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Ant Colony Optimization
Artificial Ants as a Computational Intelligence Technique

Marco Dorigo, Mauro Birattari, and Thomas Stützle

Université Libre de Bruxelles, BELGIUM

Swarm intelligence is a relatively new approach to problem
solving that takes inspiration from the social behaviors of
insects and of other animals. In particular, ants have inspired
a number of methods and techniques among which the most
studied and the most successful is the general purpose opti-
mization technique known as ant colony optimization.

Ant colony optimization (ACO) takes inspiration from the
foraging behavior of some ant species. These ants deposit
pheromone on the ground in order to mark some favorable path
that should be followed by other members of the colony. Ant
colony optimization exploits a similar mechanism for solving
optimization problems.

From the early nineties, when the first ant colony optimiza-
tion algorithm was proposed, ACO attracted the attention of
more researchers and a relatively large amount of successful
applications are now available. Moreover, a substantial corpus
of theoretical results is becoming available that provides
useful guidelines to researchers and practitioners in further
applications of ACO.

The goal of this article is to introduce ant colony optimiza-
tion and to survey its most notable applications. Section I
provides some background information on the foraging be-
havior of ants, which is the biological source of inspiration
of ant colony optimization. Section II describes ant colony
optimization and its main variants. Section III surveys themost
notable theoretical results concerning ACO, and Section IV
illustrates some of its most successful applications. Section V
highlights some current hot research topics, and Section VI
provides an overview of some other algorithms that, although
not directly related to ACO, are nonetheless inspired by the
behavior of ants. Section VII concludes the article.

I. B IOLOGICAL INSPIRATION

In the forties and fifties of the twentieth century, the
French entomologist Pierre-Paul Grassé [1] observed thatsome
species of termites react to what he called “significant stimuli”.
He observed that the effects of these reactions can act as
new significant stimuli for both the insect that produced them
and for the other insects in the colony. Grassé used the term
stigmergy[2] to describe this particular type of communication
in which the “workers are stimulated by the performance they
have achieved”.

The two main characteristics of stigmergy that differentiate
it from other forms of communication are the following.

• Stigmergy is an indirect, non-symbolic form of commu-
nication mediated by the environment: insects exchange
information by modifying their environment; and
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Fig. 1. Experimental setup for the double bridge experiment. (a) Branches
have equal lengths [3]. (b) Branches have different lengths[4].

• Stigmergic information is local: it can only be accessed
by those insects that visit the locus in which it was
released (or its immediate neighborhood).

Examples of stigmergy can be observed in colonies of ants.
In many ant species, ants walking to and from a food source
deposit on the ground a substance calledpheromone. Other
ants perceive the presence of pheromone and tend to follow
paths where pheromone concentration is higher. Through this
mechanism, ants are able to transport food to their nest in a
remarkably effective way.

Along their path between food source and
nest, Argentine ants deposit pheromone.

Deneubourg et al. [3] thoroughly investigated the
pheromone laying and following behavior of ants. In an
experiment known as the “double bridge experiment”, the
nest of a colony of Argentine ants was connected to a food
source by two bridges of equal lengths. In such a setting, ants
start to explore the surroundings of the nest and eventually
reach the food source. Along their path between food source
and nest, Argentine ants deposit pheromone. Initially, each
ant randomly chooses one of the two bridges. However,
due to random fluctuations, after some time one of the two
bridges presents a higher concentration of pheromone than
the other and, therefore, attracts more ants. This brings a
further amount of pheromone on that bridge making it more
attractive with the result that after some time the whole
colony converges toward the use of the same bridge.1

This colony-level behavior, based on autocatalysis, that is,
on the exploitation of positive feedback, can be exploited by
ants to find the shortest path between a food source and their

1Deneubourg and co-workers repeated the experiment a numberof times
and observed that each of the two bridges is used in about 50% of the cases.
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TABLE I

A NON-EXHAUSTIVE LIST OF SUCCESSFUL ANT COLONY OPTIMIZATION

ALGORITHMS (IN CHRONOLOGICAL ORDER).

Algorithm Authors Year References

Ant System (AS) Dorigo et al. 1991 [6]–[8]
Elitist AS Dorigo et al. 1992 [7], [8]
Ant-Q Gambardella & Dorigo 1995 [9]
Ant Colony System Dorigo & Gambardella 1996 [10]–[12]
MAX–MIN AS Stützle & Hoos 1996 [13]–[15]
Rank-based AS Bullnheimer et al. 1997 [16], [17]
ANTS Maniezzo 1999 [18]
BWAS Cordón et al. 2000 [19]
Hyper-cube AS Blum et al. 2001 [20], [21]

nest. Goss et al. [4] considered a variant of the double bridge
experiment in which one bridge is significantly longer than
the other. In this case, the stochastic fluctuations in the initial
choice of a bridge are much reduced and a second mechanism
plays an important role: the ants choosing by chance the
short bridge are the first to reach the nest. The short bridge
receives, therefore, pheromone earlier than the long one and
this fact increases the probability that further ants select it
rather than the long one. Goss et al. [4] developed a model
of the observed behavior: assuming that at a given moment in
time m1 ants have used the first bridge andm2 the second
one, the probabilityp1 for an ant to choose the first bridge is:

p1 =
(m1 + k)h

(m1 + k)h + (m2 + k)h
, (1)

where parametersk andh are to be fitted to the experimental
data—obviously,p2 = 1−p1. Monte Carlo simulations showed
a very good fit fork ≈ 20 andh ≈ 2 [5].

