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Parallel Ant Colony Optimization for the

Traveling Salesman Problem

Max Manfrin, Mauro Birattari, Thomas Stützle, and Marco Dorigo

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium

Abstract. There are two reasons for parallelizing a metaheuristic if in-
terested in performance: (i) given a fixed time to search, the aim is to in-
crease the quality of the solutions found in that time; (ii) given a fixed so-
lution quality, the aim is to reduce the time needed to find a solution not
worse than that quality. In this article, we study the impact of commu-
nication when we parallelize an high-performing ant colony optimization
(ACO) algorithm for the traveling salesman problem using message pass-
ing libraries. In particular, we examine synchronous and asynchronous
communications on different interconnection topologies. We find that the
simplest way of parallelizing the ACO algorithms, based on parallel in-
dependent runs, is surprisingly effective; we give some reasons as to why
this is the case.

1 Introduction

A system of n parallel processors is generally less efficient than a single n-times-
faster processor, but the parallel system is often cheaper to build, especially if we
consider clusters of PCs or workstations connected through fast local networks
and software environments such as Message Passing Interface (MPI) [1, 2]. This
makes clusters, currently, one of the most affordable, and therefore adopted,
parallel architecture to develop parallel algorithms.

The availability of parallel architectures at low cost has widen the interest for
the parallelization of algorithms and metaheuristics [3]. Some research has been
done also on the parallelization of ant colony optimization (ACO) algorithms,
but, surprisingly enough, only few works used as a basis for the parallelization a
high-performing ACO algorithm. One such exception is [4], where the effect of
parallel independent runs was studied.

When developing parallel population-based metaheuristics such as parallel
genetic algorithms and parallel ACO algorithms, it is common to adopt the
“island model” approach [5], in which the exchange of information plays a major
role. Solutions, pheromone matrices, and parameters have been tested (see for
example [6–9]) as the object of such exchange, but no convincing positive results
have been achieved.

In this paper, we study how different interconnection topologies affect the
overall performance when we want to increase, given a fixed run time, the qual-
ity of the solutions found by a multicolony parallel ACO algorithm to solve the
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traveling salesman problem (TSP), an NP-hard problem [10] commonly used as
a test set when developing metaheuristics. For each interconnection topology, we
implement both a synchronous and an asynchronous communication. The com-
munication strategy we adopt involves the exchange of the best-so-far solutions
every r iterations, after an initial period of “solitary” search. An advantage of
using best-so-far solutions over pheromone matrices is that less data has to be
exchanged: for the smallest instance that we consider, each pheromone matrix
requires several megabytes of memory space, while a solution requires only some
kilobytes.

The article is structured as follows. Section 2 describes the details of the
ACO algorithm we use as a basis for parallelization, and describes the differ-
ent interconnection topologies adopted. In Section 3, we report details about
the experimental setup, and Section 4 contains the results of the computational
experiments. Finally, in Section 5 we discuss the limitations of this work and
summarize the main conclusions that can be drawn from the experimental re-
sults.

2 Parallel Implementation of MAX−MIN Ant System

Ant Colony Optimization (ACO) is a metaheuristic introduced in 1991 by Dorigo
and co-workers [11, 12]. For an overview of the currently available ACO algo-
rithms see [13]. In ACO, candidate solutions are generated by a set of stochas-
tic procedures called artificial ants that use a parametrized probabilistic model
which is updated using the previously seen solutions [14].

For this research, we use MAX−MINAnt System (MMAS) [15]—currently
one of the best-performing ACO variants—as a basis for our parallel implemen-
tation. To have a version that is easily parallelizable, we removed the occasional
pheromone re-initializations applied in the MMAS described in [15], and we use
only a best-so-far pheromone update. Our implementation of MMAS is based
on the publicly available ACOTSP code, but it extends it by quadrant nearest
neighbor lists. Our version also includes a 3-opt local search.

We aim at an unbiased comparison of the performance produced by commu-
nication among multiple colonies on five different interconnection topologies. In
order to obtain a fair and meaningful analysis of the results, we have restricted
the approaches to the use of a constant communication rate among colonies to
exchange the best-so-far solutions. A colony injects in his current solution-pool a
received best-so-far solution if and only if it is better than its current best-so-far
solution, otherwise it disregards it. In the following, we briefly and schematically
describe the principles of the communication on each interconnection topology
we considered. For each topology, with the exception of the Parallel independent
runs, we have two versions: a first one, where the communication is synchronous,
and a second one, where the communication is asynchronous.

