
Kilogrid: a Modular Virtualization Environment for the Kilobot Robot

Anthony Antoun1, Gabriele Valentini1, Etienne Hocquard2, Bernát Wiandt3, Vito Trianni4 and Marco Dorigo1

Abstract— We introduce the Kilogrid, a modular and scalable
virtualization environment aimed at swarm robotics research
with the Kilobot robot. The main purpose of the Kilogrid
is to complement the Kilobots by overcoming some of their
limitations (i.e., limited sensors and actuators), making it easier
to experiment and to collect data with large groups of robots.
The Kilogrid allows researchers to study scenarios featuring a
level of complexity that cannot be reached using the Kilobots
alone. The Kilogrid is composed of several modules, where
each module contains four cells of 50×50 mm2. The cells allow
for bi-directional communication with the Kilobots. Our first
version of a Kilogrid is composed of 64 cells and covers a
total area of 400×400 mm2. We demonstrate the features of
the Kilogrid with two case studies in which: (i) we extend the
sensory system of the Kilobots, (ii) we allow the Kilobots to
modify the environment, and (iii) we collect data (e.g., position,
state) from the Kilobots while the experiment is running.

I. INTRODUCTION

In this paper, we introduce the Kilogrid, a modular
and scalable virtualization environment designed for swarm
robotics research. The Kilogrid provides a reconfigurable
environment for the study of collective behaviors using the
Kilobot robot. Our system makes use of the infrared (IR)
communication capabilities of the Kilobot to create a virtual
environment for sensing, actuation, and data collection. Ex-
isting virtualization systems are based on numerous technolo-
gies and the specific choice of the technology mostly depends
on the sensors of the robot chosen for the experiments (the
Kilobot in our case). Similarly to the Kilogrid, some of
these systems make use of infrared light communication
(e.g., localization [11], self-organized collective decision
making [14], [15], task abstraction [3]) while other systems
employ RFID tags (e.g., navigation and path planning [6],
[7], [16]), ultrasound signals (e.g., communication [17]), or
projected light (e.g., pheromone response [1], [5], pattern
formation [8]).

The Kilobot [9] is a 33 mm diameter mobile robotic
platform designed for research in swarm robotics [2], [4],
[12]. Two vibrating motors allow the Kilobot to move on
a flat, two-dimensional surface with a maximum speed of

1Anthony Antoun, Gabriele Valentini and Marco Dorigo are
with IRIDIA, Université Libre de Bruxelles, Brussels, Belgium.
aantoun,gvalenti,mdorigo@ulb.ac.be

2Etienne Hocquard is with IRT Jules Verne, Nantes, France,
and contributed to this work during a visiting period at IRIDIA.
hocquard.etienne@gmail.com

3Bernát Wiandt is visiting IRIDIA, and is affiliated with the Department
of Networked Systems and Services, Budapest University of Technology
and Economics, Budapest, Hungary. bwiandt@hit.bme.hu

4Vito Trianni is with the Institute of Cognitive Sciences and
Technologies, Consiglio Nazionale delle Ricerche, Rome, Italy.
vito.trianni@istc.cnr.it

10 mm/s and to rotate on the spot with a speed of 45◦/s.
The Kilobot is equipped with a light sensor that allows
it to measure the intensity of the ambient light, and with
an infrared transceiver that allows it to communicate with
nearby robots within a range of approximately 100 mm [9].
Once a Kilobot receives an IR message, it can also calculate
its distance from the sender.

To prepare experiments, a user can operate the Kilobots
using an Overhead Controller (OHC), for example, to start
and stop an experiment, program the robots or check their
battery voltage. The OHC can also be used to calibrate the
motors of the Kilobots and to assign them an ID.

The simplicity, low cost and small size of the Kilobot
enable researchers in swarm robotics to use a high number of
robots in a limited space. For example, Rubenstein et al. [11]
presented a method that allows a swarm of 1024 Kilobots to
be programmed in order to aggregate into given shapes. This
experiment is the largest swarm experiment ever run so far
in terms of number of robots.