II. T HE OPTIMIZATION TECHNIQUE

The model proposed by Goss and co-workers for explain-
ing the foraging behavior of ants was the main source of
inspiration for the development of ant colony optimization.
In ACO, a number of artificial ants build solutions to an
optimization problem at hand and exchange information on
the quality of these solutions via a communication scheme
that is reminiscent of the one adopted by real ants.

In ACO, a number of artificial ants build
solutions to an optimization problem and
exchange information on their quality via
a communication scheme that is reminis-
cent of the one adopted by real ants.

Different ant colony optimization algorithms have been
proposed. The original ant colony optimization algorithm is
known as Ant System [6]–[8] and was proposed in the early
nineties. Since then, a number of other ACO algorithms were
introduced. See Table I for a (non-exhaustive) list of successful
variants. All ant colony optimization algorithms share the
same characteristic idea, which is best illustrated through an
example of how they can be applied. Section II-A describes

Fig. 2. An ant in city i chooses the next city to visit via a stochastic
mechanism: ifj has not been previously visited, it can be selected with a
probability that is proportional to the pheromone associated with edge(i, j).

in simple terms how a generic ACO algorithm is applied to
the well-known traveling salesman problem, and Section II-B
gives a more formal description of ACO.

A. ACO for the Traveling Salesman Problem

In the traveling salesman problem, a set of cities is given
and the distance between each of them is known. The goal
is to find the shortest tour that allows each city to be visited
once and only once. In more formal terms, the goal is to find
a Hamiltonian tour of minimal length on a fully connected
graph.

In ant colony optimization, the problem is tackled by
simulating a number of artificial ants moving on a graph
that encodes the problem itself: each vertex represents a city
and each edge represents a connection between two cities. A
variable called pheromone is associated with each edge and
can be read and modified by ants.

Ant colony optimization is an iterative algorithm. At each
iteration, a number of artificial ants are considered. Each
of them build a solution by walking from vertex to vertex
on the graph with the constraint of not visiting any vertex
that she has already visited in her walk. At each step of
the solution construction, an ant selects the following vertex
to be visited according to a stochastic mechanism that is
biased by the pheromone: when in vertexi, the following
vertex is selected stochastically among the previously unvisited
ones. In particular, ifj has not been previously visited, it
can be selected with a probability that is proportional to the
pheromone associated with edge(i, j).

At the end of an iteration, on the basis of the quality of the
solutions constructed by the ants, the pheromone values are
modified in order to bias ants in future iterations to construct
solutions similar to the best ones previously constructed.

B. The Ant Colony Optimization Metaheuristic

Ant colony optimization (ACO) has been formalized into
a metaheuristic for combinatorial optimization problems by
Dorigo and co-workers [22], [23]. Ametaheuristicis a set
of algorithmic concepts that can be used to define heuristic
methods applicable to a wide set of different problems. In other
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words, a metaheuristic is a general-purpose algorithmic frame-
work that can be applied to different optimization problems
with relatively few modifications. Examples of metaheuristics
include simulated annealing [24], [25], tabu search [26]–[28],
iterated local search [29], evolutionary computation [30]–[33],
and ant colony optimization [8], [22], [23], [34].

In order to apply ACO to a given a combinatorial optimiza-
tion problem, an adequate model is needed:

A combinatorial optimization problem
A modelP = (S,Ω, f) of a combinatorial optimization

problem consists of:
• a search spaceS defined over a finite set of discrete

decision variablesXi, i = 1, ..., n;
• a set Ω of constraints among the variables; and
• an objective functionf : S→ R

+
0 to be minimized.2

The generic variableXi takes values inDi = {v1
i , ..., v

|Di|
i }.

A feasible solutions ∈ S is a complete assignment of values
to variables that satisfies all constraints inΩ. A solution
s∗ ∈ S is called a global optimum if and only if:f(s∗) ≤
f(s) ∀s ∈ S.

The model of a combinatorial optimization problem is used to
define the pheromone model of ACO. A pheromone value is
associated with each possiblesolution component; that is, with
each possible assignment of a value to a variable. Formally,the
pheromone valueτij is associated with the solution component
cij , which consists in the assignmentXi = vj

i . The set of all
possible solution components is denoted byC.

