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Abstract

In the following, an instances generator for the Vehicle Routing Problem with Stochastic
Demand is presented. Data concerning real cities are used as guideline in the development of
the generator. Two examples of instances are presented.

1 Introduction

In order to perform an empirical analysis of the behavior of an algorithm, a class of reference
instances must be defined. The best option would be to consider a sample of real instances supplied
by firms dealing with the specific problem tackled. This cooperation between industry and research
would be extremely useful, but nowadays it is still very difficult to reach. Typically, keeping secret
the database of customers and the corporate strategies is considered a source of competitive
advantage, and then shearing this information with scientists is often seen as generating more
drawbacks than benefits. As a consequence it is very hard to have the possibility of handling
a large set of real instances. The solution to this problem is to consider artificial instances as
benchmark, using the ones proposed in literature whenever convenient.

The work presented here has been motivated by the willing of investigating the behavior
of different approaches when applied to the Vehicle Routing Problem with Stochastic Demand
(VRPSD). This problem is pretty well known in literature, but a set of standard benchmark
instances is not available. We describe, then, a procedure for generating instances specific for
the VRPSD, which will be used in future studies. The main objective is to formalize and make
publicly available a generator of instances as close as possible to what from our point of view can
be real situations.

In Section 2 the Vehicle Routing Problem with Stochastic Demand is shortly described and
in Section 3 the logic behind the procedure we use for the generation and the main framework of
the algorithm are presented. Section 4 contains two elementary examples of instances obtainable
following this framework.

2 The Vehicle Routing Problem with Stochastic Demand

The Vehicle Routing Problem with Stochastic Demand is defined on a graph G = (V, A), where
V = {vg,v1, v, ...,v,} represents the set of nodes and A = {(v;,v;) : v;,v; € V} represents the
set of arcs connecting them. To the generic element (v;,v;) € A a cost ¢;; is associated, often
representing the distance between nodes v; and v;. A fleet of vehicles with fixed capacity, that in
the standard configuration are identical, is placed in the depot vg. Each node v; # vy represents
a customer, that requires the delivery of a certain amount of good. The objective of the problem
is serving all the customer using the available vehicles at the minimum total cost.
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zone 3

Figure 1. Representation of the division of a city in different zones

The peculiarity of the VRPSD consists in the fact that only the probability distribution of the
demand of each customer is known before reaching him, which make impossible to establish a-
priori a set of routes that minimizes the total cost for any possible realization. The objective
typically considered is then the minimization of the expected total cost.

Many authors have studied this problem, for a deeper analysis we refer the reader to [1, 2, 3,
5, 6].

3 Instances Generation

The main purpose of this work is to propose a procedure for generating instances for the VRPSD,
which will be used in future works.

The first problem we focused on consists in detecting the characteristic that the localization
of the customer should have in order to be able to be realistic. For the Vehicle Routing Problem
in general, most real applications are represented by firms distributing (or collecting) goods to a
set of customers. These customers can be either geographically concentrated in a small area or
spread in a larger region. We decided to consider the case of customers distributed in one or more
cities, with a higher concentration in the center than in the suburbs. Moreover, the number of
customers in each city depends on the dimension of the city itself, that we consider proportional
to the number of inhabitants. This structure has been inspired by the localization of retail stores
(e.g. clothing or shoe stores) in typical European cities, but many other examples can be found.

The foundation for the creation of instances is a database containing the population of different
cities and the distance between them. The data we consider are relative to real cities in Denmark,
England, Finland, France, Germany, Italy and Norway. The distances are the real ones, given
the highways system at the end of 2004. Clearly other databases can be used in order to obtain
different instances.

Each city is represented as a set of concentric circles, the first with ray equal to a fixed constant
r, the second with ray equal to 2r and so on. The number of this circles in each city C' (n¢) depends
on its population (the higher the population, the higher the number of circles). In particular, this
number is currently computed in the following way: given the population p, one circle has been
create if p < 100000, two circles if p < 300000, three circles if p < 600000 and so on. We will refer
to the areas obtained in this way will as to zones, being zone I the area of the first (inner) circle,
zone 2 the one between the first and the second, and so on (Figure 1). Once the number of retail
stores is fixed, the nodes are uniformly distributed in each zone and the depot is located in the
most external circle of a randomly selected city.

The distance between the nodes is expressed in travel time, associating to each circle a co-
efficient, representing the speed that can be used to go from one to the other, for which the
Euclidean distance must be multiplied. To reproduce the situation of real cities, where this speed
decreases while one approaches the center, the coefficient becomes smaller while moving from a
circle to a more internal one according to the following rule: two coefficients equal for all the
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Figure 2. Example of nodes distribution in the generic city C'

cities (¢1, = z and ¢, = Z) are associated to the inner and the outer circles, while coefficients
Cig = Ci—1o + an_fl are assigned to all the other circles i’s in city C.

