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Abstract. Swarm robotics is a branch of collective robotics that out-
performs many other systems due to its large number of robots. It allows
for performing several tasks that are beyond the capability of a single or
multi robot systems. Its global behaviour emerges from the local rules
implemented on the level of its individual robots. Thus, estimating the
obtained performance in a self-organized manner represents one of the
main challenges, especially under complex dynamics like spatial inter-
ferences. In this paper, we exploit the central limit theorem (CLT) to
analyse and estimate the swarm performance over long-term deadlines
and under potential spatial interferences. The developed model is tested
on the well-known foraging task, however, it can be generalized to be
applied on any constrictive robotic task.

Keywords: Swarm robotics, Time-constrained tasks, Central limit
theorem.

1 Introduction

Swarm robotics is a high density multi-robot system, where the global behaviour
emerges from local rules implemented on the level of individual robots. These
systems are characterized by a set of advantages including: redundancy, scala-
bility and flexibility which introduce them as a promising approach for a large
spectrum of tasks.

Spatial interferences, on the other hand, affect significantly the performance
of the single robot and consequently the collective performance of the swarm.
A well-studied example is the foraging, where robots are exploited to retrieve
scattered objects to a special area called ”nest”. As noted in [5,10], the increment
of the robots’ number in a task like foraging, decreases the performance of a
single robot which represents the number of retrieved objects per time unit.
In the case of swarm performance, it may increase by adding robots up to an
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optimal number and after that it starts to decrease affected by the interferences
among robots. Although the influence of spatial interferences among robots has
been studied on a limited number of swarm scenarios, mainly on foraging, the
observations do not appear to be surprising. Increasing the number of robots,
increases the time required by the single robot to accomplish individual parts of
the task because of the concurrence among robots. This decreases in turn, the
number of parts that could be accomplished by single robots within a specific
time period. From the swarm point of view, the obtained performance keeps
increasing as long as the benefit of parallelising the work is still larger than
the time penalty paid because of the interferences. Swarm robotic systems are
prone to intensive spatial interferences and as robotic missions are generally
characterized by their long-term durations, providing the ability to estimate the
swarm performance for long-term tasks and under the spatial interferences is of
a significant importance. However, performing this estimation by running real
experiments or computer simulations is intensive time and resource consuming.
Consequently, alternative tools are required to perform such kind of estimations.
In this paper, we investigate the use of the Central Limit Theorem (CLT) as a
tool for approximating the swarm performance and analysing it probabilistically
over long-term deadlines and under robots spatial interferences. Central limit
theorem, in its classic version, states that the mean of a sufficiently large set
of independent and identically distributed random variables each with a finite
mean and variance tends to be distributed normally. How large the set of i.i.d.
should be, is based on their distribution parameters.

The rest of the paper is organized as following: Section 2 lists a set of related
work. Section 3 formulates the problem of the swarm performance estimation
over long-term deadlines. In Section 4 The central limited theorem is introduced
and the proposed estimator model for the swarm performance is illustrated.
Section 5 presented a foraging scenario to verify the proposed estimation strategy
and Section 6 concludes the paper.

2 Related Work

Swarm robotic performance is influenced by the interferences among participat-
ing robots [2]. Most of the performed studies were focusing on characterizing how
the amount of work accomplished within a specific time unit, changes by chang-
ing the number of working robots. The studies were mostly accomplished on
well-known swarm tasks like foraging and the conclusions were similar, namely,
that increasing the number of robots decreases the performance of individual
robots. After characterizing the relation between the swarm size and perfor-
mance, several studies were performed to improve the swarm performance by
reducing the density of spatial interferences. In [1] several types of interferences
in multi-robot systems have been defined and it presented the interactions among
robots working together in a common area, like the nest, as the main type of
robots interactions. The authors have proposed two techniques to arbitrate the
impact of interactions. First, by making sure that robots are working in different
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areas and second, by scheduling the occupation of shared areas. The first pro-
posal was further investigated under the term bucket-brigade like in [15], [16] and
[10], in addition to [4], where the approach was extended to consider adaptive
working areas. Task partitioning represents another technique, which is used to
improve the swarm performance under spatial interferences. In [12] a task parti-
tioning technique was proposed, in which the shared area was divided into two
areas and the robots select their area using a threshold mechanism. In [13], the
authors studied the role of task partitioning in reducing the concurrent access
to the nest area in a harvesting task.