Completely-connected. In this parallel model, k colonies communicate with
each other and cooperate to find good solutions. One colony acts as a master and
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collects the values of the best-so-far solutions found by the other k − 1 colonies.
The master then broadcasts to all colonies the identifier of the colony that owns
the best solution among all k colonies so that everybody can get a copy of this
solution. In Section 4 and 5, we identify the two implementations of this model
with the acronym SCC for the synchronous completely-connected and ACC for
the asynchronous one.

Replace-worst. This parallel model is similar to Completely-connected, with
the exception that the master identifies also the colony that owns the worst solu-
tion among the k colonies. Instead of broadcasting the identity of the best colony,
the master send only one message to the best colony containing the identity of
the worst colony. In this way, the best colony send its best-so-far solution only
to the worst colony. In Section 4 and 5, we identify the two implementations of
this model with the acronym SRW for the synchronous replace-worst and ARW
for the asynchronous one.

Hypercube. In this parallel model, k colonies are connected according to the
hypercube topology (see [16] for a detailed explanation of it). Practically, each
colony is located on a vertex i of the hypercube and can communicate only with
these colonies that are located in the vertices that are directly connected to i.
Each colony sends to each of its neighbors its best-so-far solution. In Section 4
and 5, we identify the two implementations of this model with the acronym SH
for the synchronous hypercube and AH for the asynchronous one.

Ring. Here, k colonies are connected in such a way that they create a ring.
For this research we have implemented a unidirectional ring, so that colony
i sends his best-so-far solution only to colony [(i + 1) mod k], and receives it
only from colony [(i − 1 + k) mod k]. In Section 4 and 5, we identify the two
implementations of this model with the acronym SR for the synchronous ring
and AR for the asynchronous one.

Parallel independent runs. In this parallel model, k copies of the same se-
quential MMAS algorithm are simultaneously and independently executed us-
ing different random seeds. The final result is the best solution among all the
obtained ones. Using parallel independent runs is appealing as basically no com-
munication overhead is involved and nearly no additional implementation effort
is necessary. In Section 4 and 5, we identify the implementation of this model
with the acronym PIR.

These topologies allow us to consider decreasing communication volumes, mov-
ing from more global communication, as in Completely-connected, to more local
communication, as in Ring, to basically no communication, as in Parallel inde-
pendent runs.
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3 Experimental Setup

All algorithms are coded in C using MPI libraries under the same develop-
ment framework. Experiments were performed on a homogeneous cluster of 4
computational nodes running GNU/Linux Debian 3.0 as Operating System and
LAM/MPI 7.1.1 as communication libraries. Each computational node contains
two AMD OpteronTM 244 CPUs, 2 GB of RAM, and one 1 Gbit Ethernet net-
work card. The nodes are interconnected through a 48-ports Gbit switch.

Computational experiments are performed with k = 8 colonies of 25 ants
each that exchange the best-so-far solution every 25 iterations, except for the
first 100 iterations.

We consider 10 instances from the TSPLIB [17] with a termination criterion
based on run time, dependent on the size of the instance, as reported in Table
1. For each of the 10 instances, 10 runs were performed. In order to have a ref-
erence algorithm for comparison, we also test the equivalent sequential MMAS
algorithm. In the first case (SEQ), it runs for the same overall wall-clock time as
a parallel algorithm (8-times the wall-clock time of a parallel algorithm), while
in the second case (SEQ2), it runs for the same wall-clock time as one CPU of
the parallel algorithm.

The parameters of MMAS are chosen in order to guarantee robust perfor-
mance over all the different sizes of instances; we use the same parameters as
proposed in [15], except for the pheromone re-initializations and the best-so-far
update, as indicated in Section 2.

