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Università Ca’ Foscari, Venezia, Italy

(e-mail: paolap@pellegrini.it; mbiro@ulb.ac.be)

October 2006

Abstract

Ant colony optimization is a well known metaheuristic which has been object of many studies,

both theoretic and applicative. In a recent analysis [1], a particular aspect of its behavior

is investigated. More in detail, the topic object of interest is the result achieved by ant

algorithms when the cost unit in which instances are expressed changes. Three ant colony

optimization algorithms are proved to be invariant to this type of transformation of instances,

provided that some conditions are satisfied. In this paper some examples of combinatorial

optimization problems to which ant colony optimization can be applied in an invariant fashion

are described. Many of the problems typically tackled in the literature may be included in

this list.

Introduction

Ant colony optimization (ACO) [2] is a well known metaheuristic, which is used for tackling many

combinatorial optimization problems. Recently, the issue of the invariance of ACO algorithm to the

scaling of instances has been risen, and a proof of this property has been proposed [1]. Typically,

the goal in a combinatorial optimization problem is the minimization of a function based on

quantities which often represent time intervals, distances or, more in general, costs. Informally, an

algorithm is said to be invariant to the scaling of instances if the sequence of solutions generated

remains unchanged when tackling two instances that differ only for the cost unit adopted. For a

formal definition of the problem we refer the reader to Birattari et al. [1].

In the following, we indicate with I and Ī two equivalent instances (Ī = g1I), i.e. two instances

that are related via a linear transformation of units [1]. They are such if they share the same space

of solutions S and, for any solution s ∈ S, f̄(s) = g1f(s), where g1 > 0 is a constant and f(s) and

f̄(s) are the value of the objective function in s for I and Ī, respectively.

In the notation adopted, if y is a generic quantity that refers to an instance I, then ȳ is the

corresponding quantity for what concerns instance Ī.

Moreover, let s0 be a reference solution of instance I, returned by some appropriate invariant

algorithm. Such an algorithm, which is necessarily problem-specific, might be based either on a

heuristic or more simply on a random sampling of the solution space. From this definition, it

follows that f̄(s0) = g1f(s0), for any two equivalent instances I and Ī such that Ī = g1I.

Finally, in ant colony optimization, a combinatorial optimization problem is mapped on a

graph G = (N, E), where N is the set of nodes and E is the set of edges. The graph G is called

1
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construction graph. The solutions to the original problem are mapped to paths on G. Variables

called pheromone and heuristic information are associated with the edges in E. In the following,

we will adopt the notation 〈i, j〉 to denote the edge connecting nodes i and j. With ηij we will

denote the heuristic information on the desirability of constructing a path on G featuring node j

immediately after i.

In Birattari et al. [1], the algorithmic framework of ant system, ant colony system, and MAX–

MIN ant system is described. These three algorithms are shown to be invariant to the scaling of

instances when the following condition is verified:

(Condition 1) the heuristic information is such that

[η̄ij ]
β = [g2ηij ]

β , for all 〈i, j〉 ∈ E,

where β is a parameter and g2 > 0 is an arbitrary constant.

Moreover, the paper introduces three algorithms: siAS, siMMAS, and siACS. These algorithms

are functionally equivalent to ant system, MAX–MIN ant system, and ant colony system, respec-

tively, but they enjoy the further property of being strongly invariant. The first property ensures

that two algorithms generate the same sequence of solutions for any instance I. The second prop-

erty ensures that, beside producing the same sequence of solutions irrespectively of any linear

rescaling of the problem instance, the algorithms are such that the pheromone and the heuristic

information do not change with the scale of the problem instance. The only problem-specific ele-

ment which must be suitably defined for obtaining the strongly invariant version of the algorithms

is the heuristic information. In particular, Conditions 2 and 3 are to be met for achieving the

functional equivalence and the strong invariance, respectively.