In ACO, an artificial ant builds a solution by traversing
the fully connectedconstruction graphGC(V,E), whereV

is a set of vertices andE is a set of edges. This graph can
be obtained from the set of solution componentsC in two
ways: components may be represented either by vertices or
by edges. Artificial ants move from vertex to vertex along the
edges of the graph, incrementally building apartial solution.
Additionally, ants deposit a certain amount of pheromone
on the components; that is, either on the vertices or on
the edges that they traverse. The amount∆τ of pheromone
deposited may depend on the quality of the solution found.
Subsequent ants use the pheromone information as a guide
toward promising regions of the search space.

In the traveling salesman problem, a solution can be rep-
resented through a set ofn variables, wheren is the number
of cities. Each of these variables is associated with a city.
The variableXi indicates the city to be visited after cityi.
Here, solution components are pairs of cities to be visited
one after the other, in the given order: the solution component
cij = (i, j) indicates that the solution under analysis prescribes
that city j should be visited immediately after cityi. In this
case, the construction graph is a graph in which the vertices
are the cities of the original traveling salesman problem, and
the edges are solution components. As a consequence, ants
deposit pheromone on the edges of the construction graph.

It should be noticed that the construction graph could be
obtained by representing solution components with vertices

2Any maximization problem can be trivially reduced to a minimization
problem: maximizing a given functiong is clearly equivalent to minimizing
f = −g.

Fig. 3. Example of possible construction graphs for a four-city TSP where
components are associated with (a) the edges or with (b) the vertices of the
graph.

Algorithm 1 The Ant Colony Optimization Metaheuristic
Set parameters, initialize pheromone trails
while termination condition not metdo

ConstructAntSolutions
ApplyLocalSearch(optional)
UpdatePheromones

end while

on which pheromone is deposited. Although this second way
of obtaining a construction graph seems less natural for the
traveling salesman problem, it is nonetheless correct. The
two ways of defining the construction graph for a four-city
traveling salesman problem are represented in Figure 3.

The ACO metaheuristic is shown in Algorithm 1. After
initialization, the metaheuristic iterates over three phases: at
each iteration, a number of solutions are constructed by the
ants; these solutions are then improved through a local search
(this step is optional), and finally the pheromone is updated.
The following is a more detailed description of the three
phases:

ConstructAntSolutions: A set of m artificial ants constructs
solutions from elements of a finite set of available solution
componentsC = {cij}, i = 1, ..., n, j = 1, ..., |Di|. A
solution construction starts from an empty partial solution
sp = ∅. At each construction step, the partial solutionsp is
extended by adding a feasible solution component from the set
N(sp) ⊆ C, which is defined as the set of components that can
be added to the current partial solutionsp without violating
any of the constraints inΩ. The process of constructing
solutions can be regarded as a walk on the construction graph
GC = (V,E).

The choice of a solution component fromN(sp) is guided
by a stochastic mechanism, which is biased by the pheromone
associated with each of the elements ofN(sp). The rule for the
stochastic choice of solution components vary across different
ACO algorithms but, in all of them, it is inspired by the model
of the behavior of real ants given in Equation 1.

ApplyLocalSearch: Once solutions have been constructed,
and before updating the pheromone, it is common to improve
the solutions obtained by the ants through a local search. This
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phase, which is highly problem-specific, is optional although
it is usually included in state-of-the-art ACO algorithms.

UpdatePheromones: The aim of the pheromone update is
to increase the pheromone values associated with good or
promising solutions, and to decrease those that are associated
with bad ones. Usually, this is achieved (i) by decreasing all
the pheromone values throughpheromone evaporation, and (ii)
by increasing the pheromone levels associated with a chosen
set of good solutions.

The original ant colony optimization algo-
rithm is known as Ant System and was
proposed in the early nineties. Since then,
several other ACO algorithms have been
proposed.

C. Main ACO algorithms

Several ACO algorithms have been proposed in the litera-
ture. Here we present the original Ant System, and the two
most successful variants:MAX -MIN Ant System and Ant
Colony System. In order to illustrate the differences between
these three algorithms, we use the traveling salesman problem
as a concrete example.

1) Ant System (AS):It is the first ACO algorithm proposed
in the literature [6]–[8]. Its main characteristic is that,at each
iteration, the pheromone values are updated byall them ants
that have built a solution in the iteration itself. The pheromone
τij , associated with the edge joining citiesi andj, is updated
as follows:

τij ← (1− ρ) · τij +

m
∑

k=1

∆τk
ij , (2)

whereρ is the evaporation rate,m is the number of ants, and
∆τk

ij is the quantity of pheromone laid on edge(i, j) by ant
k:

∆τk
ij =

{

Q/Lk if ant k used edge(i, j) in its tour,
0 otherwise,

(3)
where Q is a constant, andLk is the length of the tour
constructed by antk.

