(α = 0.999) TL1(k = 1) TR1 SC1 NE1 Exchange
CH5 IT1(k = 1) AC3(φ = 005%5) CS2(α = 0.999) TL1(k = 1) TR1 SC1 NE1 Exchange

Table 5: Default settings for the eight algorithms of Section 6 of the main paper.
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Figure 10: Average Relative Percentage Deviation (ARPD) from the best known solutions
obtained by the algorithms on the whole Taillard benchmark under the MS and TCT objectives
(top row, left and right plot respectively), and divided into the small, medium-size and large
instances for MS (middle row) and TCT (bottom row).
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Figure 11: Average Relative Percentage Deviation (ARPD) from the best known solutions
obtained by the algorithms after the tuning on the whole Taillard benchmark under the MS
and TCT objectives (top row, left and right plot respectively), and divided into the small,
medium-size and large instances for MS (middle row) and TCT (bottom row).
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Figure 12: Improvement in terms od ARPD of the algorithms after the tuning on the whole
Taillard benchmark under the MS and TCT objectives (top row, left and right plot respec-
tively), and divided into the small, medium-size and large instances for MS (middle row) and
TCT (bottom row).
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Figure 13: Results in terms od ARPD of the algorithms automatically designed for solution
quality and anytime behaviour on the whole Taillard benchmark under the MS and TCT
objectives. We compare the results obtained with the default runtime, and with a runtime
ten times longer (ρ = 0.15).

2.1. Results for longer runtimes
In Figure 13 we report the results obtained using a ten-times increment in

runtime (ρ = 0.15), compared to the runtime used in the other PFSP experi-
ments in this work (ρ = 0.015). We compare both the algorithms automatically
generated for solution quality, and for anytime behaviour. In both cases, for
both the objectives we observe an improvement, made possible by the additional
runtime. However, this improvement is not as substantial as for the QAP sce-
narios, partly due to the fact that for small instances good results were already
consistently obtained, and partly because of limitations of the SA structure and
of our set of moves. In fact, we can consider the state of the art for (these two
objectives of) the PFSP the more complex, automatically generated hybrid SLS
algorithms of Pagnozzi and Stützle [2].
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Figure 14: Example of convergence behaviour of three algorithms A, B, C, with the hypervol-
ume defined by the convergence at a reference time tmax of A, the algorithm exhibiting the
best anytime behaviour among the three. Algorithm C converges to a better final solution
than B, but in a longer time.

3. Convergence of SA algorithms and anytime behaviour

In this section, we consider improving the convergence behaviour of SA al-
gorithms by an automatic design approach. In particular, we automatically
configure SA algorithms trying to maximize their anytime behaviour [3], that
is, we require an algorithm to discover as good solutions as early as possible
during the search [4]. In a nutshell, an optimization algorithm is said to have a
good anytime behaviour when it rapidly improves the incumbent solution and
continues improving it when given more time. In practice, having a good any-
time behaviour is a desirable property for a heuristic optimization algorithm.

The tuning for anytime behaviour is modeled as a bi-objective optimization
problem, in which the development of the best solution found so far over com-
putation time is considered a non-dominated set of points. Every point in this
frontier corresponds to a set of pairs (ti, f(si)), i ∈ [1, . . . , ni], each point cor-
responding to the time ti where the ith time the incumbent solution has been
improved and f(si) is the corresponding solution quality; ni is the number of
times the best solution found so far has been improved. The goal of tuning
for anytime behaviour is illustrated in Figure 14. Three algorithms (or three
runs of the same stochastic algorithm) are run for a given amount of time tmax.
Algorithm B converges relatively early to a solution that it cannot improve;
algorithm C has a slower convergence, but it returns a better solution than B.
Algorithm A instead has a better anytime behaviour than B and C: it discover a
better final solution, and the whole search process shows how its convergence is
quicker than the convergence of B and C. We measure the anytime behaviour in
terms of the hypervolume, which in Figure 14 is represented by the area enclosed
by the perimeter defined by the set of pairs (ti, f(si)) of Algorithm A and by the
boundaries (the dotted lines) determined by the maximum runtime and the ini-
tial solution quality: a better anytime behaviour defines a greater hypervolume.
The goal of tuning for anytime behaviour hence is to maximize the hypervol-