(Condition 2) the heuristic information is such that

[η̃ij ]
β = [ληij ]

β, for all 〈i, j〉,

where β is a parameter, η̃ij and ηij are the heuristic information on edge 〈i, j〉 respectively in

the strongly invariant algorithm and in the classic one, and λ > 0 is an arbitrary constant.

(Condition 3) the heuristic information used in the strongly invariant algorithm is such that

[η̄ij ]
β = [ηij ]

β , for all 〈i, j〉,

for any two instances I and Ī such that Ī = g1I, with g1 > 0.

In the following, some examples of typical problems to which ACO can be applied in an

invariant fashion are described. A setup for having the three conditions satisfied is pointed out.

As it can be observed, many of the typical combinatorial optimization problems can be tackled

with ant algorithms obtaining results that are not dependent on the scale of the cost unit used.

1 Traveling salesman problem

The traveling salesman problem (TSP) consists in finding a Hamiltonian circuit of minimum cost

on an edge-weighted graph G = (N, E). Let N be the set of nodes, and E be the set of edges.

If a directed graph is considered, the problem is known as the asymmetric traveling salesman

problem [3].

Let xij(s) be a binary variable taking value 1 if edge 〈i, j〉 is included in tour s, and 0 otherwise.

Let cij be the cost associated to edge 〈i, j〉. The goal is to find a tour s such that the function

f(s) =
∑

i∈N

∑

j∈N

cijxij(s)

is minimized.
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1) Transformation of units: If the cost of all edges is multiplied by a constant ζ, the resulting

instance Ī is equivalent to the original I, that is, Ī = g1I, with g1 = ζ. Indeed, c̄ij = ζcij , for

all 〈i, j〉 =⇒ f̄(s) = ζf(s), for all s.

2) Reference solution: Many constructive heuristics exist for the TSP [4] that can be conve-

niently adopted here.

3) Heuristic information: The typical setting is ηij = 1/cij , for all 〈i, j〉. This meets Condi-

tion 1 with g2 = 1/ζ.

Therefore, the theorems on the weak invariance of ant system, MAX–MIN ant system, and ant

colony system hold. In the literature, the three variants of ant colony optimization considered in

this paper have been applied to the traveling salesman problem with the setup just described [2].

4) Strongly-invariant heuristic information: Let ηij = f(s0)/ncij , for all 〈i, j〉, where n =

|N |. It is worth noting that the term n is not needed for the invariance to transformation of

units. It has been included for achieving another property: the above defined ηij does not

depend on the size of the instance under analysis—that is, on the number n of cities. This

definition meets Condition 2 with λ = f(s0)/n, and Condition 3.

Therefore, siAS, siMMAS, and siACS are indeed strongly invariant and are functionally equiva-

lent to their original counterparts.

2 Vehicle routing problem

In the vehicle routing problem (VRP) n customers have to be served starting from one central

depot (which is indexed 0). Each customer i has a non-negative demand di of the same good,

and for each pair of customers 〈i, j〉 a travel time cij between the two customers is given. The

customers are served by a fleet of vehicles of equal capacity. The objective is to find a set of routes

that minimizes the total travel time, such that: each customer is served once by exactly one

vehicle; the route of each vehicle starts and ends at the depot; and the total demand covered by

each vehicle does not exceed its capacity. Using the notation introduced for the traveling salesman

problem, the objective function can be written as:

f(s) =
∑

i∈N

∑

j∈N

cijxij(s).

Variants of the problem may have different goals, as for example the minimization of the number

of vehicles used [5].

1) Transformation of units: If the cost of all edges is multiplied by a constant ζ, the resulting

instance Ī is equivalent to the original I, that is, Ī = g1I, with g1 = ζ. Indeed, c̄ij = ζcij , for

all 〈i, j〉 =⇒ f̄(s) = ζf(s), for all s.

2) Reference solution: Many constructive heuristics exist for the VRP [5] that can be conve-

niently adopted here.