Then, to compute the travel time needed to go from node j to node k belonging to city C' (d;y),
after calculating the Euclidean distance between the two (J]k) we estimate with a Montecarlo
procedure the length of the segment that falls in each circle ¢ ( ¥ %) and we divide this measure for
the proper coefficient c¢;.:

noJi

In the example of nodes distribution in the generic city C reported in Figure 2, the distance between
node j and node k is obtained computing the Euclidean distance between them, estimating the

- a: 4 a3
length of the segments dlk, d? S and d3 7 and then calculating the summation 2= + ZI= Do

Transferring this procedure in real world measures, we can think of the coefficients for two
circles as 30 Km/h and 40 Km/h, then if connecting two nodes implies running 10 Km in the first
circle and 5 Km in the second, the travel time distance will be

10 Km 5 Km
d= . ~ 0.46 h.
30 Km/h 40 Km/h 0.46

The distance between node a in city A and node b in city B, finally, depends on the circle to which
they belong: if a is in the most external circle of A (n4) and b is in the most external circle of
B (np) (Figure 3 (a)), dgp is equal to the distance (in travel time) between A and B. Otherwise,
suppose b is in circle np while a is in circle n, < ny (Figure 3 (b)); then we add to the distance
between A and B the value > "* ” . This measure is not the real distance from node a to the

i=Na C;,
border of city A, but it is an easy, and eventually overestimated, representation of it. The same
procedure is applied if also node b does not belong to ng (Figure 3 (c)).

As for the rest, the decision of this method of computation was based on the observation of
reality: most cities nowadays are equipped with a ring road, and it’s not too unrealistic to suppose
that the time needed to move from a city to another is not strongly influenced by the point of the
ring road from which one starts traveling.

To conclude, to each customer some parameter are assigned that characterize its (discrete)
demand: the shape of distribution considered is the same for all the customers and the parame-
ters are randomly drawn between bounds defined by the user; in these intervals, the probability
distribution considered is uniform. The possible distributions of the demand are

e uniform, in which case the parameters attached are average and spread': all the values k
(between average — spread and average + spread) are equally likely with probability p(k) =

1 . s
Tapread T of realization;

1Being these parameters randomly selected between an upper and a lower bound, after each drawn the program
checks if spread is smaller than or equal to average. If this is not the case, spread is set equal to average.
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(a) (b) (c)

Figure 3. Distance computation for nodes belonging to different cities: Representation of the
distances considered in case: (a) node a is in the most external circle of city A and b is in the
most external circle of city B; (b) node b is in the most external circle of city B while a is in an
interior circle of city A; (c) nodes a and b are in interior circles of cities A and B respectively.

e bernoulli, in which case the parameters attached are n, p and shift: all the values of the de-

mand k (between shift and shift +n) and have probability p(k) = ( I —Zhift ) pFshift (1 —

p)ktshift of realization.

The capacity of the vehicle is defined by the user.

4 Example of instances

In order to give an example of instances that can be created using this procedure, we considered
a geographical structure based on two Italian cities, Florence (population 375000) and Genoa
(population 632000); the distance between them, along part of the Genova-Rosignano and part of
the Firenze-Pisa highways (Figure 4), is 225 km.Following the previously exposed procedure, it is
easy to calculate that Florence will be represented with two circles while Genoa with three.

The time distances are considered in minutes, and for ease of visualization integer values are
reported. The speed considered in order to compute the coefficients are 15 km/h for the most
internal circle of each city, 40 km /h for the most external one, and 80 km /h for the route connecting
the two cities. This choice follows the observation of the typical average speed of vehicles in Italian
cities and is confirmed by [4]. For allowing a proper visualization, the instances comprehend only
fifteen nodes, and the distances are reported as integer values.

In the instance reported in Table 1 (Appendix), the demand of each customer is uniformly
distributed, with average comprised between 15 and 25 and spread between 5 and 10. In the one
in Table 2 (Appendix), it follows a bernoulli distribution, with the parameters in the following
intervals: n between 15 and 20, p between 0.5 and 0.9, shift between 5 and 15.

