
Automatic Configuration of

Multi-Objective ACO Algorithms

Manuel López-Ibáñez and Thomas Stützle

IRIDIA – Technical Report Series

Technical Report No.

TR/IRIDIA/2010-011

April 2010

IRIDIA – Technical Report Series
ISSN 1781-3794

Published by:
IRIDIA, Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Université Libre de Bruxelles
Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2010-011

The information provided is the sole responsibility of the authors and does not neces-
sarily reflect the opinion of the members of IRIDIA. The authors take full responsibility
for any copyright breaches that may result from publication of this paper in the IRIDIA
– Technical Report Series. IRIDIA is not responsible for any use that might be made
of data appearing in this publication.

Automatic Configuration of Multi-Objective ACO
Algorithms

Manuel López-Ibáñez and Thomas Stützle

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
{manuel.lopez-ibanez,stuetzle}@ulb.ac.be

Abstract. In the last few years a significant number of ant colony optimization (ACO) al-
gorithms have been proposed for tackling multi-objective optimization problems. In this pa-
per, we propose a software framework that allows to instantiate the most prominent multi-
objective ACO (MOACO) algorithms. More importantly, the flexibility of this MOACO
framework allows the application of automatic algorithm configuration techniques. The
experimental results presented in this paper show that such an automatic configuration of
MOACO algorithms is highly desirable, given that our automatically configured algorithms
clearly outperform the best performing MOACO algorithms that have been proposed in
the literature. As far as we are aware, this paper is also the first to apply automatic
algorithm configuration techniques to multi-objective stochastic local search algorithms.

1 Introduction

The growing interest on solving optimization problems with respect to multiple, conflicting ob-
jectives has led researchers to propose extensions of well-known metaheuristics to tackle them.
So far, evolutionary algorithms have received most of the research effort. However, there are also
several proposals for applying the ant colony optimization (ACO) metaheuristic [1] to multi-
objective combinatorial optimization problems (MCOPs). The majority of these multi-objective
ACO (MOACO) algorithms deal with Pareto optimality, that is, they do not make a priori
assumptions about the decision maker’s preferences.

There are a number of design questions when extending ACO algorithms to MCOPs. First,
the meaning of the pheromone information associated to a solution component is unclear in
the multi-objective context, because the objective function is multi-dimensional and not scalar,
and the output of the algorithm is a nondominated set of solutions and not a single solution.
Some MOACO algorithms use several pheromone matrices, each of them associated to a different
objective [2,3,4]. If multiple pheromone or heuristic matrices are used, they are aggregated during
the solution construction by means of weights [2,4]. However, there are strong differences among
MOACO algorithms in the way this aggregation takes place and how many different weights
are used. Finally, a further design question is which ants are selected for depositing pheromone.
Existing MOACO algorithms select some (or all) nondominated solutions [4], or they select
the best solutions with respect to the objective associated to the pheromone matrix that is
updated [2,3].

In previous work, we examined alternative design choices of a MOACO algorithm for the
bi-objective TSP (bTSP) [5]. Later, we extended this formulation in order to replicate the design
of several existing MOACO algorithms from the literature [6]. Our examination of algorithmic
components concludes that there are many similarities among the algorithms proposed in the lit-
erature. In addition, our empirical results show that, for the bTSP, some algorithmic components
achieve clearly superior results in comparison to others.

2 IRIDIA – Technical Report Series: TR/IRIDIA/2010-011

In this paper, we combine the results of our previous work into an algorithmic framework
that may be configured appropriately to reproduce existing MOACO algorithms, and more im-
portantly, it may be configured combining ideas from diverse MOACO algorithms. Thus, this
framework facilitates the application of automatic algorithm configuration techniques to config-
ure multi-objective algorithms. However, previous works that aim to produce high performing
algorithms by combining a flexible software framework and an automatic tuning tool have dealt
so far only with single-objective optimization problems [7]. To the best of our knowledge, there
is no previous work on the automatic configuration of stochastic local search (SLS) algorithms
for multi-objective optimization problems in terms of Pareto-optimality. Thus, this paper is the
first application of such automatic configuration techniques to multi-objective algorithms. We
tackle this challenge in a pragmatic way, using unary quality measures, which assign a scalar
value to a nondominated set according to some reference criterion, as the optimization goal of
an automatic configuration tool. In particular, we configure the proposed framework by applying
Iterated F-Race (I/F-Race) [9] using both the hypervolume and the epsilon measures [8].