3) Heuristic information: Let ηij = ∫ij [6], with ∫ij measure of the cost saving that would be

achievable by using edge 〈i, j〉 [7]: We first consider a solution with one separate tour per

customer, i.e. tours starting and ending at the depot and touching only one customer each.

Then, for each pair 〈i, j〉 of customers, a saving ∫ij = ci0 + c0j − cij is computed. This meets

Condition 1 with g2 = ζ.

Therefore, the theorems on the weak invariance of ant system, MAX–MIN ant system, and

ant colony system hold. In the literature, variants of the VRP have been tacked with ACO
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algorithm. Limiting this survey to the standard version, let us cite, among the others, Reimann

et al. [8], Bullnheimer et al. [6].

4) Strongly-invariant heuristic information: Let ηij = n∫ij/f(s0), for all 〈i, j〉, where n =

|N |. As in the case of the traveling salesman problem, the term n is not needed for the

invariance to transformation of units. It has been included for achieving another property:

the above defined ηij does not depend on the size of the instance under analysis—that is, on

the number n of cities. This definition meets Condition 2 with λ = n/f(s0), and Condition 3.

Therefore, siAS, siMMAS, and siACS are indeed strongly invariant and are functionally equiva-

lent to their original counterparts.

3 Sequential ordering problem

The sequential ordering problem (SOP) consists in finding a minimum weight hamiltonian path on

a directed graph with weights on edges and nodes, subject to precedence constraints [9]. It is often

tackled as a constrained version of the asymmetric traveling salesman problem, by associating to

each edge 〈i, j〉 a cost c′ij :

c′ij =

{

∞ if node j has to precede node i,

cij + pj otherwise,

where cij is the weight of edge 〈i, j〉, and pj is the weight of node j. With this feature the objective

function can be expressed as

f(s) =
∑

i∈N

∑

j∈N

c′ijxij(s)

using the notation introduced for the TSP.

1) Transformation of units: If the cost of both edges and nodes is multiplied by a constant ζ,

then the cost c′ij is scaled by the same constant ζ, for all 〈i, j〉. The resulting instance Ī is

equivalent to the original I, that is, Ī = g1I, with g1 = ζ. Indeed, c̄′ij = ζc′ij , for all 〈i, j〉

=⇒ f̄(s) = ζf(s), for all s.

2) Reference solution: For the construction of a reference solution, one of the heuristics avail-

able for the TSP [4] can be conveniently adopted.

3) Heuristic information: The typical setting is ηij = 1/c′ij , for all 〈i, j〉. This meets Condi-

tion 1 with g2 = 1/ζ.

Therefore, the theorems on the weak invariance of ant system, MAX–MIN ant system, and

ant colony system hold. One of the best algorithms available in the literature for the sequential

ordering problem is the hybrid ant colony system proposed by Gambardella and Dorigo [10], where

the authors use this invariant setup.

4) Strongly-invariant heuristic information: Let ηij = f(s0)/nc′ij , for all 〈i, j〉, where n =

|N |. This definition meets Condition 2 with λ = f(s0)/n, and Condition 3.

Therefore, siAS, siMMAS, and siACS are indeed strongly invariant and are functionally equiva-

lent to their original counterparts.
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4 Quadratic assignment problem

In the quadratic assignment problem (QAP), n facilities and n locations are given, together with

two n × n matrices A = [auv] and B = [bij ], where auv is the distance between locations u and

v, and bij is the flow between facilities i and j. A solution s is an assignment of each facility to

a location. Let xi(s) denote the location to which facility i is assigned. The goal is to find an

assignment that minimizes the function:

f(s) =
n

∑

i=1

n
∑

j=1

bijaxi(s)xj(s).

1) Transformation of units: If all distance are multiplied by a constant ζ1 and all flows by a

constant ζ2, the resulting instance Ī is equivalent to the original I, that is, Ī = g1I, with

g1 = ζ1ζ2.