To compare results across different instances, we normalize them with respect
to the distance from the known optimal value. For a given instance, we denote
as cMH the value of the final solution of algorithm MH, and copt the value of the
optimal solution; the normalized value is then defined as

Normalized Value for MH =
cMH − copt

copt

· 100. (1)

Table 1. Instances with run time in seconds and average number of total iterations in
a run done by the sequential algorithm SEQ2

instance run time SEQ2 average iterations

pr1002 900 11831
u1060 900 10733

pcb1173 900 10189
d1291 1200 11325

nrw1379 1200 8726
fl1577 1500 15938

vm1748 1500 6160
rl1889 1500 6199
d2103 1800 12413
pr2392 1800 8955
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Table 2. p-values for the null hypothesis “The distribution of the % distance from
optimum of solutions for all instances is the same as PIR”. The alternative hypothesis
is that “The median of PIR distribution is lower”. The significance level with which
we reject the null hypothesis is 0.05

SCC ACC SRW ARW SH AH SR AR

5.4e-4 0.01 0.02 0.02 1.2e-3 0.02 0.02 0.02

This normalization method provides a measure of performance that is indepen-
dent of the different instance hardness. It is reasonable to request that a parallel
algorithm performs at least no worse than SEQ within the computation time
under consideration.

4 Results

As stated in Section 2, we aim at an unbiased comparison of the performance
produced by communication among multiple colonies on different interconnec-
tion topologies. The hypothesis is that the exchange of the best-so-far solution
among different colonies speeds up the search of high quality solutions, having
a positive impact on the performance of the algorithms. In order to test the ad-
vantages of communication, we implement two versions of each algorithm: a first
one where the communication is synchronous, and a second one where the com-
munication is asynchronous. This setup allows us to use statistical techniques
for verifying if differences in solutions quality found by the algorithms are sta-
tistically significant. Figure 1 contains the boxplot of the results1 grouped by
algorithm over all instances after the normalization described in Section 3. The
boxplot indicates that, on average, all the parallel models, except SCC, seem
able to do better than SEQ and SEQ2, but that the best performing approach is
PIR. We check whether the differences in performance among the parallel models
with exchange of information and PIR are statistically significant. The assump-
tions for a parametric method are not met, hence we rely on the Wilcoxon rank

sum test [18] with p-values adjusted by Holm’s method [19].
The differences in performance of all the parallel models with information ex-

change from those of PIR are statistically significant, as can be seen from Table 2,
confirming that PIR is the best performing approach under the tested conditions.
We also check whether the differences in performance are statistically significant
once we group the algorithms by parallel model, using again the Wilcoxon test
with p-values adjusted by Holm’s method, reporting the results in Table 3. All
the algorithms have differences in performance that are not statistically signifi-
cant.

1 We refer the reader interested in the raw data to the URL:
http://landau.ulb.ac.be/∼mmanfrin/papers/ants06/ants06.html
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SEQ SEQ2 PIR SCC ACC SRW ARW SH AH SR AR
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Fig. 1. Aggregate results over all instances. Boxplot of normalized results
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Table 3. p-values for the null hypothesis “The distributions of the % distance from
optimum of solutions are the same” for all instances. The significance level with which
we reject the null hypothesis is 0.05

CC RW H

RW 0.55 - -
H 1 1 -
R 0.55 1 1

Even though all parallel algorithms achieve better performance than the se-
quential ones, these are negative results for the parallel models that rely on
communication. One reason might be that the run times are rather high, and
MMAS easily converges in those times. This could bias the performance in
favor of PIR, that can count on multiple independent search paths to explore
the search space, while the other parallel algorithms tend to converge too fast
toward a same solution, due to the frequent exchange of information (this is
verified by the traces of the algorithms’ outputs).

In order to check if our doubt on the “stagnation” behavior has some fun-
dament, we re-analyze the results considering a reduced run time by a factor
1
2
, 1

4
, 1

8
, 1

16
, 1

32
, 1

64
, 1

128
, showing the resulting boxplots in Figures 2, 3, 4, 5, 6, 7,

8. We observe that the more we reduce the run time, the less the differences
are between the performance of the SEQ algorithm and the others, up to the
reduction factor of 1

64
, for which SEQ performs in average better than all the

parallel models (please, remember that SEQ has a run time that is 8-times the
one of the other parallel algorithms).

To further confirm the “stagnation” behavior, we analyze the run-time dis-
tribution (RTD) of the sequential algorithm for reaching the known optimal
solution value. In Figure 9 we give plots of the measured RTDs for the two in-
stances pr1002 and d2103. As explained in [20], the exponential distribution that
is given in these plots indicates that this version of MMAS may profit strongly
from algorithm restarts and, hence, this is an indication of severe stagnation
behavior.

To better understand the impact that the frequency of communication has
on performance, we change the communication scheme from the exchange of the
best-so-far solutions every 25 iterations, except for the first 100, to the exchange
every n

4
iterations, except during the first n

2
, where n is the size of the instance.

