
Final Project for the
Swarm Intelligence course

Second Session

July 1, 2019

1 Modalities
The exam is divided in two parts:

Project + presentation You have to select one of the two projects pro-
posed below and provide the required deliverables. Please send an
email with your choice by July 7, 2019 to the responsible of the topic
(contacts at the end of the document).
In addition, you will present your project in a 5-minute talk, followed
by 5 minutes of questions. We strongly encourage you to focus only
on presenting your ideas (how you solved the problem), your results
and findings. The project and the presentation will account for up to
10 points of your final grade.

Oral examination You will be asked a number of questions concerning the
entire course material. This will account for up to 10 points of your
final grade.

To pass the exam, both parts must be above the threshold.

1.1 Timeline

• You have until July 7 to send the email specifying the project of your
choice.

• The project submission deadline is August 9 at 23.59.

• Delay on the submission will entail a penalty of 1 point every 12 hours
delay on the final evaluation of the project. Max delay is August 11,
at 23:59. After this deadline you fail the exam.

1

1.2 Project Deliverables

For the project, you will have to provide:

• Your code in digital format, so we can test it (more details on the
format are given on the description of each project). It has to be sent
by e-mail to the responsible(s) for your project (see contacts at the
end of the document).

• A short document (max 6 pages not counting the references1, single
spaced, font 10) written in English that describes your work. You have
to explain both the idea and the implementation of your solution.
The document must be typeset using the template of Lecture Notes in
Computer Sciences2 (LNCS – Springer), available on http://iridia.
ulb.ac.be/~ccamacho/INFO-H-414/project/templates, in the for-
mat of a scientific article, including abstract, introduction, short de-
scription of the problem, description of the solution, results, con-
clusions and references (see http://iridia.ulb.ac.be/~ccamacho/
INFO-H-414/project/examples for a few examples on how to struc-
ture your project document).

• On the day of the oral examination, you are expected to show slides of
your work. Please bring your own portable computer and make sure
it is already switched on and ready when you are called in for your
oral exam. The rest of the exam will consist of a question answering
session on all the subjects covered by the course. If you happen to not
have a laptop, send us a PDF version of your slides before the day of
the exam.

2 Projects

2.1 General Remarks

Apply what you learned — It is very important that you stick to the
principles of swarm intelligence: simple, local interactions, no global
communication, no global information.

Avoid complexity — Good solutions are elegantly simple in most cases.
So, if your solution is becoming too complex you are very likely in the
wrong direction.

Honesty pays off — If you find the solution in a paper or in a website,
cite the source and say why and how you used the idea.

1 You can add as many pages of bibliographical references as necessary to support your
work.

2https://www.springer.com/gp/computer-science/lncs/conference-proceedings-guidelines

2

http://iridia.ulb.ac.be/~ccamacho/INFO-H-414/project/templates
http://iridia.ulb.ac.be/~ccamacho/INFO-H-414/project/templates
http://iridia.ulb.ac.be/~ccamacho/INFO-H-414/project/examples
http://iridia.ulb.ac.be/~ccamacho/INFO-H-414/project/examples
https://www.springer.com/gp/computer-science/lncs/conference-proceedings-guidelines

Cooperation is forbidden — Always remember that this is an individual
work.

The project counts for 50% of your final grade. The basic precondition
for you to succeed in the project is that it must work. If it does not, the
project will not be considered sufficient. In addition, code must be under-
standable — comments are mandatory.

The document is very important too. We will evaluate the quality of your
text, its clarity, its completeness, and its soundness. References to existing
methods are considered a plus —honesty does pay off! More specifically, the
document is good if it contains all the information needed to reproduce your
work without having seen the code and a good and complete analysis of the
results.

The oral presentation is also very important. In contrast to the docu-
ment, a good talk deals with ideas and leaves the technical details out. Be
sure that it fits in the 5-minute slot. Because you only have 5 minutes for
your presentation, you should focus on presenting what you have done and
the results you obtained, rather than on the presentation of the problem.

2.2 Particle Swarm Optimization

2.2.1 Introduction

Consider the problem of learning how to drive a car. One has to learn
when to change gear, or when to brake depending on the features of the
road ahead. Additionally, one has to pay attention to the surroundings, the
speedometer, the tachometer, the fuel-level meter, etc. In general, one can
say that learning how to drive a car is a difficult task.

In this project, you will crate an agent that will “learn” how to drive a
simulated racing car. To do so, you will use The Open Racing Car Simulator
(TORCS) [1] to design and implement a car driving agent, and then, using
particle swarm optimization (PSO), you will optimize its parameters.

2.2.2 Goal

The goals of this project are the following:

1. Problem definition. Many industrial problems can be cast as optimiza-
tion problems. The definition of the optimization problem is normally
a non-trivial task. In this project, you will cast the problem of design-
ing a car driving agent as a continuous optimization problem suitable
to be solved with a PSO algorithm.

