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Ant Colony Optimization

Artificial Ants as a Computational Intelligence Technique

Marco Dorigo, Mauro Birattari, and Thomas Stutzle
Université Libre de Bruxelles, BELGIUM

15 cm

Swarm intelligence is a relatively new approach to problem
solving that takes inspiration from the social behaviors of
insects and of other animals. In particular, ants have igdpi “*— " = e L ]

a number of methods and techniques among which the most
studied and the most successful is the general purpose opti-
mization technique known as ant colony optimization.

Ant colony optimization (ACO) takes inspiration from the @ (b)
foraging behavior of some ant species. These ants deposit
pheromone on the ground in order to mark some favorable p iy 1. Experimental setup for the double bridge experiméajt Branches
that should be followed by other members of the colony. ANt equal lengths [3]. (b) Branches have different lenfgths
colony optimization exploits a similar mechanism for solyi
optimization problems.

From the early nineties, when the first ant colony optimiza-
tion algorithm was proposed, ACO attracted the attention of
more researchers and a relatively large amount of sucdes
applications are now available. Moreover, a substantighu®
of theoretical results is becoming available that providé }
useful guidelines to researchers and practitioners irhéurt eposit on_the ground a substance caliteromone Other
applications of ACO. ants perceive the presence of pher_om(_)ne_and tend to folloyv

The goal of this article is to introduce ant colony optimizapaths Where pheromone concentration is higher. Through_thl
tion and to survey its most notable applications. Section”?eChan'Sm ants are able to transport food to their nest in a

provides some background information on the foraging bggmarkably effective way.

havior of ants, which is the biological source of inspiratio -
of ant colony optimization. Section Il describes ant colonfAlONg their path between food source and
optimization and its main variants. Section Il surveysthest nest, Argentine ants deposit pheromone.
notable theoretical results concerning ACO, and Section P
illustrates some of its most successful applications.iGedt
highlights some current hot research topics, and Section
provides an overview of some other algorithms that, alttou
not directly related to ACO, are nonetheless inspired by t
behavior of ants. Section VII concludes the article.

« Stigmergic information is local: it can only be accessed
by those insects that visit the locus in which it was
released (or its immediate neighborhood).

u . . .
?‘:txamples of stigmergy can be observed in colonies of ants.
many ant species, ants walking to and from a food source

VlDeneubourg et al. [3] thoroughly investigated the
heromone laying and following behavior of ants. In an
é(periment known as the “double bridge experiment”, the
nest of a colony of Argentine ants was connected to a food
source by two bridges of equal lengths. In such a setting, ant
|. BIOLOGICAL INSPIRATION start to explore the surroundings of the nest and eventually
éeach the food source. Along their path between food source
and nest, Argentine ants deposit pheromone. Initiallyheac
ant randomly chooses one of the two bridges. However,
dgg to random fluctuations, after some time one of the two

new significant stimuli for both the insect that producech'lhebrldges presents a higher concentration of pheromone than

and for the other insects in the colony. Grassé used the t(i'{rﬁﬁ hother andt, t?erhefore, attractsthmtoge_ dants. Tkh's l_)trlngs a
stigmergy[2] to describe this particular type of communicatio utr etr_ amoytr;] '?h P erorlrtwtr;]etonft at bn get.ma ltr;]g : mholre

in which the “workers are stimulated by the performance th ractive ‘wi € resu at arter some time the whole

have achieved”. olony converges toward the use of the same bridge.

The two main characteristics of stigmergy that differeetia This colon_y-le_vel behav_pr, based on autocatalysis, .m*at '
it from other forms of communication are the following. on the exploitation of positive feedback, can be exploitgd b

. . L . ants to find the shortest path between a food source and their
« Stigmergy is an indirect, non-symbolic form of commu-

_nication _mediamd b_y .the enyironment insects eXCh"J‘m\jaDeneubourg and co-workers repeated the experiment a nuofitienes
information by modifying their environment; and and observed that each of the two bridges is used in about 5Gbe cases.

In the forties and fifties of the twentieth century, th
French entomologist Pierre-Paul Grassé [1] observedtmae
species of termites react to what he called “significantgiim
He observed that the effects of these reactions can act



2 IRIDIA — TECHNICAL REPORT SERIES: TR/IRIDIA/2006-023

TABLE | @
A NON-EXHAUSTIVE LIST OF SUCCESSFUL ANT COLONY OPTIMIZATION
ALGORITHMS (IN CHRONOLOGICAL ORDER).