However, the simplicity of the Kilobot hardware is often a
limiting factor for experiments in swarm robotics. Indeed, the
Kilobot has only one sensor to perceive its environment (i.e.,
the ambient light sensor). Although it has been shown that a
swarm of Kilobots can collectively transport objects [10], the
Kilobots cannot perceive objects, including the arena borders,
and tend to get stuck against them due to their limited
thrust. As a consequence, Kilobots might form clusters at
the arena borders [15], which alters the spatial distribution of
the swarm and might disrupt the swarm performance. This
deeply affects both the individual and the swarm dynam-
ics [13], [14]. Additionally, without the support of dedicated
tracking infrastructure, data collection can only be performed
by logging information within the Kilobot memory and by
downloading this information offline after the execution of
an experiment using a wired connection to be plugged in
each robot. This data collection method is often tedious and
particularly time-consuming.

With the Kilogrid, we aim at overcoming these limitations
by introducing a virtual environment for the Kilobot. The
Kilogrid is a modular system composed of a grid of modules,
each containing four cells. The cells provide bi-directional
communication with the Kilobots. Infrared communication
is the main feature of the Kilogrid: it provides the Kilobot
with the capability to perceive its environment by means
of virtual sensors, modify it using virtual actuators, and
transmit internal information to the experimenter for data
collection. For example, in our experiments, the Kilobots are
set to broadcast their ID using their IR transceiver. These IR
messages are collected by the Kilogrid and forwarded to the

Fig. 1: Picture of the Kilogrid system: (a) Kilogrid of 8×8
cells (i.e., 4×4 modules of 2×2 cells each) with 10 Kilobots
on its Plexiglas surface; (b) the dispatcher that interfaces the
Kilogrid with a PC; and (c) the power supply.

PC in order to track the position of the robots. Additionally,
the Kilogrid provides visual feedback to the experimenter
by displaying the state of each cell using colored LEDs. By
design, the user can use an arbitrary number of modules in
the Kilogrid to cover an area of up to 4 m2.

We demonstrate the capabilities of the Kilogrid using a
system composed of 16 modules covering an area of 400×
400 mm2. We consider two different case studies to show the
capabilities of the Kilogrid. In the first case study, we use the
Kilogrid to augment the sensory system of the Kilobot. In the
second case study, we use the Kilogrid to virtualize actuators
that are not otherwise present on the Kilobot. In both case
studies, we use the tracking capabilities of the Kilogrid to
collect data.

The paper is organized as follows. In Section II, we pro-
vide an overview of the Kilogrid and describe its hardware
architecture. In Section III, we demonstrate the function-
alities of the Kilogrid by performing two series of robot
experiments. In Section IV, we summarize the characteristics
of our system and discuss future work.

II. KILOGRID

A. Overview

The Kilogrid consists of a grid of modules and of the
dispatcher that interfaces the modules with a computer (see
Figure 1). Once connected together, the Kilogrid modules
are placed under a (single) 8 mm thick transparent Plexiglas
surface on which the Kilobots move. The Plexiglas surface
is the same that was extensively used in previous experi-
ments without the Kilogrid [14], [15]. The modules can be
programmed by the user to define complex functionalities
in the same manner as for the Kilobots. Each module is
divided into four cells, where each cell contains one infrared
transceiver and two RGB LEDs driven in parallel. A cell can
send and receive infrared messages to and from the Kilobots
through the Plexiglas panel. During an experiment, the user
can visualize the state of each cell using its RGB LEDs.

The dispatcher incorporates the same functionalities as
the original OHC of the Kilobot environment: to program
the Kilobots, send them commands such as RESET, RUN,

SLEEP, VOLTAGE and PAUSE, calibrate the Kilobots mo-
tors and provide them with an ID. In the same manner
as with the OHC, one can use the Kilogrid to program
the Kilobots through infrared communication, calibrate the
Kilobots and send Kilobots commands defined by the kilolib
library.1 In the Kilogrid, the dispatcher is used as an interface
between the grid of modules and the computer and allows
for bi-directional communication between them. This bi-
directional communication is implemented using a Controller
Area Network (CAN). The programming environment of the
Kilogrid has been developed as an extension of the kilolib
library.