2. Algorithm selection and parameterization. Once the optimization
problem is defined, there is still the problem of choosing an optimiza-
tion algorithm capable of solving it. In this project, you will experience

3

the problems associated with algorithm selection and parameter set-
ting.

3. Integration of systems. In many real scenarios, an optimization algo-
rithm resides in a separate piece of software that needs to be integrated
with the application software. It is not rare that this application soft-
ware is a simulator of some sort. In this project, you will integrate
your PSO code with a car racing simulator.

2.2.3 Materials and Methods

You have to design, implement, and optimize a car controller for the TORCS
simulator that will compete with other cars. TORCS is an open source
car racing simulator that provides a full 3D visualization, a sophisticated
physics engine, and accurate car dynamics taking into account traction,
aerodynamics, fuel consumption, etc. The simulator comes with a number of
tracks and cars with different features each. You will test your car controller
in three tracks: “G-Speedway”, which belongs to the oval tracks category,
“Wheel 2”, which belongs to the road tracks category, and “Dirt 3”, which
belongs to the dirt tracks category. The car you are going to use is “car1-
ow1”, the only Formula One that comes with TORCS.

Using a PSO algorithm, you have to optimize at least 8 parameters of
your car driving agent, which must complete a lap of each track as fast as
possible. To assess the actual quality of the optimized controller, you must
compare it, through a race, with other car controllers included in TORCS
that use the same kind of car.

You are free to choose the type of controller. For example, you can
use a rule-base controller and optimize threshold values, or you can use an
artificial neural network and optimize its connection weights. However, as a
suggestion, you should start with a simple controller, and use more complex
controllers once the initial one works. The focus is on optimization, not
on the technology you use for your agent.

The software you have to use is available for download at http://
iridia.ulb.ac.be/~ccamacho/INFO-H-414/project/torcs. You will use
the stand-alone application of TORCS that runs in GNU/Linux and Win-
dows operating systems (Mac OS is not supported by the TORCS devel-
opers) in which the controllers are compiled as separate modules that are
loaded into main memory when a race takes place. Please follow the instruc-
tions given in the file “README_installation_and_template” to learn how
to fix a few problems related to the installation of TORCS in Ubuntu 18.04,
and also to know how to install a template for your controller. The controller
has to be codified in C/C++ and loaded as a module of the main TORCS
application which is written in C++. You have to modify the code of the
controller so that you can interface it with the PSO code. Feel free to use

4

 http://iridia.ulb.ac.be/~ccamacho/INFO-H-414/project/torcs
 http://iridia.ulb.ac.be/~ccamacho/INFO-H-414/project/torcs

the PSO algorithm that you implemented during the last practical session
of the course. However, note that a number of modifications are needed in
order to use it for this project.

You can find a lot of documentation about TORCS in the next websites:

• http://torcs.sourceforge.net/

• http://www.berniw.org/trb/index.php

• http://xed.ch/help/torcs.html

2.2.4 Deliverables

The final deliverable will be a zip file containing the next two items (please
create a folder for each one):

• Report

• Code

Please make sure that both items comply with the guidelines in-
dicated in Sec. 1.2

Report (up to 6 pages)

1. Implementation of your car driving agent:

(a) Describe the design process of your car driving agent.
(b) Describe the optimization process setup, which includes the ob-

jective function, the PSO algorithm, parameter settings, etc. Please
include an explanation of the relevant design decisions (represen-
tation of solutions, perturbation mechanism, topology, etc.)

(c) Set the parameters of PSO running simulations on TORCS using
the mode Practice and report the best parameter settings. De-
scribe the process you used to obtain the parameter settings. If
you use automatic tuning, please report: parameters tuned, set
of values (domain) for each parameter and number of evaluations
allowed for the tuner (some freely available tuners are [3] and [2]).

(d) Perform 20 simulations of 3 laps on each track (that is, “G-
Speedway”, “Wheel 2” and “Dirt 3”) using TORCS on mode
Quick Race and using different random seeds for PSO.
Note: you must compare your controller against olethros 2, inferno 1,
lliaw 1, and tita 1, which use the same car as you.

5

http://torcs.sourceforge.net/
http://www.berniw.org/trb/index.php
http://xed.ch/help/torcs.html

(e) Include in the report a table showing, for each track, the best
(B-rank) and worst (W-rank) rank obtained in the race; and the
best (B), worst (W), mean (M) and standard deviation (SD) of
the total time that your agent needed to finish the race, where
each row of the table is a track.

(f) Analyze the performance of the PSO algorithm:
• Use plots and/or tables to show the results.
• Compare the convergence of the algorithm in the different
tracks.
(Note: The goal is to compare the computational effort (e.g.
number of evaluations of the objective function) vs. solution
quality).