In summary, the main contributions of this paper are that (i) for the first time, we auto-
matically configure MOACO algorithms using unary quality measures, a flexible framework for
MOACO algorithms, and a high-performing automatic configuration tool; and that (ii) we show
that the configurations found automatically are better than configurations implementing several
MOACO algorithms proposed in the literature.

2 Experimental studies on MOACO algorithms

The available MOACO algorithms differ in a wide diversity of design choices. However, few
authors experimentally justify their design choices or compare them to alternatives. Iredi et
al. [4] investigated several design alternatives for a multi-colony approach. López-Ibáñez et al.
[10] compared different design options for MOACO algorithms on the bi-objective quadratic
assignment problem (bQAP). Alaya et al. [3] compared the performance of four MOACO variants
for the multi-objective knapsack problem. The review by Garćıa-Mart́ınez et al. [11] classifies
existing MOACO algorithms according to the usage of one or several pheromone (or heuristic)
matrices, and provides a comparison of some of the original algorithms using the bTSP as a
case study. The algorithms they tested differ substantially with respect to underlying ACO
parameters, e.g., some of them are based on the classical Ant System, whereas others build
upon the typically better performing MAX -MIN (MMAS) and Ant Colony System (ACS).
Therefore, one cannot conclude from the quality of the achieved results on the impact that specific
design decisions of each MOACO algorithm have on MOACO performance. In recent research,
we first studied alternative design choices for extending ACO algorithms to MCOPs [5] in a
systematic manner by keeping other design choices fixed. The design choices studied comprise
also those that have been proposed in previous MOACO algorithms. Next, we examined the
particular combinations of design choices that define existing MOACO algorithms, keeping other
factors, such as the underlying ACO algorithm, fixed [6]. The results of these studies showed
important differences between various design choices.

3 A configurable MOACO framework

Based on our previous work, we identified particular design choices that are clearly superior to
others for our case study, the bTSP. At the same time, we realized that some combinations of
design choices are promising, but there is no corresponding MOACO algorithm in the literature.

IRIDIA – Technical Report Series: TR/IRIDIA/2010-011 3

Algorithm 1 MO-ACO framework
1: while not stopping criteria met do
2: for each colony c ∈ {1, . . . , Ncol} do
3: for each ant k ∈ {1, . . . , Na} do
4: λ := NextWeight(Λ, k, iteration)

5: τ :=

(
Aggregation(λ, {τ1, . . . , τd}) if multiple [τ]

τ if single [τ]

6: η :=

(
Aggregation(λ, {η1, . . . , ηd}) if multiple [η]

η if single [η]

7: s := ConstructSolutiond(τ, η)
8: s := WeightedLocalSearch(s,λ) // Optional
9: Sglobal := Sglobal ∪ {s}

10: end for
11: end for
12: for each colony c ∈ {1, . . . , Ncol} do
13: Sc := MultiColonyUpdate(Sglobal)
14: Supd

c := Selection(Sc)
15: UpdatePheromones(Supd

c , Nupd)
16: end for
17: end while
18: Output: P bf

Therefore, the next logical step is to propose a configurable MOACO framework that allows us
to instantiate several existing algorithms, and variants that have never been proposed before.

We propose the MOACO framework described in Algorithm 1. The framework allows the
use of multiple colonies (N col), where each colony constructs solutions independently of others
according to its own pheromone information. The colonies cooperate in two ways: (1) by ex-
changing solutions for updating the pheromone information, and (2) by using a common archive
of nondominated solutions for detecting dominated ones. This multi-colony architecture is in-
spired by the proposal of Iredi et al. [4], which we found more flexible and consistent than other
definitions of “colony” [6]. Within each colony, a number of ants construct solutions from the
pheromone and heuristic information of their own colony. This pheromone information may be
represented either as a single matrix or as multiple matrices that must be aggregated somehow
(Aggregation). The same applies to the heuristic information. There are several forms of aggre-
gation, and all of them require the use of a weight. The sequence of weights is determined by
the procedure NextWeight. Once there is a unique pheromone and heuristic matrix, a solution is
constructed (ConstructSolution), possibly improved by a local search (WeightedLocalSearch) and
added to a common archive Sglobal. Once all ants from all colonies have finished constructing
solutions, procedure MultiColonyUpdate distributes these solutions among the colonies. From the
solutions assigned to each colony, procedure Selection decides which ones will be used for updat-
ing the pheromone information (UpdatePheromones). The MOACO algorithm continues until a
certain number of iterations or a time limit is reached.