B. The Kilogrid module
Figure 2a provides an exploded view of the Kilogrid

module. A module covers an area of exactly 100×100 mm2.
The printed circuit board (PCB) of the module lays on four
3D-printed supports and is surrounded by IR barriers that
divide the module into 4 equal cells of size 50× 50 mm2.
A translucent white Plexiglas panel is placed on top of
the cells to diffuse the light emitted by its LEDs. The
light diffuser contains four circular holes that allow the
propagation of infrared signals between the cell and the
robots on its top. Once connected together, the Kilogrid
modules are placed under a single Plexiglas panel.

The electronic architecture of the module is illustrated
in Figure 2b. The module features an ATmega328P mi-
crocontroller unit (MCU) for the execution of user-defined
programs. A CAN interface handles all communications with
the dispatcher. Our network stack is built on top of the
standard CAN protocol in such a way that the modules can
communicate with both the dispatcher and with each other.
Therefore, the modules are independent and communicating
entities with a fixed position on the grid. The CAN interface
used in the modules supports up to 112 CAN nodes on
the same physical bus. In Section II-C, we explain how we
designed the dispatcher to extend the maximum number of
modules that a Kilogrid can contain.

As stated above, the Kilogrid module is physically divided
into four cells. Each cell contains one infrared transmitter and
one infrared receiver, pointing upwards towards the Plexiglas
panel. The four infrared transmitters and receivers are multi-
plexed and independently driven by the MCU. The received
infrared signal is processed (i.e., amplified and filtered) in the
exact same way as in the Kilobot which permits to measure
the distance between a transmitting Kilobot and the cell
receiving its message. IR barriers have been added between
adjacent cells and modules to prevent cross-talk between
cells. The IR barriers are made of laser-cut, 3 mm thick
black Plexiglas. The IR barriers between modules are held
together by the 3D-printed supports.

Each cell has two RGB LEDs. These two LEDs show the
same colors and give the ability to the user to associate an
RGB color to each cell. The LEDs have a resolution of 8
bits for each RGB component, which allows to control the
color and the intensity of the light.

1https://github.com/acornejo/kilolib.

 Light diffuser

 PCB

 3D-printed supports

 IR barrier

 IR barrier

(a) (b) (c)

Fig. 2: Illustration of the Kilogrid hardware. (a) 3D exploded view of the Kilogrid module detailing the position of IR
barriers, light diffuser, 3D-printed supports, and the PCB. (b) Functional diagram of the cell showing the CAN interface,
MCU, multiplexing logic, and the four cells with their IR transceiver and RGB LEDs. (c) Functional diagram of the dispatcher
showing the CAN interface with its repeaters, MCU, MCU programmer, and USB interface.

C. The dispatcher

Figure 2c shows the functional diagram of the dispatcher.
The USB connection allows to control the Kilogrid with a
computer and to program the MCU of the dispatcher via
the MCU programmer. The dispatcher is equipped with an
ATmega328P microcontroller, similarly to both the module
and the Kilobot. Its CAN interface is provided with two CAN
repeaters that divide the CAN network into four buses that
are physically separated but logically connected. By doing
so, we extend the total number of cells that can be connected
to the dispatcher to a maximum of 4× 112 = 448. This
extension provides us with a theoretical maximum coverage
area of 4.48 m2. Note that this number could be further
increased with additional CAN repeaters at the expense of a
reduction of the CAN communication frequency.

D. Extension to the KiloGUI application

We extended the existing KiloGUI2 software so that the
Kilogrid can be used to program both modules and Kilobots
remotely and to collect data from them, while keeping
compatibility with the original OHC. In the current version,
KiloGUI records data sent by the modules to the dispatcher
(e.g., the position and internal state of the robots) into a data
file which is available to the user for offline parsing.

III. CASE STUDIES

We demonstrate the capabilities of the Kilogrid using
a system composed of 64 cells which covers an area of
400× 400 mm2 (see Figure 1). In all our experiments, we
use a swarm of 10 Kilobots. We illustrate the capabilities
of the Kilogrid with two case studies. The first case study
shows how the Kilogrid can be used to virtualize sensors,

2Kilobotics documentation: http://www.kilobotics.com/documentation.

while the second case study illustrates how it can be used to
virtualize actuators. In both case studies, we use the Kilogrid
to collect the data necessary for our following analysis. Video
recordings illustrating the results of the robot experiments are
available in the supplementary material.3

A. Case study 1: Virtual sensors

In this case study, we show how the Kilogrid can provide
virtual sensors to the Kilobots so that the experimenter can
extend the sensing capabilities of the Kilobot and, by doing
so, extend the set of possible collective behaviors that can
be implemented and studied. To this end, we present a
simple obstacle avoidance experiment. In the light of the
limitations mentioned in Section I, we show that (i) the
sensory capabilities of the Kilobots can be extended through
the use of the Kilogrid and (ii) the use of the Kilogrid
improves the quality of the experiments with Kilobots.