29



●

default
tuned
anytime

0.01 0.1 1 10
Time [s]

S
ol

ut
io

n 
qu

al
ity

Figure 15: Example of convergence behaviour of Tam on a QAP random instance of size 100
and a runtime of ten seconds, in its default parameter settings (black), after the tuning (red),
and after tuning for anytime behaviour (blue). Time is given in log scale.

ume. Following the procedure proposed in [3], we evaluate the configurations
with respect to the hypervolume obtained by the set of non-dominated points
defined by the solutions traversed during the search. Except for the evaluation
of the algorithm’s results, the tuning settings in this section are the same as for
the tuning for solution quality of Sections 5 and 6 of the main paper.

When configuring, we sometimes observe that after tuning an algorithm
improves its final solution quality but worsens its anytime behaviour. This hap-
pens because the tuning process may exploit the given execution environment,
including the available running time. An example is given in Figure 15. In
this plot we show the convergence behaviour of Tam on random QAP instances
of size 100 and a runtime of ten seconds. The dashdotted black line shows
the convergence of the algorithm in its original parameter settings, while the
dashed red line represents the algorithm after the tuning of Section 5 of the
main paper. We can see how the final solution quality of the tuned algorithm
is better than the one of the algorithm using the default parameter values, but
for a large part of the runtime, the default settings discover better solutions
(consider that the x-axis is given in logscale). In other words, if we had stopped
the algorithms earlier we would have obtained worse results with the tuned set-
tings, than with the default ones. This sensitivity of the tuning with respect
to the computational environment is an issue, because it might hinder the per-
formance when the production environment is different from the tuning one.
This may happen if the algorithms are used with a different runtime or (even
when given the same wall-clock time) on a slower machine. The blue solid line
shows instead the convergence of an algorithm when tuned for optimizing the
anytime behaviour. When compared to the other two settings, it finds quicker
good quality solutions, and then continues refining the incumbent solution.

As for the tuning with respect to the final solution quality, this approach can
be used to fully exploit the choice of algorithmic components to automatically
design SA algorithms that exhibit a good anytime behaviour. Here, we show
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QAP Random QAP Structured
Instance 46.67% Instance 14.59%
Temperature Restart 3.39% CS2 α 9.73%
TL4 k 3.38% TR1 t 5.11%
Cooling Scheme 3.05% Temperature Restart 4.05%
IT6 k 2.50% IT3 k 4.05%
Temperature Length 2.18% TL6 m 3.84%
IT6 p0 2.09% AC5 r 3.6%
Temperature Restart 2.08% Acceptance Criterion 2.99%
CS11 a 2.05% CS3 a 2.83%
Acceptance Criterion 2.02% TL6 c 2.77%

PFSP-MS PFSP-TCT
Instance 52.64% Instance 66.29%
IT5 k 10.17% LAHC κ 5.09%
IT4 k 2.64% IT4 k 4.35%
Acceptance Criterion 2.32% Acceptance Criterion 2.59%
Exploration Criterion 2.23% Exploration Criterion α 2.34%
CS3 a 2.11% Cooling Scheme 1.80%
TR15 k 1.73% Temperature Length 1.13%
AC3 φBM 1.62% Temperature Restart 0.85%
Temperature Restart 1.34% TL7 m 0.62%
TL1 k 1.34% Initial Temperature 0.59%

Table 6: The ten most important components and numerical parameters on the four scenarios,
in the tuning for anytime behaviour.

results obtained from three tunings per scenario under the same conditions of
the previous experiments, with a budget of 60000 experiments and a termination
condition of ten seconds for the QAP and ρ = 0.015 for the PFSP. To observe the
scaling behaviour, a relevant scenario suited for anytime behaviour algorithms,
we also show the convergence on large instances, namely of size 500 for the QAP
from [5], and 800× 60 for the PFSP from [6].