On the other hand, characterizing swarm performance by means of real experi-
ments is not always possible and is an expensive solution from both time and hard-
ware points of view. In addition, computer simulations are very time consuming
especially when tasks are associated with long-term deadlines. In such cases, the
mathematical modelling represents one of the best approaches. A mathematical
model has been introduced in[5], which characterizes the performance of the single
robot and the swarm under spatial interferences. In [9] a list of the various mathe-
matical models which can be applied in swarm systems, is reported. Most of these
mathematical studies were focusing on specific swarm scenarios like foraging in [7]
or collaborative distributed manipulation in [8]. To our best knowledge no study
was focusing on the mathematical analysis of the collective swarm performance
within specific deadlines. In addition, the probability analysis of swarm robotics
was not considered intensively and only few studies were performed in that field
like in [6]. The central limit theorem [14], is a wide-applied theorem in many fields
related to measurement approximations and hypothesis testing. However, it is not
investigated yet within the context of swarm robotics. This important theorem is
exploited, here, to develop swarmperformance estimators which allow for a proba-
bilistic characterizationof swarmperformance over long-termdeadlines and under
the dynamics of spatial interferences.

3 Problem Formulation

We consider constructive tasks where the total contribution on the task within
a particular time period is the sum of the individual contributions of robots
over that time period. Each of the considered tasks can be characterized by its
long-term deadline, that represents the time point after which the robots should
stop to work on the task.

In swarm robotic systems the contribution of a single robot on any task is a
random variable which can belong to the discrete, as well as, to the continuous
space based on the type of the task. In a task like pushing a box, the robot per-
formance is a continuous random variable represents the distance the box travels
within a specific time unit. However, in a foraging task the robot performance
represents the number of retrieved objects and belongs to the discrete space. In
this paper, we focus on the discrete space of robot performance where the task
consists of discrete parts to be accomplished.

Let us assume a task Ti with the deadline Di and a homogeneous swarm
of N simple robots. Each of these robots is able to accomplish one part of Ti



124 Y. Khaluf, M. Birattari, and F. Rammig

at a time. We use βij(Di) to denote the discrete random variable associated
with the number of parts can be accomplished by the robot Rj on task Ti

up to its deadline of Di, under the influence of spatial interferences. The swarm
performance on task Ti up to the deadline Di is denoted by ωi(Di). Thus, ωi(Di)
is the total number of parts accomplished by the swarm within the time of
Di under the spatial interferences and is calculated as the sum of the robots’
individual contributions:

ωi(Di) = βi1(Di) + βi2(Di) + . . .+ βiN (Di) (1)

=
N∑

j=1

βij(Di)

We divide the time period between the start of the execution t = 0 and the task
deadline Di into equal and non-overlapping time-windows each with the length
τ . The length τ of the time-window is selected under the following constraints:
It should be equal to or greater than the average time required by a single robot
to accomplish one part on task Ti, The task deadline Di should be a multiplier
of τ and τ should be significantly smaller than the task deadline: τ � Di.

The swarm performance at deadline Di is the sum of the swarm contribu-
tions over all the time-windows included within the deadline Di. Hence, we can
calculate the swarm performance at the deadline Di as in following:

ωi(Di) = ωi(τ1) + ωi(τ2) + . . .+ ωi(τK) (2)

=

K∑

j=1

ωi(τj)

where K is the number of time-windows included in deadline Di.
On the other hand, the swarm performance at deadline Di is the sum of

the individual robots’ contributions over all the time-windows included in the
deadline Di. Using Equation (1) the swarm performance can be calculated in
terms of the individual robots’ contributions as in following:

ωi(Di) = (βi1(τ1) + βi2(τ1) + . . .+ βiN (τ1)) (3)

+ . . .