Let us recall that the Kilobots are unable to perceive the
presence of passive obstacles. In this case study, we use the
Kilogrid to overcome this issue by implementing a beacon
system that informs the robots of the presence of the physical
walls of the arena (i.e., passive obstacles). To do so, we use
the cells at the borders of the Kilogrid as beacons, delimiting
the working area of the robots. The working area is thus the
set of 6× 6 cells where the robots can move freely. Note
that beacons can be exploited to indicate the presence of
any kind of obstacle with a custom shape, and their position
is not restricted to signal the borders of the arena.

In our experiments, the robots move following a simple
random walk behavior. We compare the distribution of the
robots on the arena with and without the beacons to quantify
the influence of the beacons on the robots movement.

3Available online at http://iridia.ulb.ac.be/supp/IridiaSupp2016-005/.

DSPD

x

y

1 2 3 4 5 6 7 8

1
2

3
4

5
6

7
8

1

0.021

0.023

0.025

0.027

0.029

0.031

0.033

0.035

0.037

0.039

0.041

0.043

0.0450.045

(a)

DSPD

x

y

1 2 3 4 5 6 7 8

1
2

3
4

5
6

7
8

1

0.021

0.023

0.025

0.027

0.029

0.031

0.033

0.035

0.037

0.039

0.041

0.043

0.0450.045

(b)

Fig. 3: Illustration of the discrete spatial probability distribution of the robots (pi j) (a) without wall beacons and (b) with
wall beacons at the boundary cells. The x and y axes indicate the coordinates of each cell of the Kilogrid. Lighter gray
tones correspond to higher probabilities to find robots in a certain position. Data has been obtained via the tracking function
of the Kilogrid over 10 runs for each series of robot experiments.

1) Description of the controller: The random walk be-
havior is implemented as follows. The robot continuously
alternates between a FORWARD phase and a ROTATION
phase. The duration of the FORWARD phase is normally
distributed, with a mean of 3 s and a standard deviation of
1.5 s. The duration of the ROTATION phase is also normally
distributed, with a mean of 3 s and a standard deviation of
1.5 s. The direction of rotation is chosen randomly, with
equal probability (clockwise or counterclockwise).

When perceiving a wall beacon, the robot stops performing
the random walk and enters the wall avoidance procedure.
Initially, the robot chooses a random direction of rotation
and starts rotating on the spot. This initial choice is made
at random because the robot cannot perceive the bearing of
the wall beacon. While rotating, the robot receives messages
from the wall beacons and uses the strength of the signal
carrying each message to estimate its distance from the
perceived wall beacon. In order to reduce the uncertainty
on the measured distance, the robot aggregates the distances
estimated from four consecutive messages by computing
their mean value X and uses this information to determine
its motion strategy.

Once a robot has computed two consecutive means, Xold
and Xnew, its control strategy is defined as follows. When the
estimated distance from the border increases (i.e., Xnew >
Xold), the robot stops rotating and moves straight for a
period of time of 2 s to escape the border of the arena. If,
during this period of time, the robot does not perceive wall
beacons, it has successfully avoided the border and resumes
the random walk. Differently, when the estimated distance
from the border does not increase (i.e., Xnew 6 Xold), the
robot keeps rotating in the same direction. This direction of
motion is kept for at most 7 s after which the robot starts
rotating in the opposite direction. This mechanism allows the
robot to escape the border of the arena in the case in which it

is stuck against it and cannot rotate in the original direction.
During the entire duration of the experiment, each robot

broadcasts its ID every 2 s. These messages are perceived
by the cells and forwarded to the KiloGUI application by
the corresponding modules in order to track the position
of the robots in the arena. Due to the fact that IDs are
broadcast, the same message can be received by multiple
adjacent cells. In this experiment, every time a message from
a robot is received by a certain cell, we consider the robot
to be positioned on top of that cell.