In the construction of a solution, ants select the following
city to be visited through a stochastic mechanism. When ant
k is in city i and has so far constructed the partial solution
sp, the probability of going to cityj is given by:

pk
ij =







τα
ij ·η

β
ij

P

cil∈N(sp) τα
il
·ηβ

il

if cij ∈ N(sp),

0 otherwise,
(4)

whereN(sp) is the set of feasible components; that is, edges
(i, l) where l is a city not yet visited by the antk. The
parametersα and β control the relative importance of the
pheromone versus the heuristic informationηij , which is given
by:

ηij =
1

dij

, (5)

wheredij is the distance between citiesi andj.
2) MAX -MIN Ant System (MMAS): This algo-

rithm [15] is an improvement over the original Ant System.
Its characterizing elements are that only the best ant updates
the pheromone trails and that the value of the pheromone is
bound. The pheromone update is implemented as follows:

τij ←
[

(1− ρ) · τij + ∆τbest
ij

]τmax

τmin
, (6)

where τmax and τmin are respectively the upper and lower
bounds imposed on the pheromone; the operator[x]ab is defined
as:

[x]ab =







a if x > a,
b if x < b,
x otherwise;

(7)

and∆τbest
ij is:

∆τbest
ij =

{

1/Lbest if (i, j) belongs to the best tour,
0 otherwise.

(8)

Lbest is the length of the tour of the best ant. This may be
(subject to the algorithm designer decision) either the best tour
found in the current iteration—iteration-best, Lib—or the best
solution found since the start of the algorithm—best-so-far,
Lbs—or a combination of both.

Concerning the lower and upper bounds on the pheromone
values,τmin andτmax, they are typically obtained empirically
and tuned on the specific problem at hand [35]. Nonetheless,
some guidelines have been provided for definingτmin and
τmax on the basis of analytical considerations [15].

3) Ant Colony System (ACS):The most interesting con-
tribution of ACS [10]–[12] is the introduction of alocal
pheromone updatein addition to the pheromone update per-
formed at the end of the construction process (calledoffline
pheromone update).

The local pheromone update is performed by all the ants
after each construction step. Each ant applies it only to the
last edge traversed:

τij = (1− ϕ) · τij + ϕ · τ0 , (9)

whereϕ ∈ (0, 1] is the pheromone decay coefficient, andτ0

is the initial value of the pheromone.
The main goal of the local update is to diversify the

search performed by subsequent ants during an iteration:
by decreasing the pheromone concentration on the traversed
edges, ants encourage subsequent ants to choose other edges
and, hence, to produce different solutions. This makes it less
likely that several ants produce identical solutions during one
iteration.

The offline pheromone update, similarly toMMAS, is
applied at the end of each iteration by only one ant, which
can be either theiteration-bestor the best-so-far. However,
the update formula is slightly different:

τij ←

{

(1− ρ) · τij + ρ ·∆τij if (i, j) belongs to best tour,
τij otherwise.

(10)
As inMMAS, ∆τij = 1/Lbest, whereLbest can be eitherLib

or Lbs.
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Another important difference between ACS and AS is in the
decision rule used by the ants during the construction process.
In ACS, the so-calledpseudorandom proportionalrule is used:
the probability for an ant to move from cityi to city j depends
on a random variableq uniformly distributed over[0, 1], and
a parameterq0; if q ≤ q0, thenj = arg maxcil∈N(sp){τilη

β
il},

otherwise Equation 4 is used.3

III. T HEORETICAL RESULTS

The initial work on ACO has been driven by experimental
work, with the aim of showing that the ideas underlying this
technique can lead to successful algorithms. After this initial
phase, researchers tried to deepen their understanding of the
technique by building theoretical foundations.

Typically, the first question considered when dealing with
metaheuristics concerns convergence: will a given ACO al-
gorithm ever find an optimal solution? The first convergence
proofs were presented by Gutjahr for an ACO algorithm called
graph-based ant system (GBAS). Gutjahr proved convergence
with probability 1 − ǫ to the optimal solution [36], and more
in general to any optimal solution [37]. GBAS is a rather
peculiar ACO algorithm and the above mentioned results do
not directly extend to other ACO algorithm. In particular, they
do not extend to ACO algorithms that are commonly adopted
in applications. Nonetheless, for two of the top performing
ACO algorithms, ACS andMMAS, convergence has been
proved [34], [38]. Unfortunately, all these convergence results
do not allow one to predict how quickly optimal solutions
can be found. Only recently, Gutjahr presented an analytical
framework that allows theoretical predictions about the speed
of convergence of specific ACO algorithms to be derived [39].