Given the previous results, according to which there are no statistically signifi-
cant differences in the performance of the parallel algorithms, we test this new
communication scheme on the parallel models Replace-worst (SRW2) and Ring
(SR2). Figure 10 contains the boxplots of the results. Once more, we rely on the
Wilcoxon test with Holm’s adjustment (see Table 4) to verify if the differences
in performance are statistically significant.

With the adoption of the new communication scheme, under the same exper-
imental conditions, we are not able to reject the null hypothesis “The distribu-
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SEQ SEQ2 PIR SCC ACC SRW ARW SH AH SR AR
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Fig. 2. Aggregate results over all instances. Boxplots of normalized results restricted
to values in [0,1]. Run time reduced by factor 1
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SEQ SEQ2 PIR SCC ACC SRW ARW SH AH SR AR
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Fig. 3. Aggregate results over all instances. Boxplots of normalized results restricted
to values in [0,1]. Run time reduced by factor 1
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SEQ SEQ2 PIR SCC ACC SRW ARW SH AH SR AR

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Reduced Time 1/8 − All instances

ALGORITHMS

%
 d

is
ta

nc
e 

fr
om

 O
P

T
IM

U
M

Fig. 4. Aggregate results over all instances. Boxplots of normalized results restricted
to values in [0,1]. Run time reduced by factor 1
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SEQ SEQ2 PIR SCC ACC SRW ARW SH AH SR AR

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Reduced Time 1/16 − All instances

ALGORITHMS

%
 d

is
ta

nc
e 

fr
om

 O
P

T
IM

U
M

Fig. 5. Aggregate results over all instances. Boxplots of normalized results restricted
to values in [0,1]. Run time reduced by factor 1
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SEQ SEQ2 PIR SCC ACC SRW ARW SH AH SR AR
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Fig. 6. Aggregate results over all instances. Boxplots of normalized results restricted
to values in [0,1]. Run time reduced by factor 1

32



13

SEQ SEQ2 PIR SCC ACC SRW ARW SH AH SR AR
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Fig. 7. Aggregate results over all instances. Boxplots of normalized results restricted
to values in [0,1]. Run time reduced by factor 1
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SEQ SEQ2 PIR SCC ACC SRW ARW SH AH SR AR
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Fig. 9. Run-time distribution over 80 independent trials of the sequential MMAS
algorithm for the instances pr1002 and d2103



16

PIR SRW SRW2 SR SR2

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Second communication strategy − All instances

ALGORITHMS

%
 d

is
ta

nc
e 

fr
om

 O
P

T
IM

U
M

Fig. 10. Aggregate results over all instances. Boxplot of normalized results



17

Table 4. p-values for the null hypothesis “The distribution of the % distance from
optimum of solutions for all instances is the same as PIR”. The alternative hypothesis
is that “The median of PIR distribution is lower”. The significance level with which
we reject the null hypothesis is 0.05

SRW SRW2 SR SR2

0.02 0.30 0.03 0.30

tions of the % distance from optimum of solutions for all instances is the same
as PIR”. The reduced frequency in communication has indeed a positive impact
in the performance of the two parallel algorithms SRW2 and SR2, even though
it is not sufficient to achieve better performance w.r.t the parallel independent
runs. We believe that, to achieve better results than PIR we need to develop
a more sophisticate communication scheme, that is dependent not only on the
instance-size, but also on the run time.

5 Conclusions

The main contribution of this paper is the study of the impact on the perfor-
mance produced by communication among multiple colonies interconnected with
various topologies. We initially restricted the algorithms to the use of a constant
communication rate among colonies to exchange the best-so-far solutions. For
each topology, with the exception of the Parallel independent runs, we have de-
veloped two versions: a first one where the communication is synchronous, and
a second one where the communication is asynchronous. We have shown that
all the parallel models perform in average better than the equivalent sequential
algorithms (SEQ and SEQ2).

The inability to restart of this version of MMAS, transform the early con-
vergence behavior into a stagnation behavior, biasing the performance in favor
of PIR over all the other parallel models. We believe that better performance
than PIR could be obtain by the parallel models either adding the restarting
feature, or implementing communication schemes that avoid early convergence.
This second approach could be achieved implementing the acceptance of solu-
tions from other colonies only when they “differ” less than a certain number of
components, leading to the creation of groups of colonies that search in different
areas of the search space, or by exchanging the solutions with a frequency that
depends on both instance size and run time.
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