2) Results and discussion: We performed two separate
series of experiments where wall beacons are either enabled
or disabled. For each series, we performed 10 independent
runs with a duration of 60 minutes each. We track the
position of each robot over time and use this information
to measure the cumulative residence time Ti j spent by all
robots over the cell with coordinates (i, j), i, j ∈ {1, . . . ,8}.
For each run r ∈ {1, . . . ,10}, we collect all values of T (r)

i j for
all cells. The discrete spatial probability distribution (DSPD)
of the swarm is then defined as

pi j =
1
τ

10

∑
r=1

T (r)
i j ,

where τ = 10×10×60 minutes is the overall experimental
time experienced by the 10 robots in the swarm over 10 runs.
Additionally, in order to quantify the influence of the wall
beacons on the spatial distribution of the robots, we define
the probability Pwork to find the robots inside the working
area as Pwork = ∑

7
i=2 ∑

7
j=2 pi j.

Figure 3 shows the spatial probability distribution of the
swarm when wall beacons are not in place and when the
wall beacons are present. When wall beacons are disabled,
the robots tend to be blocked at the borders of the arena and
to form clusters for a certain amount of time (see Figure 3a).
This result is confirmed by a relatively low probability of

P
ro

po
rt

io
n

of
 w

at
er

ed
 p

la
nt

s

Time (s)

0 5 10 15 20 25 75 12
5

17
5

22
5

27
5

32
5

37
5

42
5

47
5

52
5

57
5

62
5

67
5

72
5

77
5

82
5

87
5

92
5

97
5

10
25

10
75

11
25

11
75

12
25

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Tevap = 10s
Tevap = 20s

Fig. 4: Illustration of the second case study implementing virtual actuators. We show the evolution of the proportion of
watered plants as boxplots over 10 runs for each value of the evaporation time. The red boxplots correspond to an evaporation
time Tevap = 10 s, and the green boxplots correspond to Tevap = 20 s. The black vertical line identifies the initial 25 s of the
experimental time.

finding robots in the working area (i.e., Pwork = 0.5039).
Differently, when wall beacons are enabled, the robots can
perceive their proximity to the borders of the arena and ex-
ecute the wall avoidance procedure. As shown in Figure 3b,
the probability that the robots are in the working area is much
higher when using the wall beacons (i.e., Pwork = 0.8157).
The difference in the resulting probability distribution of the
swarm in space indicates that the wall beacons prevent the
formation of robot clusters at the arena borders.

B. Case study 2: Virtual actuators

The goal of this case study is to show how Kilobots can
use virtual actuators to change their environment and react to
these changes. Making an analogy with a garden, we consider
the robots as “gardeners” and the cells in the working area
as plants that need to be watered. Robots search the working
area for dry plants to give them water. All plants (i.e., cells)
are dry at the beginning of the experiment. Each cell is
identified with a unique ID that is used by the robots when
sending messages to cells. For the sake of simplicity, and
to limit the duration of an experiment, each robot carries
100 units of water, and a dry plant needs 1 unit of water
to become wet. Once a plant is watered, it remains wet for
a certain period of time called the evaporation time Tevap,
after which the plant becomes dry again. We consider an
experiment completed when all robots have exhausted their
water reservoir and all water in the garden is evaporated.

1) Description of the controller: In order to let the robots
explore the environment and find dry plants to water, we
implemented the same random walk and wall avoidance
behaviors previously described in Section III-A using the
same parameter values. At the beginning of the experiment,
all robots perform a random walk for a time that is uniformly
distributed between 0 s and 15 s. This mechanism allows
the robots to start watering plants at different times, which
prevents collisions (i.e. different robots trying to water the
same plant) at the beginning of the experiment.

When a robot detects a dry plant, it moves straight for
1 s to get closer to the plant, then the robot stops on top
of the plant for a period of 5 s. During this period, the
robot sends messages to the cell representing the dry plant
in order to deliver a unit of water. The water capacity of
the robot is then decreased by 1 unit and the robot resumes
the random walk behavior. The plant that received the unit of
water becomes wet for a period of time Tevap after which the
water evaporates and the plant becomes dry again. When a
robot runs out of water, it stops the execution of its controller
and notifies the KiloGUI application about this event through
the Kilogrid.