Other research in ACO theory has focused on establishing
formal links of ACO to other techniques for learning and
optimization. One research direction focused on the connection
between ACO and the fields of optimal control and reinforce-
ment learning [40], while another aimed at examining the con-
nections between ACO and probabilistic learning algorithms
such as stochastic gradient ascent (SGA) [41], and the cross-
entropy (CE) method [42]. In particular, Zlochin et al. [42]
have proposed a unifying framework for so-calledmodel-
based search(MBS) algorithms. Among other advantages, this
framework allows a better understanding of ACO and will
possibly lead to a cross-fertilization among MBS algorithms.

While convergence proofs give insight into some mathe-
matically relevant properties of algorithms, they usuallydo
not provide guidance to practitioners for the implementation
of efficient algorithms. More relevant for practical applications
are research efforts that aim at a better understanding of the
behavior of ACO algorithms. Blum and Dorigo [43], [44] have
shown that ACO algorithms in general suffer fromfirst order
deceptionin the same way as genetic algorithms suffer from
deception. They further introduced the concept ofsecond order
deception, which occurs, for example, in situations where
some solution components on average receive updates from

3The notationarg maxx f(x) stands for the value ofx for which f(·) is
maximized. If the maximum is attained for more than one valueof x, it is a
matter of indifference which one is considered.

Fig. 4. The front page of the official Web site of the ant colonymetaheuristic:
www.aco-metaheuristic.org

more solutions than others with which they compete [45]. The
first to study the behavior of ACO algorithms by analyzing
the dynamics of the pheromone model were Merkle and
Middendorf [46]. They showed that, in idealized permutation
problems, constraints on the feasibility of solutions introduce
what they calledselection biasin the solution construction
process.

For the best-performing ACO algorithms,
convergence to optimal solutions has been
proved.

IV. A PPLICATIONS OFANT COLONY OPTIMIZATION

In recent years, the interest of the scientific community in
ACO has risen sharply. In fact, several successful applications
of ACO to a wide range of different discrete optimization
problems are now available. The large majority of these
applications are toNP-hard problems; that is, to problems for
which the best known algorithms that guarantee to identify an
optimal solution have exponential time worst case complexity.
The use of such algorithms is often infeasible in practice,
and ACO algorithms can be useful for quickly finding high-
quality solutions. Other popular applications are to dynamic
shortest path problems arising in telecommunication networks
problems. The number of successful applications to academic
problems has motivated people to adopt ACO for the solution
of industrial problems, proving that this computational intel-
ligence technique is also useful in real-world applications.
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Resources on Ant Colony Optimization
• Web pages:

– www.aco-metaheuristic.org: The official Web site of the ant colony metaheuristic.
– www.metaheuristics.org: Web site of the “Metaheuristics Network” project. This European Union funded project is

dedicated to the theoretical analysis and experimental comparison of metaheuristics.
• Books:

– M. Dorigo and T. Stützle,Ant Colony Optimization. MIT Press, Cambridge, MA, 2004.
– E. Bonabeau, M. Dorigo, and G. Theraulaz,Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press,

1999.
• Scientific Journals. Scientific articles on ACO are published in many journals, including “IEEE Transactions on Systems, Man,

and Cybernetics”, “IEEE Transactions on Evolutionary Computation”, “Artificial Life”, “INFORMS Journal on Computing”, “Journal
of Heuristics”, “Computers and Operations Research”, “Computational Optimization and Applications”, and “EuropeanJournal of
Operational Research”. The first issue of the new “Journal ofSwarm Intelligence” is forecast for late 2007.

• Conferences:
– The biannual series of workshops “ANTS – From Ant Colonies toArtificial Ants: A Series of International Workshops on Ant

Algorithms” (iridia.ulb.ac.be/∼ants), held for the first time in 1998, is the oldest conference in the ACO and swarm
intelligence fields.

– The series of conferences “IEEE Swarm Intelligence” (http://www.computelligence.org/sis/) focuses on swarm
intelligence techniques and also ant colony optimization.

– Articles on ACO are regularly presented at other conferences such as “IEEE Congress on Evolutionary Computation (CEC)”,
“Genetic and Evolutionary Computation Conference (GECCO)”, “Parallel Problem Solving from Nature (PPSN)”, “INFORMS”
meetings, “European Chapter on Combinatorial Optimization (ECCO)” meetings, the “Metaheuristics International Conference
(MIC)” and many others,

• Software: Software, distributed under the GNU license, is available at: www.aco-metaheuristic.org/aco-code/
• Popular press: ACO is often covered by the popular press. Pointers to popularization articles can be found at:www.
aco-metaheuristic.org/aco-in-the-press.html

• Mailing list: A moderated mailing list dedicated to the exchange of information related to ACO is accessible at:www.
aco-metaheuristic.org/mailing-list.html

