In Tables 1–4, we present the results obtained by our re-implementation of the evolutionary algorithm proposed by (Burke et al., 2012).
Family | Mean | Standard deviation | Minimum | Maximum |
Huniform500 | 0.336842105263158 | 0.0375228780468975 | 0.284210526315789 | 0.436842105263158 |
Huniform1000 | 0.383333333333333 | 0.0958303828933066 | 0.289473684210526 | 0.810526315789474 |
Hscholl | 0.810350877192982 | 0.304475118178332 | 0.326315789473684 | 1.25789473684211 |
Htriples | 0.824736842105263 | 0.146667701464175 | 0.721052631578947 | 1.47368421052632 |
Family | Mean | Standard deviation | Minimum | Maximum |
Huniform500 | 0.507719298245614 | 0.0883048814816165 | 0.415789473684211 | 0.778947368421053 |
Huniform1000 | 0.564210526315789 | 0.172939612747001 | 0.394736842105263 | 1.38421052631579 |
Hscholl | 1.48140350877193 | 0.72440730524882 | 0.484210526315789 | 3.12631578947368 |
Htriples | 1.32666666666667 | 1.77288291438761 | 0.810526315789474 | 10.6684210526316 |
Family | Mean | Standard deviation | Minimum | Maximum |
Huniform500 | 1.40888888888889 | 0.443806054926137 | 0.888888888888889 | 2.6 |
Huniform1000 | 1.74703703703704 | 0.512331404602989 | 1.16666666666667 | 2.65555555555556 |
Hscholl | 0.888148148148148 | 0.00578700510846876 | 0.877777777777778 | 0.9 |
Htriples | 1.28037037037037 | 0.0754542555836438 | 1.18888888888889 | 1.64444444444444 |
Family | Mean | Standard deviation | Minimum | Maximum |
Huniform500 | 5.37280701754386 | 4.75371065470931 | 1 | 19.5684210526316 |
Huniform1000 | 3.13947368421053 | 2.88479889543664 | 1 | 12.2052631578947 |
Hscholl | 5.20175438596491 | 4.22125546202518 | 1.03684210526316 | 16.1842105263158 |
Htriples | 1 | 0 | 1 | 1 |
Figures 1–6 compare the results for the 1BPP on the instance families Scholl, Triples, Uniform500, Uniform1000, Uniform2000 and Uniform4000. For each family, different methods are used to explore the design space described by the grammar and generate an efficient algorithm for the instances in the training set. The algorithm is evaluated by averaging the distance from the lower bound on ten runs on ten test instances. The whole training and testing procedure is repeated 30 times, and the results of the distribution of the 30 results obtained for each method are presented in the boxplots in the figures.
Family | evolutionary | random | irace-ge | rand-ge | irace-param3 | irace-param5 | rand-param5 | evolutionarymi | randommi |
Scholl | 0.84 (0.16) | 0.91 (0.21) | 0.77 (0.12) | 0.88 (0.22) | 0.76 (0.08) | 0.77 (0.10) | 0.89 (0.18) | 0.85 (0.14) | 0.75 (0.00) |
Triples | 1.06 (0.05) | 1.06 (0.03) | 1.06 (0.02) | 1.06 (0.02) | 1.06 (0.03) | 1.05 (0.03) | 1.06 (0.03) | 1.07 (0.03) | 1.07 (0.02) |
Uniform500 | 0.57 (0.35) | 0.56 (0.24) | 0.39 (0.08) | 0.44 (0.13) | 0.39 (0.07) | 0.36 (0.03) | 0.48 (0.14) | 0.39 (0.03) | 0.47 (0.06) |
Uniform1000 | 0.87 (0.25) | 1.27 (1.37) | 0.73 (0.11) | 0.84 (0.21) | 0.70 (0.07) | 0.71 (0.08) | 0.92 (0.19) | 0.88 (0.18) | 0.99 (0.13) |
Uniform2000 | 1.39 (0.42) | 1.18 (0.14) | 1.12 (0.24) | 1.34 (0.31) | 1.11 (0.21) | 1.08 (0.20) | 1.39 (0.27) | 1.36 (0.11) | 1.40 (0.05) |
Uniform4000 | 2.89 (1.10) | 2.95 (0.62) | 2.54 (0.42) | 3.20 (0.73) | 2.50 (0.25) | 2.34 (0.35) | 3.46 (0.57) | 3.57 (0.76) | 2.39 (0.00) |
Family | ΔRα=0.95 | Method (ΔR) |
Scholl | 11.27 | randommi (0), irace-param3 (0.5), irace-param5 (10.5), irace-ge (12), evolutionarymi (33), evolutionary (34), rand-param5 (54), rand-ge (55.5), random (61.5) |
Triples | Inf | irace-param5 (0), irace-param3 (4), rand-param5 (7), rand-ge (8), random (13.5), irace-ge (13.5), randommi (15), evolutionarymi (19), evolutionary (23.5) |
Uniform500 | 11.69 | irace-param5 (0), evolutionarymi (9.5), irace-param3 (17.5), irace-ge (19.5), randommi (32), rand-ge (39.5), rand-param5 (52.5), evolutionary (65.5), random (65.5) |
Uniform1000 | 8.6 | irace-param3 (0), irace-param5 (3), irace-ge (12), rand-ge (33), evolutionarymi (37), evolutionary (44), rand-param5 (53), randommi (58), random (75) |
Uniform2000 | 11.69 | irace-param5 (0), irace-param3 (1.5), irace-ge (7.5), random (25), rand-ge (33.5), rand-param5 (45), evolutionarymi (50), evolutionary (56.5), randommi (64.5) |
Uniform4000 | 9.48 | irace-param5 (0), irace-param3 (16), randommi (17), irace-ge (22.5), evolutionary (35), random (43.5), rand-ge (58), rand-param5 (67), evolutionarymi (74) |
The boxplots in Figure 7 and 8 present the results on the PFSP-WT of 30 experiments with the different methods described in the paper.
Family | evolutionary | random | irace-ge | rand-ge | irace-param3 | irace-param5 | rand-param5 | evolutionarymi | randommi |
50x20 | 25.47 (8.78) | 23.05 (7.36) | 17.01 (4.63) | 19.81 (4.44) | 16.62 (5.04) | 16.84 (4.47) | 22.40 (5.66) | 20.88 (3.53) | 20.84 (2.55) |
100x20 | 5.37 (1.66) | 5.18 (1.49) | 3.88 (0.98) | 4.78 (0.88) | 3.43 (0.53) | 3.81 (0.90) | 4.47 (1.03) | 4.39 (1.05) | 4.08 (0.80) |
Family | ΔRα=0.95 | Method (ΔR) |
50x20 | 16.3 | irace-ge (0), irace-param3 (1), irace-param5 (2), rand-ge (22), randommi (26), evolutionarymi (36), rand-param5 (47), random (48), evolutionary (52) |
100x20 | 11.19 | irace-param3 (0), irace-ge (11), irace-param5 (11), randommi (28), evolutionarymi (37), rand-param5 (40), rand-ge (54), evolutionary (66), random (68) |
E. K. Burke, M. R. Hyde, and G. Kendall, “Grammatical evolution of local search heuristics,” IEEE Transactions on Evolutionary Computation, vol. 16, no. 7, pp. 406–417, 2012.
We make available the instances used in this study for the 1BPP and the PFSP-WT.