In order to measure the number of watered plants over
time, we programmed the modules of the Kilogrid as follows.
When a cell of a module representing a plant receives a unit
of water, the corresponding module of the Kilogrid commu-
nicates this information to the KiloGUI application. Simi-
larly, when a unit of water received by a plant evaporates, the
corresponding module communicates the occurrence of this
event to the KiloGUI application. The KiloGUI application
aggregates all information received by the modules of the
Kilogrid and outputs the number of watered plants over time.

2) Results and discussion: We performed two separate
series of experiments: the first series uses an evaporation
time Tevap = 10 s and the second series uses an evaporation
time Tevap = 20 s. For each series, we performed 10 inde-
pendent executions of the experiment.

Figure 4 shows, by means of boxplots, the evolution over
time of the proportion of plants in the garden that are
watered. The proportion of watered plants rapidly increases
during the initial 25 s of the experiments as the robots
explore the working area and find dry plants to water. After
this initial phase, the proportion of watered plants fluctuates
around a value that depends on the evaporation time (0.35 for
Tevap = 10 s and 0.5 for Tevap = 20 s). When the robots begin
to exhaust their water reservoir, the proportion of watered
plants decreases slowly and converges to zero when all plants

in the garden becomes dry. This happens in approximately
925 s when Tevap = 10 s and 1175 s when Tevap = 20 s.

These results show how the Kilobots can act on their
environment by means of virtual actuators provided using the
Kilogrid. Differently from the previous case study described
in Section III-A, we used the Kilogrid to collect data about
both the state of the environment (i.e., the Kilogrid) as well
as the states of the robots executing the experiment.

IV. CONCLUSIONS

In this paper, we presented the Kilogrid, a novel virtu-
alization system for the Kilobot. We showed the benefits
of the Kilogrid in two different case studies that illustrate,
respectively, how the Kilogrid can be used to extend the
sensory system of the Kilobot and how it can be used
to create virtual actuators that are not otherwise available
on this platform. Throughout these experiments, we also
demonstrated how the Kilogrid eases the analysis of robot
experiments by providing a means to systematically collect
data.

The Kilogrid can be used to provide a robot with the
relative position in space of its neighbors. Similarly, a robot
may integrate the coordinates of each perceived cell over
time to approximate its motion orientation. This approach
would provide a coarse-grained virtualization of a bearing
sensor. However, the Kilogrid can not provide a robot with its
orientation based on the information of a single cell (e.g., if
the robot is stuck against a border of the arena). Alternatively,
the system could be extended to obtain a more precise virtual
bearing sensor with the addition of an overhead camera
coupled to the Kilogrid by means of the KiloGUI application.
It should be noted that the capabilities of the Kilogrid allow
the experimenter to potentially misuse and/or abuse this
system by providing robots with unrealistic information (e.g.,
global knowledge). Nonetheless, the Kilogrid has the poten-
tial to mitigate this same issue by offering a standardized
experimental environment to the swarm robotics community.
When researchers make their controllers publicly available,
the Kilogrid can be used to enhance the reproducibility of the
results and to facilitate the comparison of alternative control
strategies.

We are currently developing a version of the Kilogrid
larger than the one presented in this paper that will consist
of 800 cells and will cover an area of 1×2 m2. Using this
larger Kilogrid, we aim at performing experiments with a
swarm of up to 200 Kilobots to further explore the capa-
bilities of the Kilogrid. We plan on investigating different
types of virtual sensors and virtual actuators; for example,
sensors and actuators necessary to perform pheromone-based
collective behaviors as well as those necessary to follow
one or more virtual gradients to navigate the environment.
Additional future work includes the use of the Kilogrid to
experiment with dynamic environments, a thorough charac-
terization of the IR communication range and bandwidth for
both the cells and the Kilobots, and the release under open
license of all the files necessary to build the Kilogrid.

ACKNOWLEDGMENTS

This work has been supported by the European Research
Council through the ERC Advanced Grant “E-SWARM: En-
gineering Swarm Intelligence Systems” (contract 246939) to
Marco Dorigo. Marco Dorigo acknowledges support from the
Belgian F.R.S.–FNRS, of which he is a Research Director.
The authors would like to thank Yasumasa Tamura of the
Hokkaido University for his assistance during experiments.