+ (βi1(τK) + βi2(τK) + . . .+ βiN (τK))

=
K∑

j=1

N∑

l=1

βil(τj)

The goal is to estimate the performance which can be obtained by a swarm of N
robot at the deadline Di and under the influence of spatial interferences. We aim
to perform this estimation with the minimum time and resources consumption by
launching short-time real experiments or computer simulations. The estimation
is carried out in a probabilistic manner, where we derive the probability density
function (PDF) in addition to the cumulative distribution function (CDF) of
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the random variable that is associated with the swarm performance. Such a
probabilistic analysis helps us to answer questions like: ”What is the probability
of achieving a specific swarm performance Si within the deadline Di under the
influence of spatial interferences?”.

Pr(ωi(Di) � Si) (4)

4 Probabilistic Analysis of Swarm Performance under
Spatial Interferences

In this section, we investigate the well-known central limit theorem in performing
a probabilistic analysis of the swarm performance at long-term deadlines under
the influence of spatial interferences. Central limit theorem is a wide-applied the-
orem specially in fields of hypothesis testing, cancelling of communication noise
and statistic [3]. Let us have a set of n independent and identically distributed
random variables {X1, X2, . . . , Xn}, sampled from a distribution with a specific
mean μ and a variance σ2. The central limit theorem (CLT) in its classic version
states that for sufficiently large n, the sum of the n random variables is normally
distributed and can be characterized with the following mean and variance:

μn = nμ (5) σ2
n = nσ2 (6)

The swarm contribution ωi(τj) over the time-window τj , is the random num-
ber of parts accomplished by the swarm on task Ti within the time-window τj .
Concurrently, the single robot contribution βil(τj) is the random number of parts
accomplished by a single robot on task Ti within the time-window τj . The mean
and the variance associated with these two random variables are influenced di-
rectly by the number of robots working on the task in addition to the work den-
sity available on this task. The work density here refers to the number of parts
available on the task and need to be accomplished by the robots. Swarm systems
are generally characterized by their large sizes, thus the failure of a few robots or
the addition of another few, will not apply a considerable change on the average
performance of the swarm or of the single robot. In addition applying the central
limit theorem is constrained by having a sufficiently large n, where n represents
the number of robots in case the swarm performance is defined based on Equation
(3). Hence, a small change in the number of robots will not change significantly
the total performance of the swarm. On the other hand, the assumption of having
a constant work density is associated with a large set of real-world applications.
Examples to these tasks could be recycling systems where the robots are responsi-
ble to retrieve objects excreted continuously at specific locations to some recycling
destination. Another example could be a production-transport system, where ob-
jects are assumed to be produced continuously at different locations and require
to be transported to specific delivery points.

Based on the above discussion we can describe the two conditions of having
a constant average of robots number and a constant work density as realistic
assumptions. Let us denote the mean and the standard deviation of the random
variable associated with the swarm performance ωi(τ) on task Ti within the
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time-window τ respectively by: μωi(τ) and σωi(τ). Based on the central limit
theorem the long-term swarm performance will be normally distributed:

ωi(Di) ∼ Norm(Kμωi(τ),Kσ2
ωi(τ)

) (7)

On the other hand, we denote the mean and the standard deviation of the random
variable associated with the single robot performance βij(τ) respectively by:
μβij(τ) and σβij(τ). According to the central limit theorem, the long-term swarm
performance will be also normally distributed:

ωi(Di) ∼ Norm(KNμβij(τ),KNσ2
βij(τ)

) (8)

Consequently, the swarm performance can be characterized probabilistically by
using the cumulative distributed function (CDF) of the normal distribution,
which for the mean μ and the variance σ2, is defined as in following:

Pr(X � x) =
1

2
+

1

2
erf(

x− μ

2σ2
) (9)

We substitute the random variable X by the swarm performance ωi(Di) and the
value of small x by a desired performance Si, that represents the number of parts
to accomplish up to the task deadline Di. The probability we are interested to
calculate is the one in Equation (4): Pr(ωi(Di) � Si), which can be expressed
using the CDF of the normal distribution (9):

Pr(ωi(Di) � Si) = Pr(ωi(Di) > (Si − 1)) (10)

= 1− Pr(ωi(Di) � (Si − 1))

Consequently, the central limit theorem (CLT) can be applied to estimate the
long-term performance of swarm robotics, efficiently, in both following contexts:

– Swarm performance over short experiments: the swarm performance at dead-
line Di is the sum of the swarm contributions over all time-windows included
within the deadline Di. We map each of these swarm contributions to a ran-
dom variable with the mean μωi(τ) and the variance σ2

ωi(τ)
which are mea-

sured over one experiment of the length τ . Consequently, the central limit
theorem can be applied to approximate the swarm performance at Di as the
sum of these random variables, like in Equation (2).