A. Applications toNP-hard problems

The usual approach to show the usefulness of a new
metaheuristic technique is to apply it to a number of different
problems and to compare its performance with that of already
available techniques. In the case of ACO, this research initially
consisted of testing the algorithms on TSP. Subsequently, other
NP-hard problems were also considered. So far, ACO has
been tested on probably more than one hundred different
NP-hard problems. Many of the tackled problems can be
considered as falling into one of the following categories:
routing problemsas they arise, for example, in the distribution
of goods;assignment problems, where a set of items (objects,
activities, etc.) has to be assigned to a given number of
resources (locations, agents, etc.) subject to some constraints;
scheduling problems, which–in the widest sense–are concerned
with the allocation of scarce resources to tasks over time; and
subset problems, where a solution to a problem is considered to
be a selection of a subset of available items. In addition, ACO
has been successfully applied to other problems emerging in
fields such as machine learning and bioinformatics.

Common to many of these applications is that the best-
performing ACO algorithms make intensive use of the optional
local search phase of the ACO metaheuristic (see Algo-
rithm 1). This is typically very effective since, on the one
hand, the solutions constructed by ants can often be improved
by an adequate local search algorithm; on the other hand,
generating proper initial solutions for local search algorithms
is a difficult task and many experimental results show that
the probabilistic, adaptive solution generation process of ant
colony optimization is particularly suited to this task.

In Table II, we report some of the most noteworthy ap-

plications of ACO algorithms; for a detailed description of
these and several other applications, we refer the reader to
[34]. The overall result that emerges from these applications
is that, for many problems, ACO algorithms produce results
that are very close to those of the best-performing algorithms,
while on some problems they are the state-of-the-art. These
latter problems include the sequential ordering problem, open-
shop scheduling problems, some variants of vehicle routing
problems, classification problems, and protein–ligand docking.

B. Applications to telecommunication networks

ACO algorithms have shown to be a very effective approach
for routing problems in telecommunication networks where the
properties of the system, such as the cost of using links or the
availability of nodes, varies over time. ACO algorithms were
first applied to routing problems in circuit switched networks
(like telephone networks) [69] and then in packet-switchednet-
works (like local area networks or the Internet) [70]. Following
the proof of concept provided by Schoonderwoerd et al., ant-
inspired strategies for network communication improved to
the point of being state-of-the-art in wired networks. A well-
known example is AntNet [70]. AntNet has been extensively
tested, in simulation, on different networks and under different
traffic patterns, proving to be highly adaptive and robust. A
comparison with state-of-the-art routing algorithms has shown
that, in most of the considered situations, AntNet outperforms
its competitors.

Ant-based algorithms have given rise to several other rout-
ing algorithms, enhancing performance in a variety of wired
network scenarios; see [71], [72] for a survey. More recently,
an ACO algorithm designed for the challenging class of mobile
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TABLE II

A NON-EXHAUSTIVE LIST OF APPLICATIONS OFACO ALGORITHMS GROUPED BY PROBLEM TYPE.

Problem type Problem name Authors Year References

Routing Traveling salesman Dorigo et al. 1991, 1996 [6], [8]
Dorigo & Gambardella 1997 [11]
Stützle & Hoos 1997, 2000 [15], [47]

Vehicle routing Gambardella et al. 1999 [48]
Reimann et al. 2004 [49]

Sequential ordering Gambardella & Dorigo 2000 [50]
Assignment Quadratic assignment Stützle & Hoos 2000 [15]

Maniezzo 1999 [18]
Course timetabling Socha et al. 2002, 2003 [35], [51]
Graph coloring Costa & Hertz 1997 [52]

Scheduling Project scheduling Merkle et al. 2002 [53]
Total weighted tardiness den Besten et al. 2000 [54]
Total weighted tardiness Merkle & Middendorf 2000 [55]
Open shop Blum 2005 [56]

Subset Set covering Lessing et al. 2004 [57]
l-cardinality trees Blum & Blesa 2005 [58]
Multiple knapsack Leguizamón & Michalewicz 1999 [59]
Maximum clique Fenet & Solnon 2003 [60]

Other Constraint satisfaction Solnon 2000, 2002 [61], [62]
Classification rules Parpinelli et al. 2002 [63]

Martens et al. 2006 [64]
Bayesian networks Campos, Fernández-Luna, 2002 [65], [66]
Protein folding Shmygelska & Hoos 2005 [67]
Docking Korb et al. 2006 [68]

ad hoc networks was shown to be competitive with state-of-
the-art routing algorithms [73], [74], while at the same time
offering better scalability.

The good results of ACO algorithms on
academic problems has made them ap-
pealing for applications in industrial set-
tings.