Algorithm Authors Year  References

Ant System (AS) Dorigo et al. 1991 [6]-[8] @
Elitist AS Dorigo et al. 1992 [7], [8] /V

Ant-Q Gambardella & Dorigo 1995 [9]

Ant Colony System Dorigo & Gambardella 1996 [10]-[12] V /

MAX-MIN AS  Stitzle & Hoos 1996 [13]-[15]

Rank-based AS Bullnheimer et al. 1997 [16], [17] /

ANTS Maniezzo 1999 [18]

BWAS Cordon et al. 2000 [19] 3 @ > @
Hyper-cube AS Blum et al. 2001 [20], [21]

Fig. 2. An ant in city: chooses the next city to visit via a stochastic
mechanism: ifj has not been previously visited, it can be selected with a

nest. Goss et al. [4] considered a variant of the double bridgobabmty that is proportional to the pheromone assedatith edge(s, j).

experiment in which one bridge is significantly longer than

the other. In this case, the stochastic fluctuations in thlin in simole terms how a generic ACO algorithm is applied to
choice of a bridge are much reduced and a second mechan| b 9 9 PP

S . .
. i : h e well-known traveling salesman problem, and SectioB II-
plays an important role: the ants choosing by chance t €es a more formal description of ACO

short bridge are the first to reach the nest. The short brid%e P '

receives, therefore, pheromone earlier than the long ode an

this fact increases the probability that further ants selec A. ACO for the Traveling Salesman Problem

rather than the long one. Goss et al. [4] developed a mode

f the ob d behavior- ing that at a ai iy 'In the traveling salesman problem, a set of cities is given
ot the observed behavior: assuming that at a given MOmMent\fy e gistance between each of them is known. The goal
time my ants have used the first bridge and, the second

th babilito: f ‘10 ch the first bridae i is to find the shortest tour that allows each city to be visited
one, the probability, Tor an ant to choose the Irst bridge 1556 and only once. In more formal terms, the goal is to find
B (my + k)P ) a Hamiltonian tour of minimal length on a fully connected
L= T k)P + (ma + k)R graph.

where parameterk and i are to be fitted to the experimental . In ant colony optimization, the problem is tackled by

data—obviouslyps = 1—p;. Monte Carlo simulations ShoWedS|muIating a number of artificial ants moving on a graph
a very good fit fork ~ 20 andh ~ 2 [5] that encodes the problem itself: each vertex representtya ci

and each edge represents a connection between two cities. A
variable called pheromone is associated with each edge and
Il. THE OPTIMIZATION TECHNIQUE can be read and modified by ants.

The model proposed by Goss and co-workers for explain-Ant colony optimization is an iterative algorithm. At each
ing the foraging behavior of ants was the main source fération, a number of artificial ants are considered. Each
inspiration for the development of ant colony optimizatiorof them build a solution by walking from vertex to vertex
In ACO, a number of artificial ants build solutions to alhn the graph with the constraint of not V|S|t|ng any vertex
optimization problem at hand and exchange information QRat she has already visited in her walk. At each step of
the quality of these solutions via a communication schenige solution construction, an ant selects the followingeser
that is reminiscent of the one adopted by real ants. to be visited according to a stochastic mechanism that is
biased by the pheromone: when in vertgxthe following
In ACO, a number of artificial ants build vertexis selected stochastically among the previouslysited

; i i ones. In particular, ifj has not been previously visited, it
solutions to an Optlmlzatlon prOblem and can be selected with a probability that is proportional te th

exchange information on their quality via pheromone associated with edge;).

a communication scheme that is reminis- Atthe end of an iteration, on the basis of the quality of the
solutions constructed by the ants, the pheromone values are

cent of the one adopted by real ants. modified in order to bias ants in future iterations to cordtru
solutions similar to the best ones previously constructed.