– Single robot performance over short experiments: the swarm performance at
deadline Di can be calculated as the sum of the individual robots’ contribu-
tions over all time-windows included within the deadline Di. As the single
robot performance over one time-window experiment can be measured by
the robot itself, this estimation technique represents a ”self-organized” one.
The robot works on the task for one time-window to estimate the mean and
the standard deviation of the random time required to accomplish one part
of that task. After that, the central limit theorem is applied to approximate
the swarm performance at Di using Equation (3).
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5 Scenario and Evaluation

We consider the foraging scenario, where a large number of objects are scattered
uniformly over an object-area and need to be retrieved by a swarm of robots to
some nest-area. During the experiment, each robot can be in one of the following
states: exploring or retrieving. A robot being in the exploring state searches for
objects to retrieve and as soon as an object is found, the robot changes its state to
retrieving and starts to move towards the nest-area. It is assumed that new objects
are popping up in the arena and the objects density remains constant throughout
the whole experiment. The ARGoS1simulator [11] is used to calculate an average
performance function via repeated high-level simulations in order to characterize
the effect of the spatial interferences on the performance of the single robot as
well as on the swarm. The simulations are repeated for 125 times. Figure 1 shows
how the mean of the single robot performance decreases by increasing the number
of robots in addition to the standard deviation of this performance for different
swarm sizes. Figure 2 shows the change in the mean of the swarm performance and
its standard deviation while applying the same increment in the swarm size. We
consider the foraging scenario illustrated in Section 5, where it is carried out by a
swarm of 30 robots within the deadline Di = 12 · 103 seconds. The time-window
length is set to τ = 100. Figure 3 shows the mean μ in addition to the 3 × σ of
the random number associated with the retrieved objects over all time-windows
up to theDi = 12 ·103 seconds. Figure 4 shows the time it takes the average of the
system performance to stabilize. This time is referred to as start-up time. At the
beginning of the foraging task all robots are free to search for objects and to re-
trieve them as soon as they find any. Thus, the number of objects retrieved at the
beginning is higher than the number will be retrieved later on, when the robots are
divided between robots which are searching and free to retrieve and robots which
are retrieving. This is the reason behind the existence of such a start-up time after
which the system performance stabilizes. The accuracy of the CLT estimation of
the swarm performance is influenced by including the system performance dur-
ing the start-up time or excluding it. This influence varies based on the relative
relation between the length of both: the deadline Di and the start-up time. The
swarm performance will be estimated within the two contexts mentioned above.
First by using the swarm contributions and second using the individual robot’s
contribution both measured over short experiments.

– Swarm performance over short experiments:
We use the swarm contribution achieved by the whole swarm within one
time-window τ = 100 second. We substitute it in Equation (2), where the
deadline of Di = 12 ·103 includes 120 time-window of the length 100 seconds:

ωi(Di) =

K∑

j=1

ωi(τj) ⇒ ωi(12 · 103) =
120∑

j=1

ωi(100) (11)

1 ARGoS is a discrete-time physics-based simulation framework developed within the
Swarmanoid project. It can simulate various robots at different levels of details, as
well as a large set of sensors and actuators.
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Fig. 1. Single robot performance under
spatial interferences during 1 second
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tial interferences during 1 second
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Fig. 3. μ and 3 × σ of the number of
objects retrieved during 12·103 seconds
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According to the central limit theorem, the r.v. associated with the number
of retrieved objects at the deadline 12 · 103 is normally distributed with the
mean and the standard deviation as in following:

μωi(12·103) = 120μωi(100) (12) σωi(12·103) =
√
120σωi(100) (13)

Figures 5 and 6 illustrate the mean and the standard deviation of the number
of objects retrieved within the deadline Di = 2 · 103, compared to the mean
and standard deviation predicted by CLT using 12 and 13.