Table 1 describes the configurable settings of the proposed framework. Some settings are
only significant for certain values of other settings. For example, the possible settings of Mul-
tiColonyUpdate only make a difference when N col > 1, otherwise all solutions are assigned to
the single colony. Both settings, origin and region, were originally proposed by Iredi et al. [4].
Update by origin assigns each solution from Sglobal to its original colony, whereas update by
region divides Sglobal in equal parts among the colonies in such a way that each colony roughly

4 IRIDIA – Technical Report Series: TR/IRIDIA/2010-011

Table 1. Algorithmic components of the proposed MOACO framework.

Component Domain Description

Ncol N+ Number of colonies

MultiColonyUpdate { origin, region } How solutions are assigned to colonies for update [4]

Nupd N+ Max. number of solutions that update each [τ] matrix

Selection

8><>:
nondominated solutions,

Best-of-objective,

Best-of-objective-per-weight

Which solutions are selected for updating the pheromone
matrices

|Λ| N+ Number of weights per colony

NextWeight

(
one weight per iteration,

all weights per iteration
How weights are used at each iteration

[τ] { single, multiple } Number of pheromone matrices

[η] { single, multiple } Number of heuristic matrices

Aggregation

8><>:
weighted sum,

weighted product,

random

How weights are used to aggregate different matrices

corresponds to one region of the objective space. The alternatives for the Selection component
are:

Nondominated solutions. The solutions used for updating the pheromone information are
the nondominated solutions in Supd

c . When there are more nondominated solutions than
Nupd, we apply the truncation mechanism of SPEA2 [12] to select only Nupd solutions. It
is possible to combine this Selection method and multiple pheromone matrices [4], however,
in the case of the bTSP and with ∆τ = 1, this would result in updating both matrices with
the same value, so we do not empirically explore this combination.

Best-of-objective. Selects from the current Supd
c , the Nupd best solutions with respect to each

objective. In the case of multiple pheromone matrices, each pheromone matrix is updated
using the Nupd solutions associated to the corresponding objective. Otherwise, the d ·Nupd

solutions update the single pheromone matrix.
Best-of-objective-per-weight. We keep a list for each weight λ and each objective of the Nupd

best solutions for each objective generated using λ. In the particular case of λ = 0, we only
keep one list for the first objective, and we do the same for λ = 1 and the second objective.
When using multiple pheromone matrices, each matrix is updated using only solutions from
lists associated to the same objective. This update method is used by the existing mACO-1
and mACO-2 algorithms [3]. It is not clear how this approach should be extended to multiple
colonies, since then solutions may be exchanged among colonies with different weights.

The set of weights (Λ) is finite and equally distributed in the interval [0, 1]. If there are multiple
colonies, Λ is partitioned among the colonies. The options tested for NextWeight are either that
all ants in one colony use the same weight at a certain iteration (one-weight-per-iteration), or
that all weights are used at each iteration (all-weights-per-iteration). In the case of one-weight-
per-iteration, the weight used by each colony in successive iterations follows an ordered sequence
of the elements of Λ, and the order is reversed when the last weight in the sequence is reached.
In the case of all-weights-per-iteration, when the number of ants Na is larger than the number
of weights |Λ|, then several ants will use the same weight. The aggregation of the pheromone
matrices is computed once per weight per iteration.

Lastly, our framework includes three options for Aggregation:

IRIDIA – Technical Report Series: TR/IRIDIA/2010-011 5

Table 2. Taxonomy of MOACO algorithms as instantiations of the proposed framework (d is
the number of objectives, Na is the number of ants).

Algorithm [τ] [η] Aggregation |Λ| Selection

MOAQ [13,11] 1 d – d (Λ = {0, 1} if d = 2) nondominated solutions
P-ACO [2] d d weighted sum Na Best-of-objective
MACS [14] 1 d weighted product Na nondominated solutions
BicriterionAnt [4] d d weighted product Na nondominated solutions
COMPETants [15] d d weighted sum d+ 1 (Λ = {0, 0.5, 1}) Best-of-objective
mACO-1 [3] d d random (τ)/w. sum (η) d+ 1 (Λ = {0, 0.5, 1}) Best-of-objective-per-weight
mACO-2 [3] d d weighted sum d+ 1 (Λ = {0, 0.5, 1}) Best-of-objective-per-weight
mACO-3 [3] 1 1 – – nondominated solutions
mACO-4 [3] d 1 random (τ) d Best-of-objective

Weighted sum. The two pheromone (or heuristic) matrices are aggregated by a weighted sum:
(1− λ)τ1

ij + λτ2
ij .