Different ant colony optimization algorithms have been

proposed. The original ant colony optimization algorithen i L -

known as Ant System [6]-[8] and was proposed in the earfy The Ant Colony Optimization Metaheuristic

nineties. Since then, a number of other ACO algorithms wereAnt colony optimization (ACO) has been formalized into

introduced. See Table | for a (non-exhaustive) list of sesftd a metaheuristic for combinatorial optimization problems b

variants. All ant colony optimization algorithms share th®origo and co-workers [22], [23]. Anetaheuristicis a set

same characteristic idea, which is best illustrated thinoaiy of algorithmic concepts that can be used to define heuristic

example of how they can be applied. Section II-A describ@sethods applicable to a wide set of different problems. hept
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words, a metaheuristic is a general-purpose algorithraimé&- Cr2 C4

work that can be applied to different optimization problems

with relatively few modifications. Examples of metahelicist 1 ey 2

include simulated annealing [24], [25], tabu search [2B8}]

iterated local search [29], evolutionary computation {3838], c

and ant colony optimization [8], [22], [23], [34]. %o
In order to apply ACO to a given a combinatorial optimiza-

tion problem, an adequate model is needed:

24

A combinatorial optimization problem
A model P = (S,Q, f) of a combinatorial optimization
problem consists of:
o a search spaceS defined over a finite set of discrete
decision variablesX;, i =1, ...,n;
« a set 2 of constraints among the variables; and Fig. 3. Example of possible construction graphs for a fotyr-CSP where
e an Objective functiorf .S Rg to be minimized. components are associated with (a) the edges or with (b)ehe&es of the

. . . 1 D, | graph.
The generic variableX; takes values iD; = {v;,...,v; "

i :
A feasible solutions € S is a complete assignment of value|gorithm 1 The Ant Colony Optimization Metaheuristic
to variables that satisfies all constraints if2. A solution Set parameters, initialize pheromone trails

s* € S is called a global optimum if and only iff(s*) < while termination condition not medo
f(s) Vs €8. ConstructAntSolutions
The model of a combinatorial optimization problem is used to  ApplyLocalSearcifoptional)
define the pheromone model of ACO. A pheromone value is UpdatePheromones
associated with each possilsielution componenthat is, with ~ end while
each possible assignment of a value to a variable. Forntiadly,
pheromone value;; is associated with the solution component
¢;j, Which consists in the assignmefit = v/. The set of all on which pheromone is deposited. Although this second way
possible solution components is denoted®y of obtaining a construction graph seems less natural for the
In ACO, an artificial ant builds a solution by traversingraveling salesman problem, it is nonetheless correct. The
the fully connectectonstruction graphG¢(V, E), whereV  two ways of defining the construction graph for a four-city
is a set of vertices anfll is a set of edges. This graph carraveling salesman problem are represented in Figure 3.
be obtained from the set of solution compone@tsn two The ACO metaheuristic is shown in Algorithm 1. After
ways: components may be represented either by verticesirotialization, the metaheuristic iterates over three ggsa at
by edges. Atrtificial ants move from vertex to vertex along theach iteration, a number of solutions are constructed by the
edges of the graph, incrementally buildingartial solution ants; these solutions are then improved through a locatisear
Additionally, ants deposit a certain amount of pheromor(¢his step is optional), and finally the pheromone is updated
on the components; that is, either on the vertices or dime following is a more detailed description of the three
the edges that they traverse. The amodnt of pheromone phases:
deposited may depend on the quality of the solution found.ConstructAntSolutionsA set of m artificial ants constructs
Subsequent ants use the pheromone information as a gusdiitions from elements of a finite set of available solution
toward promising regions of the search space. componentsC = {c¢;;}, i = 1,...,n, 7 = 1,..,|D;|]. A
In the traveling salesman problem, a solution can be regelution construction starts from an empty partial soltio
resented through a set efvariables, where: is the number s? = (). At each construction step, the partial solutighis
of cities. Each of these variables is associated with a cigxtended by adding a feasible solution component from the se
The variableX; indicates the city to be visited after city N(s?) C C, which is defined as the set of components that can
Here, solution components are pairs of cities to be visitést added to the current partial solutieh without violating
one after the other, in the given order: the solution compbneany of the constraints irf2. The process of constructing
¢i; = (4, ) indicates that the solution under analysis prescribeslutions can be regarded as a walk on the construction graph
that city j should be visited immediately after city In this G¢ = (V,E).
case, the construction graph is a graph in which the verticesThe choice of a solution component fraN¥i(s?) is guided
are the cities of the original traveling salesman problend aby a stochastic mechanism, which is biased by the pheromone
the edges are solution components. As a consequence, astociated with each of the element®Ngf?). The rule for the
deposit pheromone on the edges of the construction graphstochastic choice of solution components vary acrossrdifte
It should be noticed that the construction graph could BeCO algorithms but, in all of them, it is inspired by the model
obtained by representing solution components with vesticef the behavior of real ants given in Equation 1.
, o . o ApplyLocalSearchOnce solutions have been constructed,
Any maximization problem can be trivially reduced to a miigation . L .
problem: maximizing a given functiop is clearly equivalent to minimizing and before updatlng the pheromone, It IS common to Improve
f=—g the solutions obtained by the ants through a local seardl. Th

a) b)
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phase, which is highly problem-specific, is optional althlou whered;; is the distance between citiésand j.