Code

• The code of your controller should be able to be integrated with
TORCS 1.3.7, and to be compiled and executed on a computer running
Ubuntu 18.04.

• The source code should be properly commented and indented.

• You must include a README file with the instructions and specifi-
cations of how to compile, install and execute your controller using
TORCS 1.3.7. If you use libraries and/or packages not natively in-
cluded in the version 1.3.7 of the simulator or Ubuntu 18.04, please
send them together with your code.

• You must implement your own code. Plagiarism will be strongly
penalized.

2.3 Swarm Robotics: Foraging with Forbidden Areas
The activity of food search and retrieval is commonly referred to as foraging.
In swarm robotics, foraging is a commonly used task to compare different al-
gorithms for exploration (what is the best way to discover interesting places
in the environment?), division of labor (who should explore? for how long?),
etc. In the most general setting, food items are scattered in an environment
at locations unknown to the robots and the robots need to explore the envi-
ronment, find the food, and take it to the nest. The foraging environments
often contain cues, such as light sources, that help the robots in navigating
through the environment.

In this project, we consider a foraging environment with forbidden areas:
robots than enter these areas automatically lose the item that they carry,
if any. The swarm is distributed in the arena and the location of the food
source is originally unknown to the robots. A light is placed above the food

6

source to indicate its location to the swarm. The students are asked to
develop and provide control software for the robot swarm, and to evaluate
its performance.

2.3.1 Problem definition

The robot swarm operates in a diamond-shaped arena that includes a food
source, a nest, and two forbidden areas. The food source is represented by
a black circle, the nest is represented by a white area in the bottom the
diamond, and the forbidden areas are gray rectangles—see Figure 1. A light
is placed on top of the food source to indicate its position to the robots.
When a robot enters one of the forbidden area while carrying an item, the
item is automatically lost.

Goal The goal of the robot swarm is to retrieve and transport items from
the food source to the nest. The overall performance of the swarm is mea-
sured by the number of items it is able to collect during a fixed experi-
ment time. Each experiment is automatically terminated after 1000 seconds
(10000 time-steps). More precisely, the performance of the swarm is de-
scribed by

max Nd (1)

with Nd being the number of items successfully delivered to the nest (that
is, items carried by robots from the food source to the nest without entering
the forbidden areas).

Swarm composition The swarm comprises 30 homogeneous robots. The
robots are equipped with the following sensors and actuators:

• colored_blob_omnidirectional_camera to detect LEDs;

• range_and_bearing to communicate between robots;

• light to perceive the light above the food source;

• motor_ground to sense the color of the ground;

• proximity to detect obstacles;

• wheels to explore the environment;

• LEDs to display information.

7

Figure 1: Top view of the arena. The forbidden areas are of different colors
so that the robots can distinguish between the two areas, but their effect is
the same: any carried item is automatically lost.

Additional Remarks

• The maximal wheel velocity should not exceed 15 cm/s.

• ARGoS has been configured so that the robots collect items on the
food source and drop them at the nest and at the forbidden areas
automatically. A robot can only carry one item at a time.

• The positions of the nest and the forbidden areas are fixed, but the
position of the food source can change from one experiment to another.
See Figure 1.

2.3.2 Requirements

The goal of this project is to design, implement and evaluate control software
that aims to maximize the number of items delivered at the nest. The
control software has to demonstrate a cooperative behavior: one that takes
advantage of the swarm’s principles.

ARGoS is configured to automatically dump data on a file whose name
can be changed in the .argos experiment configuration (see Section 2.4).
This file contains a table with two columns:

• CLOCK: Column indicating the current step

• ITEMS: Column indicating the number of items collected so far

8

A complete analysis must be performed to evaluate the quality of the
controller implemented. In particular, to present statistically meaningful
results, we suggest you to execute and collect the results over at least 30
runs of the control software. The 30 runs should differ from each other for
the random seed specified in the experiment file (.argos). In your report,
you will include a table containing the following columns:

• Random seed

• Final number of items collected from source

Beside this table, quantitative numerical measures of the performance of
the two solutions must be produced. Specifically, you should produce i) a
plot that shows the trend over time of the items collected by the swarm;
ii) a plot that shows the variance of the number of items collected by the
swarm in different runs. On the basis of these measures, you should discuss
the results and draw the appropriate conclusions.

Be aware that, for the project evaluation, the analysis is as important
as the implementation. Make sure that the information provided in
the report is meaningful, clearly written and complete. Any meaningful
additional content will be rewarded (e.g., comparison of different control
software).

Setting up the code

• Download the experiment files: SR_Project_H414_2nd.tar from
http://iridia.ulb.ac.be/courses/2019/h-414/SR_Project_H414_
2nd.tar.gz.