Weighted product. The two pheromone (or heuristic) matrices are aggregated by a weighted
product: (τ1

ij)
(1−λ) · (τ2

ij)
λ

Random. At each construction step, an ant selects the first of the two pheromone matrices if
U(0, 1) < 1 − λ, where U(0, 1) is a uniform random number, otherwise it selects the other
matrix.

Our previous work [6] has examined the design of several multi-objective ACO algorithms
from the literature. This previous study has informed the design of the proposed framework. As
a result, the framework is flexible enough to allow us to replicate those MOACO algorithms. We
provide in Table 2 the configuration of algorithmic components necessary to instantiate several
well-known MOACO algorithms.

4 Automatic Configuration of MOACO framework

Instead of using a trial-and-error approach to identify good instantiations of the proposed
MOACO framework, we follow the work of KhudaBukhsh et al. [7] (and earlier work discussed
in that paper) in the sense that we use an efficiently implemented, flexible software framework
together with an automated algorithm configuration tool for obtaining very high-performing
algorithmic variants. However, this is the first time that such an approach is applied in a multi-
objective context.

Specifically, we automatically configure our MOACO framework using a new implementation
of Iterated F-race (I/F-Race) [9] as the automatic configuration method. As the evaluation crite-
ria used by I/F-Race, we tested two unary measures for evaluating the output of multi-objective
algorithms, namely, the hypervolume and the (additive) epsilon measure [8]. The hypervolume
is the volume of the objective space weakly dominated by a nondominated set and bounded by
a reference point that is strictly dominated by all known points. The larger the hypervolume,
the better is the corresponding nondominated set. The additive epsilon measure provides the
minimum value that must be subtracted from all objectives of a nondominated set so that it
weakly dominates a reference set. This reference set is usually the nondominated set of all known
solutions. A smaller epsilon measure is preferable.

Each run of I/F-Race uses a maximum budget of 1 000 experiments and it is repeated five
times, for each quality measure, to assess the variability of the automatic configuration process.
As training instances, we generated 36 bTSP Random Uniform Euclidean instances for each of

6 IRIDIA – Technical Report Series: TR/IRIDIA/2010-011

n = {100, 200, 300} nodes (108 instances in total). Each experiment, that is, each run of the
MOACO framework on each instance, is stopped after n CPU-seconds. We provide to I/F-Race
appropriate domains of the MOACO framework components. In particular, we use the domains
described in Table 1 for the categorical components, with the restrictions described in the text for
the Selection component. For the remaining components, we use the following domains: N col =
{1, 2, 3, 5, 10}, |Λ| = {2, 6, 12, 24}, Nupd = {1, 2, 5, 10}. We useMMAS and its default parameter
settings for the TSP [16] as the underlying ACO algorithm with some exceptions. We use 24 ants
per colony, which is a value close to the one used in the MOACO literature for the bTSP [11]
and it allows us to divide the ants exactly among several values of |Λ|. We also use ∆τ = 1 for
the amount of pheromone deposited by an ant, and the evaporation rate is set to ρ = 0.05. As
for the optional local search, we use a 2-opt algorithm that exploits candidate lists of length 20.
More details on the local search are given in our previous work [5].

We perform runs of I/F-Race with and without local search. The rationale for separating both
analyses is that, on the one side, it is clear that MOACO algorithms with local search by far
outperform those without local search for the bTSP [5]; on the other side, given the large amount
of work on MOACO algorithms without the usage of local search [11], it is interesting to examine
whether the automated configuration of the MOACO framework may obtain competitive results
in comparison to those algorithms.

We have implemented the MOACO framework in C using ACOTSP1 as the underlying ACO
package, and compiled it with gcc, version 3.4. All experiments reported in the following are
carried out on AMD Opteron 2216 dual-core 2.4 GHz processors with 2 MB L2-Cache under
Rocks Cluster GNU/Linux. The implementation is sequential and experiments run on a single
core.