As can be seen, in both cases nodes 1, 2 and 3 are in the first and nodes 4 and 5 in the second
circle of the first city (Florence). Then three nodes are placed in each of the circles of the second
city (Genoa), starting from the smaller one. In the first example the depot (node 0) is placed in
the most external circle of Florence, while in the second one it is placed in the most external circle
of Genoa.
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Figure 4. Map representing the north of Italy highlighting the itinerary connecting Genoa to
Florence

The distance between nodes is 4 hours and 20 minutes in case we consider a node in the center of
Florence and another in the center of Genoa; it decreases to 3 hours and 40 minutes in case one
node is in the center of Florence and the other is in the middle circle of Genoa, and to 4 hours
and 5 minutes if the first is in the suburb of Florence and the second is in the center of Genoa. It
becomes 3 hours and 3 minutes for going from the center of Florence to the suburb of Genoa, and
3 hours and 25 minutes from the suburb of Florence to the intermediate area of Genoa. Finally
the travel time arrives to 2 hours and 48 minutes for connecting the suburbs of the two cities. For
moving inside the a city, the distance is comprised between 3 and 130 minutes.

The demand distributions of the customers are represented in Figures 5 and 6 (Appendix), for
the first and the second instance respectively.
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Appendix

Tables 1 and 2 represent two examples of instances. In the first line the number of nodes #N and
the type of distribution of the demand (1 for uniform and 2 for bernoulli distribution) is reported.
In the following #N lines there are the parameters related to the demand distribution of each
customer (for uniform distribution we find the progressive number of the node, average and spread
while for bernoulli one the progressive number of the node, shift, p and n). Then the matrix of
distances is presented and finally the capacity of the vehicle.

Table 1. Example of instance with demand following uniform distribution

15 1

0 0 0

1 21 9

2 18 7

3 24 7

4 18 6

5 19 8

6 22 8

7 16 9

8 23 6

9 24 6

10 20 7

11 18 6

12 16 9

13 19 8

14 23 5

0 51 66 72 17 23 245 245 245 205 205 205 168 168 168
51 0 34 25 53 20 260 260 260 220 220 220 183 183 183
66 34 0 13 54 49 260 260 260 220 220 220 183 183 183
72 25 13 0 59 46 260 260 260 220 220 220 183 183 183
17 53 54 59 0 11 245 245 245 205 205 205 168 168 168
23 20 49 46 11 0 245 245 245 205 205 205 168 168 168
245 260 260 260 245 245 0 36 8 56 19 33 39 49 38
245 260 260 260 245 245 36 0 36 56 46 38 75 81 75
245 260 260 260 245 245 8 36 0 65 27 21 40 50 38
205 220 220 220 205 205 56 56 65 0 25 54 36 36 40
205 220 220 220 205 205 19 46 27 25 0 36 27 34 27
205 220 220 220 205 205 33 38 21 54 36 0 60 70 57
168 183 183 183 168 168 39 75 40 36 27 60 0 10 3
168 183 183 183 168 168 49 81 50 36 34 70 10 0 13
168 183 183 183 168 168 38 75 38 40 27 57 3 13 0
100

Table 2. Example of instance with demand following bernoulli distribution

15 2

0 0 1 0

1 19 0.83 9

2 15 0.82 9

3 16 0.73 9

4 19 0.77 7

5 16 0.57 14

6 16 0.55 11

7 19 0.71 8

8 18 0.78 6

9 16 0.59 7

10 19 0.76 12

11 16 0.88 10

12 16 0.88 8

13 16 0.55 9

14 18 0.55 14

0 190 190 190 168 168 86 90 109 96 125 128 34 36 38
190 0 18 37 37 38 235 235 235 209 209 209 190 190 190
190 18 0 48 33 28 235 235 235 209 209 209 190 190 190
190 37 48 0 12 76 235 235 235 209 209 209 190 190 190
168 37 33 12 0 49 213 213 213 187 187 187 168 168 168
168 38 28 76 49 0 213 213 213 187 187 187 168 168 168
86 235 235 235 213 213 0 32 37 84 48 43 89 59 61
90 235 235 235 213 213 32 0 17 53 63 41 74 77 82
109 235 235 235 213 213 37 17 0 48 51 25 90 92 97
96 209 209 209 187 187 84 53 48 0 76 51 70 121 130
125 209 209 209 187 187 48 63 51 76 0 25 135 85 85
128 209 209 209 187 187 43 41 25 51 25 0 117 100 102
34 190 190 190 168 168 89 74 90 70 135 117 0 45 50
36 190 190 190 168 168 59 77 92 121 85 100 45 0 6
38 190 190 190 168 168 61 82 97 130 85 102 50 6 0
100

In Figures 5 and 6 the distributions of the demand of customers are reported, for the instance in
Table 1 and 2 respectively. Only 14 graphs are shown since in both cases node 0 is not considered
representing the depot, with null demand.
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Figure 5. Demand distributions for the instance reported in Table 1
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Figure 6. Demand distributions for the instance reported in Table 2