C. Applications to industrial problems

The success on academic problems has raised the attention
of a number of companies that have started to use ACO
algorithms for real-world applications. Among the first to
exploit algorithms based on the ACO metaheuristic is Euro-
Bios (www.eurobios.com). They have applied ACO to a
number of different scheduling problems such as a continuous
two-stage flow shop problem with finite reservoirs. The prob-
lems modeled included various real-world constraints suchas
setup times, capacity restrictions, resource compatibilities and
maintenance calendars. Another company that has played, and
still plays, a very important role in promoting the real-world
application of ACO is AntOptima (www.antoptima.com).
AntOptima’s researchers have developed a set of tools for
the solution of vehicle routing problems whose optimization
algorithms are based on ACO. Particularly successful products
based on these tools are (i) DYVOIL, for the management
and optimization of heating oil distribution with a nonho-
mogeneous fleet of trucks, used for the first time by Pina
Petroli in Switzerland, and (ii) AntRoute, for the routing of
hundreds of vehicles of companies such as Migros, the main
Swiss supermarket chain, or Barilla, the main Italian pasta

maker. Still another vehicle routing application was developed
by BiosGroup for the French company Air Liquide. Other
interesting real-world applications are those by Gravel, Price
and Gagné [75], who have applied ACO to an industrial
scheduling problem in an aluminum casting center, and by
Bautista and Pereira [76], who successfully applied ACO to
solve an assembly line balancing problem with multi-objective
function and constraints between tasks for a bike assembly
line.

V. CURRENT HOT TOPICS INACO

A significant part of research on ACO is still concerned
with applications as they have been presented in the previous
section. However, increasing attention is and will be given
to even more challenging problems that, for example, involve
multiple objectives, dynamic modificationsof the data, and
the stochastic natureof the objective function and of the
constraints. Other developments focus on the extension of the
applicability of ACO algorithms from discrete to continuous
optimization problems and to the study of parallel implemen-
tations of ACO algorithms.

A. Dynamic optimization problems

Dynamic problems are characterized by the fact that the
search space changes during time. Hence, while searching,
the conditions of the search, the definition of the problem
instance and, thus, the quality of the solutions already found
may change. In such a situation, it is crucial that the algorithm
be able to adjust the search direction, following the changes
of the problem being solved.

A paradigmatic example is routing in telecommunication
networks, an application problem already discussed in the
previous section. For this problem, ACO algorithms belong
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to the state-of-the-art techniques [70], [74]. ACO algorithms
have also been applied to dynamic versions of the TSP, where
either the distance between some pairs of cities changes [77]–
[79], or cities are dynamically added or removed from the
set of cities to be visited. More recently, an ACS algorithm
has also been applied to dynamic vehicle routing problems
[80], showing good behavior on randomly generated as well
as real-world instances.

B. Stochastic optimization problems

In stochastic optimization problems, some variables have a
stochastic nature. Apart from the network routing problems,
for which the main focus was put on their dynamic character,
the probabilistic traveling salesman problem (PTSP) was the
first stochastic problem tackled by ACO algorithms. In the
PTSP, each city has a given probability of requiring a visit
and the goal is to find ana priori tour of minimal expected
length over all the cities, with the strategy of visiting a random
subset of cities in the same order as they appear in the a priori
tour. The first ACO algorithm for this problem was proposed
by Bianchi et al. [81]. Further ACO algorithms for the PTSP
have been proposed by Branke and Guntsch [82], Gutjahr [83],
[84], and Birattari et al. [85].

C. Multi-objective optimization

Multiple objectives can often be handled by ordering or
weighting them according to their relative importance. In the
two-colony ACS algorithm for the vehicle routing problem
with time window constraints [48] and in theMMAS for
the bi-objective two-machine permutation flow shop problem
[86], the multi-objective optimization problem is handledby
ordering the objectives; differently, Doerner et al. [87] apply
ACO to a bi-objective transportation problem and combine the
objectives in a weighted sum. On the other hand, if preferences
or weights cannot be givena priori, the goal is to find a set of
non-dominatedsolutions that are optimal in the Pareto sense.
The first ACO algorithm for finding non-dominated solutions
was proposed by Iredi et al. [88] for the bi-objective schedul-
ing problem. Other applications include portfolio optimization
[89] and the quadratic assignment problem [90].

It is foreseeable that future research on
ACO will focus more strongly on rich opti-
mization problems that include stochastic-
ity, dynamic data modifications, and mul-
tiple objectives.

D. Parallel implementations

ACO algorithms lend themselves to be parallelized in the
data or population domains. In particular, any parallel mod-
els used in other population-based algorithms can be easily
adapted to ACO. Two main strategies have been followed. In
fine-grainedparallelization, very few individuals are assigned

to single processors and information exchange among the
processors is frequent. Incoarse-grainedapproaches, on the
contrary, larger subpopulations are assigned to single proces-
sors and information exchange is rather rare. Research on
parallel ACO algorithms has quickly shown that fine-grained
parallelization results in a very significant communication
overhead. Therefore, the focus has mostly turned to coarse-
grained parallelization schemes, wherep colonies run parallel
on p processors [91]–[95].