The results of the automatic configuration with respect to hypervolume and epsilon measures
are very similar. In particular, the configurations obtained when maximizing the hypervolume are
very consistent. In all five runs of I/F-Race, the best configuration uses multiple colonies (varying
among three, five and ten colonies), selection by best-of-objective, one weight per iteration,
multiple pheromone and heuristic matrices, and aggregation by weighted product. The differences
are in the multi-colony update, I/F-Race chooses three times update by region, and two times
by origin; in the number of solutions used for update, which varies among Nupd = {1, 2, 5, 10};
and in the number of weights, which varies among |Λ| = {2, 6, 12}. The results of I/F-Race when
optimizing for the epsilon measure are more varied. The settings that were common to all five
runs are multiple colonies (either five or ten), multiple heuristic matrices, and aggregation by
weighted product. One run of I/F-Race chose the use of nondominated solutions for the Selection
component; surprisingly this was selected together with Nupd = 1, which effectively means that
the chosen solution would be the best for one of the objectives. That same configuration uses
a single pheromone matrix and multiple heuristic matrices. The other four runs of I/F-Race
with epsilon measure follow the results obtained with the hypervolume measure and produce
configurations using selection by best-of-objective and multiple pheromone matrices. For the
other parameters, the automatically configured settings vary among Nupd = {1, 2, 5, 10} and
|Λ| = {6, 12, 24}.

We repeat the automatic configuration with 2-opt local search enabled. In this case, the
resulting configurations are even more varied. This probably indicates that once local search
is enabled, the particular settings of the other parameters are less important. Focusing on the
common settings, all resulting configurations use multiple colonies (nine times ten colonies, and
once five colonies). Moreover, in most configurations found using the hypervolume measure there
are multiple pheromone and heuristic matrices and Selection uses best-of-objective, whereas in

1 Available from http://www.aco-metaheuristic.org/aco-code.

http://www.aco-metaheuristic.org/aco-code

IRIDIA – Technical Report Series: TR/IRIDIA/2010-011 7

those found using the epsilon measure is more common the use of a single pheromone matrix
and Selection uses nondominated solutions.

5 Comparison with existing MOACO algorithms

We now compare the automatically configured MOACO algorithms with the results obtained by
existing MOACO algorithms from the literature. A recent comparison of MOACO algorithms
for the bTSP identified BicriterionAnt as the best-performing overall [6], so we will use this
algorithm for comparison.

First, we choose the best automatically configured MOACO algorithm by performing 15 runs
of each configuration returned by I/F-Race on each of the 108 tuning instances. From these
results, we choose the configuration (AutoMOACO) with the largest mean hypervolume and
smallest mean epsilon measure. In this case, both measures agree on the best configuration: ten
colonies, multi-colony update by origin, selection of best-of-objective, one-weight-per-iteration,
Nupd = 2, |Λ| = 12, aggregation by weighted product, and multiple pheromone and heuristic
matrices.

We compare BicriterionAnt and AutoMOACO on three instances (kroAB100, kroAB200, and
euclidAB300), different from the ones used for tuning, and taken from Luis Paquete’s webpage
(http://eden.dei.uc.pt/~paquete/tsp). As before, we perform 15 runs of each algorithm on
each test instance and each run has a time limit of n seconds. For the comparison, instead of
relying on the same quality measures used for tuning, we examine the differences between the
algorithms’ empirical attainment functions (EAFs) [17,18]. The EAF estimates from several in-
dependent runs the probability of a multi-objective algorithm obtaining or dominating a certain
point in the objective space [19]. A plot of the EAF differences between two algorithms gives on
each side the differences in favour of either algorithm. Larger differences are indicated in darker
color. Large differences indicate one algorithm has a higher probability of dominating a certain
region of the objective space than the other algorithm. Figure 1 gives plots comparing Bicrite-
rionAnt and AutoMOACO on the test instances. In all plots, there are only differences in favor
of AutoMOACO (dark points occur only on the right plots), which indicates that AutoMOACO
completely outperforms BicriterionAnt.

In a second comparison, we consider the MOACO variants with local search. We repeat
the same procedure described above for choosing the best configuration from the ten runs of
I/F-Race (five runs with each quality measure), that is, we perform 15 independent runs of each
configuration on the 108 tuning instances, and choose the configuration with the best mean
value of the quality measures. Both measures again agree on the best automatically configured
MOACO using local search (AutoMOACO+ls): ten colonies, multi-colony update by region,
one-weight-per-iteration selection of nondominated solutions, Nupd = 1, |Λ| = 12 and a single
pheromone matrix.