3.1. QAP
In Figures 17–19 we show the convergence of the automatically designed

SA algorithms for QAP of Section 5 of the main paper, compared with SA
algorithms automatically designed for anytime behaviour. The final solution
quality is compared in Figure 16. On the random instances the convergence
behaviour is very similar, with a final solution quality that is not statistically
significantly different between the two sets of results (the p-value of a pairwise
Wilcoxon test is 0.8896). That is, the SA algorithms automatically designed for
solution quality for this scenario already exhibit a very good anytime behaviour,
even for the larger instances.

On the structured instances, instead, the results are more variable. In two
cases the anytime behaviour of the SA algorithms was good, though noticeably
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Figure 16: Comparison of the final solution quality in terms of ARPD obtained by
automatically-designed SA algorithms of Section 5 of the main paper and the SA algorithms
automatically designed for anytime behaviour for the QAP problem (random instances on the
left, structured instances on the right).

different, on the instances of size 60 and 100, but much worse on the instance
of size 500, for which the convergence was much slower and failed to return
good solutions in the given ten seconds of runtime. In the third case, instead,
the anytime behaviour was very good, and on the size 500 instances the SA
of Section 5 of the main paper converged to significantly better solutions than
the SA designed for anytime behaviour, continuing discovering better solutions
during the whole runtime.

3.2. PFSP
In Figure 20 we show the quality, in terms of ARPD, of the final solutions

obtained by SA algorithms automatically designed for anytime behaviour for
the PFSP, compared with the three automatically designed SA algorithms of
Section 6 of the main paper obtained with the same random seeds. The results
are divided into the 12 subclasses of different size that compose the Taillard
benchmark; the upper plot shows the results on the Makespan objective, while
the bottom plot contains the results for the Total Completion Time objective.
The results are clearly similar, in particular for the MS objective, while for
the TCT objective in most subclasses the SAs specifically designed for solution
quality obtain slightly better results. The convergence behaviour is reported in
Figures 21 and 22 for the MS and TCT objectives respectively.

On both objectives the anytime behaviour of the SA algorithms of Section
6 of the main paper is again good, sometimes even slightly better than the SAs
designed for anytime behaviour (which, in turn, have a more regular conver-
gence). On the larges instances the search takes more time to discover a good
solution, but from that point the behaviour is similar to the SAs tuned for
anytime behaviour.

It is very easy to observe that a good anytime behaviour corresponds to
stricter conditions for accepting worsening moves. An analysis of the selected
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components and numerical parameters shows that the outcome of the automatic
design for anytime behaviour is a set of stricter conditions for the acceptance
of worsening moves, with respect to the automatic design for final solution
quality: a much lower initial temperature, and a tighter bound for the Bounded
Metropolis acceptance criterion. For the TCT objective, the same effect is
obtained by a much shorter tenure of the LAHC acceptance criterion.
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Figure 17: Convergence behaviour of automatically designed SAs for final solution quality and
anytime behaviour on random and structured instances (left and right column) respectively
on instances taillardrr.60.0.dat, taillardrr.100.1.dat and taillardrr.500.0.dat
(from top to bottom), and EuclideanStructured.1020000.n60.sp72.00.dat,
EuclideanStructured.1000.n100.sp72.00.dat and EuclideanStructured.1256751137.n500.K60.m10.A20.00.B4.00.sp10.00.dat
(from top to bottom).
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Figure 18: Convergence behaviour of automatically designed SAs for final solution quality and
anytime behaviour on random and structured instances (left and right column) respectively
on instances taillardrr.60.0.dat, taillardrr.100.1.dat and taillardrr.500.0.dat
(from top to bottom), and EuclideanStructured.1020000.n60.sp72.00.dat,
EuclideanStructured.1000.n100.sp72.00.dat and EuclideanStructured.1256751137.n500.K60.m10.A20.00.B4.00.sp10.00.dat
(from top to bottom).
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Figure 19: Convergence behaviour of automatically designed SAs for final solution quality and
anytime behaviour on random and structured instances (left and right column) respectively
on instances taillardrr.60.0.dat, taillardrr.100.1.dat and taillardrr.500.0.dat
(from top to bottom), and EuclideanStructured.1020000.n60.sp72.00.dat,
EuclideanStructured.1000.n100.sp72.00.dat and EuclideanStructured.1256751137.n500.K60.m10.A20.00.B4.00.sp10.00.dat
(from top to bottom).
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Figure 20: Comparison of the final solution quality in terms of ARPD obtained by
automatically-designed SA algorithms of Section 6 of the main paper and the SA algorithms
automatically designed for anytime behaviour for the PFSP problem (MS objective on top,
TCT objective on bottom). The results are divided per instance subclass.
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Figure 21: Convergence behaviour of automatically designed SAs for final solution quality
and anytime behaviour on the PFSP with MS objective. From top to bottom we show three
different tunings. Left to right, we show the convergence on Ta041, Ta120 and VFR800_60_1.
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Figure 22: Convergence behaviour of automatically designed SAs for final solution quality
and anytime behaviour on the PFSP with TCT objective. From top to bottom we show three
different tunings. Left to right, we show the convergence on Ta041, Ta120 and VFR800_60_1.
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4. Composition of automatically generated SA algorithms