Theprobability of retrievingmore thanSi objectswithin thedeadlineDi can
be derived using the CDF of the normal distribution using in Equation (9):

Pr(ωi(2 · 103) � Si) = 1− [
1

2
+

1

2
erf(

(Si − 1)− μωi(2·103)√
2σωi(2·103)

)]

= 1− [
1

2
+

1

2
erf(

(Si − 1)− 120 μωi(100)√
2
√
120 σωi(100)

)] (14)

By performing 125 ARGoS simulations, Figures 7 and 8 show the probability
density function (PDF) associated with the number of objects retrieved by
the swarm at deadline Di = 2 · 103. In Figure 7 using the mean μωi(100) =
10.3411 and standard deviation σωi(100) = 2.7931 measured after the system
stabilizes and in Figure 8 using the the mean μωi(100) = 10.6239 and standard
deviation is σωi(100) = 2.9755 measured with taking the system performance
though the start-up time into account. Figures 9 and 10 show the cumulative
distribution function (CDF) associated with the number of retrieved objects
also in Figure 9 after the system stabilizes and in Figure 10 with taking the
start-up time into account.

– Single robot performance over short experiments:
Here, we estimate the swarm performance at deadline Di = 2 · 103 in a self-
organized way by using the single robot performance measured within one
time-window by substituting it in Equation (3).

ωi(Di) =

K∑

j=1

N∑

l=1

βil(τj) ⇒ ωi(12 · 103) =
120∑

j=1

30∑

l=1

βil(100) (15)

According to the CLT, the r.v. associated with objects retrieved by the
swarm up to the deadline 12 ·103, is normally distributed with the mean and
the standard deviation as in following:

μωi(12·103) = 120× 30μβij(100)

(16)
σωi(12·103) =

√
120× 30σβij(100)

(17)

This estimation can be performed by the robots themselves and could help
them in making appropriate allocation decisions. The probability of in-
terest in Equation (4) can be calculated by applying the CDF of normal
distribution (9):
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Fig. 10. CDF of the retrieved number
of objects with taking the start-up time
into account

Pr(ωi(2 · 103) � Si) = 1− (
1

2
+

1

2
erf(

(Si − 1) − μωi(2·103)√
2 σωi(2·103)

))

= 1− (
1

2
+

1

2
erf(

(Si − 1)− 120× 30 μβij(100)√
2
√
120× 30 σβij(100)

)) (18)

The swarm performance here is simulated only in the situation of taking
the start-up time into account. Measuring the swarm performance after the
system stabilizes is straightforward as mentioned above. Figure 11 shows
the comparison between the estimated (PDF) of the r.v. associated with the
number of objects retrieved by the 30 robot at Di = 2 · 103 and the empir-
ical one. Figure 12 shows the same comparison but for the cumulative dis-
tribution function(CDF) of both. The reason why the estimation performed
using the individual robot’s contribution is not the same accurate as the one
performed using the swarm contribution, is that, in the case of the swarm
the average performance of N robot is taken into account.
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6 Conclusion

In this paper, we presented a probabilistic study of the swarm performance that
can be achieved within long-term deadlines and under the influence of spatial
interferences. Estimating the performance of robots swarms is an important con-
cept especially for tasks where the performance should be planned under specific
constraints like time constraints. In such cases the early estimation of the per-
formance will be obtained at the long-term deadline of the considered task, is of
a significant importance.

The central limit theorem CLT, is a straightforward tool and the core theo-
rem which was investigated in this paper to perform the global performance es-
timation of the swarm. Such a mathematical estimation represents a useful tool to
preserve time and resources in comparison to real-time experiments or computer
simulations. The estimation of the swarm robotic performance over long-term
deadlines using the central limit theoremwas accomplished into two contexts: first
by using the swarmcontributions over short-termexperiments and second in a self-
organized way by using the single robot performance over short experiments.

The accomplishment of the performance estimation over short experiments,
allows for the possibility of launching repair mechanisms at an early stage of
the execution. In addition, this estimation is considered to be useful especially
in cases where the swarm performance and/or the single robot performance are
not following a well-known distribution like the normal distribution. In such
cases, the central limit theorem can be applied efficiently to accomplish swarm
performance estimations.
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