REFERENCES

[1] F. Arvin, C. Xiong, and S. Yue. Colias-φ : an autonomous micro
robot for artificial pheromone communication. International Journal of
Mechanical Engineering and Robotics Research, 4(4):349–353, 2015.

[2] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. Swarm
robotics: A review from the swarm engineering perspective. Swarm
Intelligence, 7(1):1–41, 2013.

[3] A. Brutschy, L. Garattoni, M. Brambilla, G. Francesca, G. Pini,
M. Dorigo, and M. Birattari. The TAM: abstracting complex tasks
in swarm robotics research. Swarm Intelligence, 9(1):1–22, 2015.

[4] M. Dorigo, M. Birattari, and M. Brambilla. Swarm robotics. Schol-
arpedia, 9(1):1463, 2014.

[5] S. Garnier, M. Combe, C. Jost, and G. Theraulaz. Do ants need
to estimate the geometrical properties of trail bifurcations to find
an efficient route? A swarm robotics test bed. PLoS Computational
Biology, 9(3):e1002, 2013.

[6] A. A. Khaliq, M. Di Rocco, and A. Saffiotti. Stigmergic algorithms
for multiple minimalistic robots on an RFID floor. Swarm Intelligence,
8(3):199–225, 2014.

[7] A. A. Khaliq and A. Saffiotti. Stigmergy at work: Planning and
navigation for a service robot on an RFID floor. In IEEE International
Conference on Robotics and Automation – ICRA 2015, pages 1085–
1092. IEEE Press, 2015.

[8] C. Melhuish, J. Welsby, and C. Edwards. Using templates for defensive
wall building with autonomous mobile ant-like robots. In Proceedings
of Towards Intelligent Mobile Robots (TIMR99), volume 99, 1999.

[9] M. Rubenstein, C. Ahler, N. Hoff, A. Cabrera, and R. Nagpal. Kilobot:
A low cost robot with scalable operations designed for collective
behaviors. Robotics and Autonomous Systems, 62(7):966–975, 2014.

[10] M. Rubenstein, A. Cabrera, J. Werfel, G. Habibi, J. McLurkin, and
R. Nagpal. Collective transport of complex objects by simple robots:
Theory and experiments. In Proceedings of the 2013 International
Conference on Autonomous Agents and Multi-agent Systems, AAMAS
’13, pages 47–54, Richland, SC, 2013. IFAAMAS.

[11] M. Rubenstein, A. Cornejo, and R. Nagpal. Programmable self-
assembly in a thousand-robot swarm. Science, 345(6198):795–799,
2014.

[12] E. Şahin. Swarm robotics: From sources of inspiration to domains
of application. In E. Şahin and W. Spears, editors, Swarm Robotics,
volume 3342 of LNCS, pages 10–20. Springer, 2005.

[13] V. Trianni, D. De Simone, A. Reina, and A. Baronchelli. Emergence of
consensus in a multi-robot network: From abstract models to empirical
validation. IEEE Robotics and Automation Letters, 1(1):348–353,
2016.

[14] G. Valentini, E. Ferrante, H. Hamann, and M. Dorigo. Collective deci-
sion with 100 Kilobots: Speed versus accuracy in binary discrimination
problems. Autonomous Agents and Multi-Agent Systems, 30(3):553–
580, 2016.

[15] G. Valentini, H. Hamann, and M. Dorigo. Efficient decision-making in
a self-organizing robot swarm: On the speed versus accuracy trade-off.
In Proceedings of the 14th International Conference on Autonomous
Agents and Multiagent Systems, AAMAS’15, pages 1305–1314, Rich-
land, SC, 2015. IFAAMAS.

[16] J. Werfel. Collective construction with robot swarms. In R. Doursat,
H. Sayama, and O. Michel, editors, Morphogenetic Engineering:
Toward Programmable Complex Systems, pages 115–140. Springer,
Berlin, Heidelberg, 2012.

[17] J. Werfel, K. Petersen, and R. Nagpal. Designing collective behavior
in a termite-inspired robot construction team. Science, 343(6172):754–
758, 2014.