2) Reference solution: The construction of the reference solution is typically stochastic: a num-

ber of solutions are randomly generated and improved through a local search. The best solu-

tion obtained is adopted as the reference solution [11]. It is worth noting that a local search

is an invariant algorithm.

3) Heuristic information: Often, the heuristic information is not adopted [11], that is, β = 0.

In this case, Condition 1 is trivially met. Some authors [12, 13] set ηij = 1/
∑n

l=1 ail. This

meets Condition 1 with g2 = 1/ζ1.

Therefore, the theorems on the weak invariance of ant system, MAX–MIN ant system, and ant

colony system hold.

4) Strongly-invariant heuristic information: If the heuristic information is adopted, ηij =

f(s0)/
∑n

l=1 ail, for all 〈i, j〉. This meets Condition 2 with λ = f(s0), and Condition 3. On

the other hand, if no heuristic information is adopted as suggested in [11], Conditions 2 and 3

are trivially met.

Therefore, siAS, siMMAS, and siACS are indeed strongly invariant and are functionally equiva-

lent to their original counterparts.

5 Generalized assignment problem

In the generalized assignment problem (GAP), a set of tasks I has to be assigned to a set of agents

J in such a way that a cost function is minimized. Each agent j has only a limited capacity aj , and

each task i consumes, when assigned to agent j, a quantity bij of the agent’s capacity. Moreover,

a cost cij of assigning task i to agent j is given. The objective is to find a feasible task assignment

s that minimizes

f(s) =
∑

i∈I

∑

j∈J

cijxij(s), with
∑

i∈I

bijxij(s) ≤ aj , ∀j ∈ J.

xij(s) is equal to 1 if task i is assigned to agent j in s, and 0 otherwise.

1) Transformation of units: If the cost of assigning each task i to each agent j is multiplied

by a constant ζ, the resulting instance Ī is equivalent to the original I, that is, Ī = g1I, with

g1 = ζ.

2) Reference solution: The construction of the reference solution is typically stochastic.
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3) Heuristic information: The typical setting is ηij = 1/cij, for all 〈i, j〉 [14]. This meets

Condition 1 with g2 = 1/ζ.

Therefore, the theorems on the weak invariance of ant system, MAX–MIN ant system, and ant

colony system hold.

4) Strongly-invariant heuristic information: Let ηij = f(s0)/ncij , for all 〈i, j〉, where n =

|N |. This definition meets Condition 2 with λ = f(s0)/n, and Condition 3.

Therefore, siAS, siMMAS, and siACS are indeed strongly invariant and are functionally equiva-

lent to their original counterparts.

6 Single machine total weighted tardiness scheduling prob-

lem

In the single machine total weighted tardiness scheduling problem (SMTWTP) [15], n jobs are to

be processed sequentially on a single machine, without interruption. Each job j has an associated

processing time pj , a weight wj , and a due date dj . All jobs are available for processing at time

zero. The tardiness of job j is defined as tj(s) = max{0, cj(s)− dj}, where cj(s) is its completion

time in the current job sequence s. The objective is to find the sequence s that minimizes the sum

of the weighted tardiness:

f(s) =

n
∑

j=1

wjtj(s).

1) Transformation of units: If, for all the jobs, both the processing time and the due date are

multiplied by a constant ζ1, and the weight is multiplied by a constant ζ2, the resulting

instance Ī is equivalent to the original I, that is, Ī = g1I, with g1 = ζ1ζ2.

2) Reference solution: A heuristic based on the apparent urgency [16] is typically used for the

construction of the reference solution. In this approach, jobs are arranged in the descending

order of their apparent urgency priorities:

AUj =
wj

pj

exp

(

−max{0, dj − t − pj}

kp̂

)

, for all j.

Here, k is called the look-ahead parameter and is set according to the tightness of the due

date; p̂ the average processing time; t is the current time. As it can be seen, the selection

criterion is invariant to transformation of units.

3) Heuristic information: The typical setting is ηij = 1/dij , for all 〈i, j〉. This meets Condi-

tion 1 with g2 = 1/ζ1.