E. Continuous optimization

Recently, ACO algorithms have been applied to continuous
optimization. When an algorithm designed for combinatorial
optimization is used to tackle a continuous problem, the
simplest approach would be to divide the domain of each
variable into a set of intervals. However, when the domain
of the variables is large and the required accuracy is high, this
approach is not viable. For this reason, ACO algorithms have
been developed, which are specifically designed for continuous
and mixed continuous-discrete variables [96], [97]. Research
in this direction is currently ongoing.

VI. OTHER ANT-INSPIRED ALGORITHMS

The source of inspiration of ACO is the path marking behav-
ior that some ant species exhibit when foraging. Nonetheless,
this behavior is not the only behavior of ants that has inspired
computer scientists. We present here, in a very concise way,
some other examples of algorithms that are inspired by ants.
The common trait of all these techniques is that they make
use ofstigmergic variables; that is, variables associated with
the environment that hold the information that artificial ants
share and exploit. (A more comprehensive discussion of ant
algorithms and stigmergy can be found in [98].)

Various algorithmic techniques have been
inspired by behaviors of ants. Ant colony
optimization is the most successful and
best-known among them.

A. Other algorithms inspired by foraging and path marking

Apart from ACO, a few other approaches take inspiration
from the path marking behavior of ants. Two algorithms
have been proposed for graph exploration:Edge Ant Walk
[99] and Vertex Ant Walk[100]. In these algorithms, ants
mark with pheromone the edges they visit to coordinate
graph exploration. Contrary to ACO, in these algorithms the
pheromones direct the ants toward unexplored areas of the
search space. In fact, their goal is to cover the graph; that is
to visit all the nodes, without knowing the graph topology.
Another example of algorithm inspired by ants’ path marking
is a search algorithm for continuous optimization problems
that was inspired by the foraging behavior of thePachycondyla
apicalis ants [101].
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B. Algorithms inspired by brood sorting

Brood sorting is an activity that can be observed in many
ant species (e.g., inPheidole pallidulaants [102]). These ants
compactly cluster their smaller eggs and microlarvae at the
center of the nest brood area and the largest larvae at the
periphery of the brood cluster. Deneubourg et al. [102] have
proposed a model of this phenomenon in which an ant picks up
and drops an item according to the number of similar surround-
ing items. Lumer and Faieta [103] and Kuntz et al. [104] have
applied this model to a specific clustering problem, obtaining
results that were qualitatively equivalent to those obtained
by classical techniques but at a lower computational cost.
Recently, Handl et al. [105] described an improved version of
Lumer and Faieta’s algorithm, and compared its performance
to other standard clustering techniques, such as k-means. One
of the salient features of this ant-based algorithm is its ability
to propose a “natural” number of clusters. For an overview of
other developments, we refer to [105].

C. Algorithms inspired by division of labor

In ant colonies, individual workers tend to specialize on
specific tasks in their lifetime [106]. However, ants can adapt
their behavior to the circumstances: a soldier ant can become
a forager, a nurse ant a guard, and so on. This combination of
specialization and flexibility is a desirable feature for multi-
agent optimization and control, especially in task or resource
allocation problems that require continuous adaptation to
changing conditions. Many approaches inspired by division
of labor in real ant colonies are based on a threshold model
developed by Robinson [106], in which workers with low
response thresholds respond to lower levels of stimuli than
do workers with high response thresholds. Such a response-
threshold model has been applied to the problem of choosing
a paint booth for trucks coming out of an assembly line in a
truck factory [98], [107]–[110].

D. Algorithms inspired by cooperative transport

The behavior of ant colonies has also inspired research in
robotics, in particular for the design of distributed control
algorithms for groups of robots [111]. An example of a task
that has been used as a benchmark for ant algorithms applied
to distributed robotics problems is cooperative box pushing
[112]. Another example of application of ant algorithms is
the one to the related problem of pulling an object. This has
been achieved [113] within theSwarm-bots project (www.
swarm-bots.org), a project dedicated to the study of ant
algorithms for autonomous robotics applications.

VII. O UTLOOK AND CONCLUSIONS

As we have discussed, nowadays hundreds of researchers
worldwide are applying ACO to classicNP-hard optimization
problems, while only a few works concern variations that
include dynamic and stochastic aspects as well as multiple
objectives. The study of how best to apply ACO to such
variations will certainly be one of the major research directions
in the near future. A better understanding of the theoretical

properties of ACO algorithm is certainly another research
direction that will be pursued in the future.

Fifteen years ago, when the first ACO algorithm was intro-
duced, taking inspiration from ants for designing optimization
algorithms seemed a crazy idea. The many successful appli-
cations presented in this article have changed our perspective:
what seemed a far out idea is now considered one of the most
promising approaches to the approximate solution of difficult
optimization problems.
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