• Unpack the archive into your $HOME directory and compile the code

$ tar -xzf SR_Project_H414_2nd.tar.gz # Unpacking
$ cd SR_Project_H414 # Enter the directory
$ mkdir build # Creating build dir
$ cd build # Entering build dir
$ cmake ../src # Configuring the build dir
$ make # Compiling the code

• Set the environment variable ARGOS_PLUGIN_PATH to the full
path in which the build/ directory is located:

$ export ARGOS_PLUGIN_PATH=$HOME/SR_Project_H414_2nd/build/

You can also put this line into your $HOME/.bashrc file, so it will be
automatically executed every time you open a terminal.

9

http://iridia.ulb.ac.be/courses/2019/h-414/SR_Project_H414_2nd.tar.gz
http://iridia.ulb.ac.be/courses/2019/h-414/SR_Project_H414_2nd.tar.gz

• Run the experiment to check that everything is OK:

$ cd $HOME/SR_Project_H414_2nd # Enter the directory
$ argos3 -c foraging.argos # Run the experiment

If the usual ARGoS GUI appears, you’re ready to go.

2.4 Setting up the experiment

Switching the visualization on and off. The experiment configuration
file allows you to launch ARGoS both with and without visualization. When
you launch ARGoS with the visualization, you can program the robots inter-
actively exactly like you did during the course. Launching ARGoS without
the visualization allows you to run multiple repetitions of an experiment
automatically, e.g., through a script. By default, the script launches AR-
GoS in interactive mode. To switch the visualization off, just substitute the
visualization section with: <visualization />, or, equivalently, comment out
the entire qt-opengl section.

Loading a script at init time. When you launch ARGoS without
visualization, you cannot use the GUI to set the running script. However,
you can modify the XML configuration file to load automatically a script
for you. At line 50 of foraging.argos you’ll see that the Lua controller has
an empty section <params />. An example of how to set the script is at
line 53 of the same file. Just comment line 50, uncomment line 53 and set
the script attribute to the file name of your script.

Changing the random seed. When you want to run multiple repe-
titions of an experiment, it is necessary to change the random seed every
time. To change the random seed, set the value at line 11 of foraging.argos,
attribute random_seed.

Changing the output file name. As explained above, ARGoS auto-
matically dumps data to a file as the experiment goes. To set the name of
this file, set a new value for the attribute output at line 17 of foraging.argos.

Making ARGoS run faster. Sometimes ARGoS is a little slow, es-
pecially when many robots and many sensors are being simulated. You can
make ARGoS go faster by setting the attribute threads at line 9 of forag-
ing.argos. Experiment with the values, because the best setting depends on
your computer.

2.4.1 Deliverables

The final deliverables must include source code and documentation:

Code: The Lua scripts that you developed, well-commented and well-
structured.

10

Documentation: A report of up to 6 pages structured as a scientific ar-
ticle and containing:

– Main idea and swarm robotics principles in your approach.

– Structure of your solution (the state machine).

– Analysis and discussion of the results.

See Section 1.2 for more details about the deliverables.

2.5 Evaluation

The evaluation criteria are the following: a) ingenuity of the solution, b) per-
formance of the control software, and c) relevance and clarity of the report.

3 Contacts
Marco Dorigo mdorigo@ulb.ac.be for general questions
Mauro Birattari mbiro@ulb.ac.be for general questions
Christian Camacho Villalón ccamacho@ulb.ac.be for PSO
Federico Pagnozzi federico.pagnozzi@ulb.ac.be for PSO
Antoine Ligot aligot@ulb.ac.be for swarm robotics
David Garzon Ramos dgarzonr@ulb.ac.be for swarm robotics

4 Bibliography

References
[1] Christophe Guionneau Christos Dimitrakakis Rémi Coulom An-

drew Sumner Bernhard Wymann, Eric Espié. TORCS, The Open Racing
Car Simulator. http://www.torcs.org, 2014.

[2] Frank Hutter, Holger Hoos, Kevin Leyton-Brown, and Thomas Stützle.
Paramils: An automatic algorithm configurationframework. Journal of
Artificial Intelligence Research, 36:267–306, October 2009.

[3] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres,
Thomas Stützle, and Mauro Birattari. The irace package: Iterated racing
for automatic algorithm configuration. Operations Research Perspectives,
3:43–58, 2016.

11

	Modalities
	Timeline
	Project Deliverables

	Projects
	General Remarks
	Particle Swarm Optimization
	Introduction
	Goal
	Materials and Methods
	Deliverables

	Swarm Robotics: Foraging with Forbidden Areas
	Problem definition
	Requirements

	Setting up the experiment
	Deliverables

	Evaluation

	Contacts
	Bibliography