Therefore, the theorems on the weak invariance of ant system, MAX–MIN ant system, and ant

colony system hold. In the literature, den Besten et al. [17] apply ant colony system to SMTWTP.

In the analysis, the authors define various priority rules, which imply various heuristic measures.

Among them the one previously described is considered.

4) Strongly-invariant heuristic information: Let ηij =
∑n

j=1 tj(s0)/dij , for all 〈i, j〉. This

definition meets Condition 2 with λ =
∑n

j=1 tj(s0), and Condition 3.

Therefore, siAS, siMMAS, and siACS are indeed strongly invariant and are functionally equiva-

lent to their original counterparts.
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7 Open shop scheduling problem

In open shop scheduling problems (OSP) [18], a finite set O of operations is given, which is

partitioned into a collection of subsets M = {M1, M2, . . . , MU} and a collection of subsets J =

{J1, J2, . . . , JV }. Each Mu is the set of operations that have to be performed by machine u;

and each Jv is the set of operations belonging to job v. A non-negative processing time t(oj)

and the earliest possible starting time e(oj) are associated with operation oj ∈ O. A solution s

is a collection of schedules X (s) = {X1(s), X2(s), . . . , XU (s)}, where Xu(s) is the sequence of

operations scheduled for machine u and Xu
r (s) is the operation in position r in sequence Xu(s).

The completion time cu
r (s) of operation Xu

r (s) is computed recursively from cu
r′(s) = t

(

Xu
r′(s)

)

+

max
[

e
(

Xu
r′(s)

)

, cu
r′−1(s)

]

, with cu
0 (s) = 0. The goal is to minimize the makespan, which is given

by:

f(s) = max
u

cu
|Mu|

(s).

1) Transformation of units: If all processing times and earliest possible starting times are mul-

tiplied by a constant ζ, the resulting instance Ī is equivalent to the original I, that is, Ī = g1I,

with g1 = ζ.

2) Reference solution: The construction of the reference solution is typically stochastic.

3) Heuristic information: The heuristic information is ηij = 1/e(oj), for all 〈i, j〉, which meets

Condition 1 with g2 = 1/ζ.

Therefore, the theorems on the weak invariance of ant system, MAX–MIN ant system, and ant

colony system hold.

4) Strongly-invariant heuristic information: The heuristic information is ηij = f(s0)/e(oj),

for all 〈i, j〉. This meets Condition 2 with λ = f(s0), and Condition 3.

Therefore, siAS, siMMAS, and siACS are indeed strongly invariant and are functionally equiva-

lent to their original counterparts.

8 Permutation flow shop scheduling problem

In the Permutation flow shop scheduling problem (PFSP), J jobs are to be processed. A set I

of machines is available. Each job j is partitioned in a set of operations Oj = {o1j , o2j , · · · , oIj},

where operation oij is to be processed on machine i. To each operation oij a processing time t(i, j)

is associated. It may be equal to 0 if job j is not to be processed on machine i. Let xr(s) be the

r-th job scheduled in sequence s. The completion time cu
r (s) of operation ouxr(s) on machine u is

computed recursively from cu
r′(s) = t

(

u, ouxr′ (s)

)

+ cu
r′−1(s), with cu

0 (s) = 0.

The goal is to minimize the makespan:

f(s) = max
u

cu
|J|

(s).

1) Transformation of units: If the processing time is multiplied by a constant ζ for all the jobs,

the resulting instance Ī is equivalent to the original I, that is, Ī = g1I, with g1 = ζ.

2) Reference solution: The NEH heuristic [16] is typically used for the construction of the

reference solution. In this approach, first the jobs are ordered by decreasing sums of total job

processing times on the machines. Then, the first two jobs are scheduled so as to minimize the
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partial makespan as if there were only two jobs. Finally, for all the following ones, insert one

job at a time in the partial schedule, into the location which minimizes the partial makespan.