We compare AutoMOACO+ls, on the three test instances mentioned above, to the algorithm
suggested by our earlier studies on MOACO components [5]. Based on that paper, we select
a configuration with weighted sum aggregation (given that weighted product aggregation was
not studied there), one colony, multiple pheromone and heuristic matrices, and one weight per
iteration. Although it is difficult to appreciate the EAF differences in the graphical plots, as
illustrated by Fig. 2, the differences are strongly in favor of AutoMOACO+ls and there are
only small differences in favor of the literature-best version in very few points of the objective
space. To confirm these differences, we apply a non-parametric Wilcoxon rank-sum test on the
hypervolume values obtained by AutoMOACO+ls and the literature-best version. The test rejects
the hypothesis that both algorithms reach similar hypervolume at a significant level of 0.05.
Since AutoMOACO+ls obtains a lower mean hypervolume than the literature-best version, we

http://eden.dei.uc.pt/~paquete/tsp

8 IRIDIA – Technical Report Series: TR/IRIDIA/2010-011

Fig. 1. The plots show the differences between the EAF of BicriterionAnt vs. AutoMOACO on
instances kroAB100 (top), kroAB200 (middle) and euclidAB300 (bottom). The magnitude of the
differences is encoded in grey-scale.

IRIDIA – Technical Report Series: TR/IRIDIA/2010-011 9

Fig. 2. The plot shows the differences between the EAFs of two MOACO algorithms using local
search: best configuration from the literature [5] vs. AutoMOACO+ls. Results are shown for
kroAB100 (top), kroAB200 (middle) and euclidAB300 (bottom). The magnitude of the differences
is encoded in grey-scale.

10 IRIDIA – Technical Report Series: TR/IRIDIA/2010-011

conclude that there is a statistically significant difference in favor of AutoMOACO+ls. We repeat
this procedure for each instance and for each quality measure (hypervolume and epsilon). In all
cases the statistical tests are in favor of AutoMOACO+ls, which confirms that AutoMOACO+ls
outperforms the best MOACO algorithm with local search from the literature in these bTSP
instances.

6 Conclusions

In this paper, we propose a flexible, configurable ACO framework for multi-objective problems
in terms of Pareto optimality. This framework is the result of our review and synthesis effort of
different MOACO algorithms from the literature. The framework may be configured to instantiate
those existing algorithms, and others never examined before in the literature. We demonstrate
the potential of this approach by automatically configuring our framework for the bTSP and
comparing it with a state-of-the-art MOACO algorithm for this problem.

We automatically configure our MOACO framework by applying I/F-Race using unary quality
measures to evaluate the nondominated sets returned by multi-objective optimization algorithms.
We repeated the automatic configuration with two different unary measures, the hypervolume
and the epsilon measure, and we found that there are some small differences in the quality of
the algorithmic configurations obtained. Although it may be possible to use both measures at
the same time, such approach would require defining a consensus method in case both measures
contradict each other. The proposed approach is simple, pragmatic and effective. However, further
work is underway to investigate the use of different unary and binary measures, and how to
adequately combine several quality measures at the same time.

The result of the automatic configuration is a MOACO algorithm that mixes features from
existing algorithms and is able to outperform them in the bTSP. This result is a further con-
firmation that automatic configuration of a flexible framework may surpass human-designed
algorithms [7]. The main contribution of this paper, however, is not the fine-tuned algorithm,
but rather the MOACO framework itself and the method proposed here for automatically fine-
tuning it. First, the proposed framework can be applied to any problem for which the reviewed
MOACO algorithms have been applied so far. Second, the proposed configuration method may
be used to fine-tune the framework to the particular problem and, possibly, improve over exist-
ing results. Moreover, the proposed configuration method can be applied to any multi-objective
optimization algorithm, which so far are either not fine-tuned at all or by trial-and-error. Future
work would extend the MOACO framework to include more diverse algorithmic components,
and incorporate ideas from multi-objective evolutionary algorithms.