We analyze the components selected by the best configuration found in the
15 executions of the automatic design process, starting with the algorithms for
random QAP instances. We observe a majority of occurrences of the Metropo-
lis condition (in ten cases, with two additional occurrences of the Bounded
Metropolis criterion), with the Geometric acceptance chosen twice and the RTR
acceptance once. We observe six different cooling schemes, namely CS2 appear-
ing 7 times, CS11 3 times, CS5 twice and CS6 once. In this scenario we have
also 8 occurrences of the sequential exploration scheme NE2, all combined with
Metropolis-based acceptance criteria and initial temperature schemes based on
a preliminary random walk. In six cases the cooling scheme of choice is CS2
with a very steep cooling behaviour (α values mostly between 0.12 and 0.45)
and TL5 as temperature length. In the remaining two cases, we observe the
temperature band cooling scheme CS11, that is, a non-monotonically decreas-
ing scheme. The remaining algorithms feature the NE3 exploration scheme,
that performs a limited local search in the neighbourhood and selects for com-
parison the best solution encountered; the other components in this case differ
more widely between algorithms, suggesting that when using NE3, it is this
component the most important one, as it already does a preliminary screening
of the search space and evaluates only the most promising candidate solutions.

On the structured QAP instances, the Geometric cooling scheme CS2 is
selected in 12 out of 15 cases, with the α coefficients ranging around 0.8. In all
cases the exploration criterion selected is the sequential one NE2, corroborating
the observation of Sect. 5 of the main paper). In eight cases the traditional
Metropolis condition is the preferred choice for the acceptance condition; in
three cases instead Threshold acceptance is selected. In the remaining four
cases the choice is LAHC.

Now we analyse the composition of the fifteen automatically generated SA
algorithms for the MS objective. The first observation is that, contrarily to
the QAP case, and aligning with the findings of the tuned algorithms, the ran-
dom exploration is chosen for all the algorithms. Eight of them use a Q8-7
cooling, three its original version of Lundy and Mees, while three more employ
a Geometric Cooling; the remaining one is not considered, as the acceptance
chosen is LAHC. Thirteen algorithms use a Metropolis-based acceptance cri-
terion. The importance analysis shows 20% importance for the exploration
criterion, and 14.5% for the instance; next, there are the numerical parameters
for the Lundy-Mees and Q8-7, and Geometric cooling schemes. The acceptance
criterion features a 4% of importance, still among the most important compo-
nents/parameters, but not as much as in the other cases.

Out of the fifteen automatically generated SAs for the TCT objective, twelve
feature the Late Acceptance criterion; the κ parameter in eleven cases is around
150 (ranging from 99 to 185), with one outlier case in 5616. The other three
cases instead use a Bounded Metropolis criterion, set to immediately discard
solutions whose cost is 0.53 to 0.68% higher than the incumbent; these three
algorithms are all paired with a Geometric cooling scheme. In summary, the best
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algorithms for the TCT objective are quite conservative in accepting worsening
moves. Again, all the fifteen SAs employ a random exploration.
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