As it can be seen, the selection criterion is invariant to transformation of units.

3) Heuristic information: Typically, the heuristic information is not adopted [19], that is, β =

0. In this case, Condition 1 is trivially met.

Therefore, the theorems on the weak invariance of ant system, MAX–MIN ant system, and ant

colony system hold.

4) Strongly-invariant heuristic information: As for the case seen in 3, if no heuristic infor-

mation is adopted as suggested by Stützle [19], Conditions 2 and 3 are trivially met.

Therefore, siAS, siMMAS, and siACS are indeed strongly invariant and are functionally equiva-

lent to their original counterparts.

9 Set covering problem

In the set covering problem (SCP) [20], u × v matrix A = [aij ] is given. All the matrix element

are either 0 or 1. Additionally, each column is given a non-negative cost cj . We say that a column

j covers a row i if aij = 1. A solution s is represented by a subset of columns that covers every

row. Let xj(s) be a binary variable which is 1 if column j is included in s, and 0 otherwise. The

goal is finding a solution of minimal cost. The objective function is:

f(s) =

v
∑

j=1

cjxj(s).

1) Transformation of units: If the cost of all columns is multiplied by a constant ζ, the resulting

instance Ī is equivalent to the original I, that is, Ī = g1I, with g1 = ζ.

2) Reference solution: The construction of the reference solution is typically stochastic.

3) Heuristic information: Let ηj = ej/cj, where ej is the cover value of column j, that is, the

number of additional rows covered when adding column j to the current partial solution. This

meets Condition 1 with g2 = 1/ζ.

Therefore, the theorems on the weak invariance of ant system, MAX–MIN ant system, and

ant colony system hold. Ant system is applied to the set covering problem by Leguizamón and

Michalewicz [21], Hadji et al. [22], using the invariant framework.

4) Strongly-invariant heuristic information: Let ηj = f(s0)ej/cj. This meets Condition 2

with λ = f(s0), and Condition 3.

Therefore, siAS, siMMAS, and siACS are indeed strongly invariant and are functionally equiva-

lent to their original counterparts.

10 Arc-weighted k-cardinality tree problem

The arc-weighted k-cardinality tree problem (KCT) is a generalization of the minimum spanning

tree problem. It consists in finding a subtree with exactly k arcs in a graph with arc weights, such

that the sum of the weights is minimal [23].

More formally, the KCT problem can be defined as follows. Let G = (N, E) be a graph. A

weight cij is assigned to each edge 〈i, j〉. A solution s is a k-cardinality tree in G. Let xij(s) be a
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binary variable which is 1 if edge 〈i, j〉 is included in s, and 0 otherwise. Then, the edge-weighted

problem (G, c, k) consists of finding a solution s that minimizes the objective function:

f(s) =
∑

〈i,j〉∈E

cijxij(s).

1) Transformation of units: If the weight of all edges is multiplied by a constant ζ, the resulting

instance Ī is equivalent to the original I, that is, Ī = g1I, with g1 = ζ. Indeed, c̄ij = ζcij , for

all j =⇒ f̄(s) = ζf(s), for all s.

2) Reference solution: The construction of the reference solution is typically stochastic.

3) Heuristic information: The heuristic information typically used [24] is ηij = 1/cij. This

meets Condition 1 with g2 = 1/ζ.

Therefore, the theorems on the weak invariance of ant system, MAX–MIN ant system, and ant

colony system hold.

4) Strongly-invariant heuristic information: Let ηij = f(s0)/cij . This meets Condition 2

with λ = f(s0), and Condition 3.

Therefore, siAS, siMMAS, and siACS are indeed strongly invariant and are functionally equiva-

lent to their original counterparts.

11 Multiple knapsack problem

In the multiple knapsack problem (MKP), a set I of items and a set J of resources are given.