it is usually included in state-of-the-art ACO algorithms. 2) MAX-MIN Ant System MMAS): This algo-
UpdatePheromonesrhe aim of the pheromone update igithm [15] is an improvement over the original Ant System.

to increase the pheromone values associated with goodltsrcharacterizing elements are that only the best ant epdat

promising solutions, and to decrease those that are asstcizhe pheromone trails and that the value of the pheromone is

with bad ones. Usually, this is achieved (i) by decreasihg &ound. The pheromone update is implemented as follows:

the pheromone values througheromone evaporatioand (ii) best Trax

by increasing the pheromone levels associated with a chosen 7ij — [(L=p) iy + AT g (6)

Tmin
set of good solutions. where 7., and 7,,,;;, are respectively the upper and lower

= — - bounds imposed on the pheromone; the opefaifris defined
The original ant colony optimization algo- . P P petaip

rithm is known as Ant System and was . oo -
proposed in the early nineties. Since then, He N
several other ACO algorithms have been

z otherwise;

and AT}’fSt is:

proposed.
best 1/Lpest if (i,4) belongs to the best tour,
AT = . (8)
& 0 otherwise.
C. Main ACO algorithms Lyest is the length of the tour of the best ant. This may be

Several ACO algorithms have been proposed in the literéilbject to the algorithm designer decision) either the: toes
ture. Here we present the original Ant System, and the tf@und in the current iteration-teration-best Li,—or the best
most successful variants.AX-MZA Ant System and Ant Solution found since the start of the algorithrvest-so-far
Colony System. In order to illustrate the differences betwe Lbs—0r @ combination of both.
these three algorithms, we use the traveling salesmangarobl Concerning the lower and upper bounds on the pheromone
as a concrete example. values,r,in andr,,q.., they are typically obtained empirically

1) Ant System (AS)t is the first ACO algorithm proposed and tuned on the specific problem at hand [35]. Nonetheless,
in the literature [6]—[8]. Its main characteristic is that,each Some guidelines have been provided for definig, and
iteration, the pheromone values are updatedibyhe m ants Tmas ON the basis of analytical considerations [15].
that have built a solution in the iteration itself. The ptaome ~ 3) Ant Colony System (ACS)fhe most interesting con-
7.5, associated with the edge joining citieéandj, is updated tribution of ACS [10]-[12] is the introduction of docal

as follows: pheromone updat& addition to the pheromone update per-
m formed at the end of the construction process (catifftine
g (1 =p) T+ ATk (2) pheromone update).
k=1 The local pheromone update is performed by all the ants

wherep is the evaporation ratey is the number of ants, andafter each construction step. Each ant applies it only to the

Atk is the quantity of pheromone laid on edgjej) by ant last edge traversed:

Tij=1—¢) Tj+¢-T0, 9

0 otherwise, wherey € (0,1] is the pheromone decay coefficient, and
(3) is the initial value of the pheromone.
where @ is a constant, and.; is the length of the tour The main goal of the local update is to diversify the
constructed by ant. search performed by subsequent ants during an iteration:
In the construction of a solution, ants select the followingy decreasing the pheromone concentration on the traversed
city to be visited through a stochastic mechanism. When asdges, ants encourage subsequent ants to choose other edges
k is in city 7 and has so far constructed the partial solutioind, hence, to produce different solutions. This makessi le

Ak Q/Ly if ant k used edg€si, j) in its tour,
Ti; =

sP, the probability of going to cityj is given by: likely that several ants produce identical solutions dgiime
el " . iteration.
pij = { Senencn TS N(s"), 4)  The offine pheromone update, similarly tMAMAS, is
' otherwise, applied at the end of each iteration by only one ant, which

] ) ) can be either théteration-bestor the best-so-far However,
whereN(s?) is the set of feasible components; that is, edggs, update formula is slightly different:

(i,1) wherel is a city not yet visited by the ant. The _
parametersy and 3 control the relative importance of the { (1—p)-1; +p-Amy; if (4,7) belongs to best tour,
ij

pheromone versus the heuristic informatign which is given Tij otherwise. (10)
by:
1 As in MMAS, At;; = 1/Lpess WhereLpesiCan be eithetLi,
i =g ©) or Lye

ij
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Another important difference between ACS and AS is in the
decision rule used by the ants during the construction oce
In ACS, the so-callegpseudorandom proportionalle is used:
the probability for an ant to move from cityto city ; depends
on a random variable uniformly distributed over0, 1], and
a parametety; if ¢ < qq, thenj = arg maxc“eN(Sp){rimg},
otherwise Equation 4 is uséd.