Acknowledgments. This work was supported by the META-X project, an Action de Recherche Con-

certée funded by the Scientific Research Directorate of the French Community of Belgium. Thomas

Stützle acknowledges support from the Belgian F.R.S.-FNRS, of which he is a Research Associate. The

authors also acknowledge support from the FRFC project “Méthodes de recherche hybrides pour la

résolution de problèmes complexes”.

References

1. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)
2. Doerner, K.F., Gutjahr, W.J., Hartl, R.F., Strauss, C., Stummer, C.: Pareto ant colony optimization:

A metaheuristic approach to multiobjective portfolio selection. Annals of Operations Research 131
(2004) 79–99

IRIDIA – Technical Report Series: TR/IRIDIA/2010-011 11

3. Alaya, I., Solnon, C., Ghédira, K.: Ant colony optimization for multi-objective optimization prob-
lems. In: ICTAI 2007. Vol. 1. IEEE Computer Society Press, Los Alamitos, CA (2007) 450–457

4. Iredi, S., Merkle, D., Middendorf, M.: Bi-criterion optimization with multi colony ant algorithms.
In Zitzler, E., et al., eds.: EMO 2001. Vol. 1993 of LNCS. Springer, Heidelberg (2001) 359–372

5. López-Ibáñez, M., Stützle, T.: An analysis of algorithmic components for multiobjective ant colony
optimization: A case study on the biobjective TSP. In: EA 2009. Vol. 5975 of LNCS., Springer,
Heidelberg (to appear) 134–145

6. López-Ibáñez, M., Stützle, T.: The impact of design choices of multi-objective ant colony optimiza-
tion algorithms on performance: An experimental study on the biobjective TSP. In: GECCO 2010.
ACM press, New York, NY (2010) Accepted.

7. KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: Automatically building
local search SAT solvers from components. In: IJCAI-09. (2009) 517–524

8. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance as-
sessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary
Computation 7(2) (2003) 117–132

9. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race: An overview. In
Bartz-Beielstein, T., et al., eds.: Experimental Methods for the Analysis of Optimization Algorithms.
Springer (2010) To appear.

10. López-Ibáñez, M., Paquete, L., Stützle, T.: On the design of ACO for the biobjective quadratic
assignment problem. In Dorigo, M., et al., eds.: ANTS 2004. Vol. 3172 of LNCS. Springer, Heidelberg
(2004) 214–225

11. Garćıa-Mart́ınez, C., Cordón, O., Herrera, F.: A taxonomy and an empirical analysis of multiple ob-
jective ant colony optimization algorithms for the bi-criteria TSP. European Journal of Operational
Research 180(1) (2007) 116–148

12. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm
for multiobjective optimization. In Giannakoglou, K., et al., eds.: EUROGEN 2001 (2002) 95–100

13. Mariano, C.E., Morales, E.: MOAQ: An Ant-Q algorithm for multiple objective optimization prob-
lems. In Banzhaf, W., et al., eds.: GECCO-1999. Vol. 1. Morgan Kaufmann Publishers, San Fran-
cisco, CA (1999) 894–901

14. Barán, B., Schaerer, M.: A multiobjective ant colony system for vehicle routing problem with
time windows. In: Proceedings of the Twentyfirst IASTED International Conference on Applied
Informatics, Insbruck, Austria (2003) 97–102

15. Doerner, K.F., Hartl, R.F., Reimann, M.: Are CompetAnts more competent for problem solving?
The case of a multiple objective transportation problem. Central European Journal for Operations
Research and Economics 11(2) (2003) 115–141

16. Stützle, T., Hoos, H.H.: MAX -MIN . Future Generation Computer Systems 16(8) (2000) 889–914
17. López-Ibáñez, M., Paquete, L., Stützle, T.: Hybrid population-based algorithms for the bi-objective

quadratic assignment problem. Journal of Mathematical Modelling and Algorithms 5(1) (2006)
111–137

18. López-Ibáñez, M., Paquete, L., Stützle, T.: Exploratory analysis of stochastic local search algorithms
in biobjective optimization. In Bartz-Beielstein, T., et al., eds.: Experimental Methods for the
Analysis of Optimization Algorithms. Springer (2010) To appear.

19. Grunert da Fonseca, V., Fonseca, C.M., Hall, A.O.: Inferential performance assessment of stochastic
optimisers and the attainment function. In Zitzler, E., et al., eds.: EMO 2001. Vol. 1993 of LNCS.
Springer, Heidelberg (2001) 213–225