A profit pi and a requirement rij of resource j ∈ J are assigned to each item i ∈ I. A set of

constraints is given as a limit aj on each resource j [25]. A solution s is a subset of items that

meets all the constraints. The goal is to find a solution that maximizes the total profit. The

objective function can be formulate as:

f(s) =
∑

i∈I

pixi(s), with
∑

i∈I

rijxi(s) ≤ aj , ∀j ∈ J.

xi(s) is a binary variable which is 1 if i ∈ s, and 0 otherwise.

1) Transformation of units: If the profit associated to each item is multiplied by a constant ζ,

the resulting instance Ī is equivalent to the original I, that is, Ī = g1I, with g1 = ζ.

2) Reference solution: The construction of the reference solution is typically stochastic.

3) Heuristic information: Let sk(t) be the partial solution of ant k at construction step t, and

vj(k, t) = aj−
∑

z∈sk(t) rzj be the remaining amount of resource j. The tightness of component

i with respect to resource j is defined as: wij(k, t) = rij/vj(k, t). Finally the average tightness

of all constraints with respect to component i is computed as awi(k, t) =
∑

j∈R wij(k, t)/l,

where l is the number of resource constraints. Let ηi(sk(t)) = pi/awi(k, t) [26]. This definition

meets Condition 1 with g2 = ζ.

Therefore, the theorems on the weak invariance of ant system, MAX–MIN ant system, and ant

colony system hold.

4) Strongly-invariant heuristic information: Let ηi(sk(t)) = pi/ (awi(k, t)f(s0)). This meets

Condition 2 with λ = 1/f(s0), and Condition 3.

Therefore, siAS, siMMAS, and siACS are indeed strongly invariant and are functionally equiva-

lent to their original counterparts.
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12 Bin packing problem

In the bin packing problem (BPP), a set J of bins of fixed capacity W and a set I of items are

given. A fixed weight wi, 0 < wi < W is associated to each item i [27]. A solution s is an

assignment of the items to bins such that the capacity of the bins is not violated. The goal is to

pack the items in as few bins as possible. More formally, let xij(s) be a binary variable which is

1 if item i is inserted in bin j in solution s, and 0 otherwise. Let yj(s) be a binary variable which

is 1 if bin j is used is solution s, that is, if
∑

i∈I xij(s) > 0; and 0 otherwise. The function to be

minimized is:

f(s) =
∑

j∈J

yj(s), with
∑

i∈I

wixij(s) < W, ∀j ∈ J.

1) Transformation of units: If the capacity of the bins and the weight of all the items are

multiplied by a constant ζ, the resulting instance Ī is equivalent to the original I, that is,

Ī = g1I, with g1 = 1.

2) Reference solution: The construction of the reference solution is typically done using the

best fit decreasing heuristic. In this approach, first the items are ordered by decreasing

weight. Then, each of them is assigned to the bin which will have the least amount of space

left, after accommodating the item. As it can be seen, the selection criterion is invariant to

transformation of units.

3) Heuristic information: The heuristic information is typically defined as ηij = 1/wi [28].

This meets Condition 1 with g2 = ζ.

Therefore, the theorems on the weak invariance of ant system, MAX–MIN ant system, and ant

colony system hold.

4) Strongly-invariant heuristic information: Let ηij = f(s0)/wi. This meets Condition 2

with λ = 1/f(s0), and Condition 3.

Therefore, siAS, siMMAS, and siACS are indeed strongly invariant and are functionally equiva-

lent to their original counterparts.

Conclusions

In a recent study, Birattari et al. [1] have shown that three main ant colony optimization algorithms

– ant system, ant colony system and MAX–MIN ant system– are invariant to transformations of

the cost unit used for expressing the instances. For this characteristic to be realized, a condition

concerning the heuristic information needs to be met. Moreover, the three algorithms are shown

to be implementable in a strongly invariant fashion in case two more conditions are satisfied.

In this study we presented a short list of problems to which ant colony optimization algorithms

can be applied satisfying the three conditions. From this short list, it can be observed that ACO

can enjoy this advantage with many typical combinatorial optimization problems.
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