Ill. THEORETICAL RESULTS

ANTS 2006 Fiftl

The initial work on ACO has been driven by experimental
work, with the aim of showing that the ideas underlying this
technique can lead to successful algorithms. After thigaini
phase, researchers tried to deepen their understandirige of t
technique by building theoretical foundations.

Typically, the first question considered when dealing with
metaheuristics concerns convergence: will a given ACO al-
gorithm ever find an optimal solution? The first convergence
proofs were presented by Gutjahr for an ACO algorithm called
graph-based ant system (GBAS). Gutjahr proved convergence

swarm intelligence research fizld.

with probability 1 — ¢ to the optimal solution [36], and more s

. . . . Commission's Marie Curie Excellence Award for his

in general to any optimal solution [37]. GBAS is a rather resarch on An Colany Optiizatlon an Art

peculiar ACO algorithm and the above mentioned results dO | — o

not directly extend to other ACO algorithm. In particuldrey e

do not extend to ACO algorithms that are commonly adopted . , o

. . . Fig. 4. The front page of the official Web site of the ant colomgtaheuristic:

in applications. Nonetheless, for two of the top performingy, aco- met aheuri stic. org

ACO algorithms, ACS and\I . MAS, convergence has been

proved [34], [38]. Unfortunately, all these convergencsutts

do not allow one to predict how quickly optimal solutiongnore solutions than others with which they compete [45]. The

can be found. Only recently, Gutjahr presented an analytidéist to study the behavior of ACO algorithms by analyzing

framework that allows theoretical predictions about theesp the dynamics of the pheromone model were Merkle and

of convergence of specific ACO algorithms to be derived [39iddendorf [46]. They showed that, in idealized permutatio
Other research in ACO theory has focused on establishipgpblems, constraints on the feasibility of solutionsddice

formal links of ACO to other techniques for learning anavhat they calledselection biasin the solution construction

optimization. One research direction focused on the cdiorec process.

between ACO and the fields of optimal control and reinforce-

ment learning [40], while another aimed at examining the-cof-or the best-performing ACO algorithms,

nections between ACO and probabilistic learning algorgh ; ;

such as stochastic gradient ascent (SGA) [41], and the«:rrc?s:gnvergence to optlmal solutions has been

entropy (CE) method [42]. In particular, Zlochin et al. [42)0roved.

have proposed a unifying framework for so-calletbdel-

based searcliMBS) algorithms. Among other advantages, this

framework allows a better understanding of ACO and will V. APPLICATIONS OFANT COLONY OPTIMIZATION

possibly lead to a cross-fertilization among MBS algori$im |, recent years, the interest of the scientific community in
While convergence proofs give insight into some mathgco has risen sharply. In fact, several successful apjsicat

matically relevant properties of algorithms, they usually ot ACO to a wide range of different discrete optimization

not provide guidance to practitioners for the implementati problems are now available. The large majority of these

of efficient algorithms. Morg relevant for practical appl_iions applications are td/P-hard problems; that is, to problems for

are research efforts that aim at a better understandingeof {bnich the best known algorithms that guarantee to identify a

behavior of ACO algorithms. Blum and Dorigo [43], [44] havg,ptimal solution have exponential time worst case complexi

shown that ACO algorithms in general suffer frdimst order The yse of such algorithms is often infeasible in practice,

deceptionin the same way as genetic algorithms suffer frolgng ACO algorithms can be useful for quickly finding high-

deception. They further introduced the concepgefond order gy ality solutions. Other popular applications are to dyitam

deception which occurs, for example, in situations whergpqrtest path problems arising in telecommunication nexsvo

some solution components on average receive updates figihlems. The number of successful applications to academi
5 _ _ _ problems has motivated people to adopt ACO for the solution
The notationarg max, f(z) stands for the value of for which f() is . . . - .

maximized. If the maximum is attained for more than one valfie, it is a of industrial problems, proving that this computationateln

matter of indifference which one is considered. ligence technique is also useful in real-world applicagion
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Resources on Ant Colony Optimization
« Web pages:
— www. aco- net aheuri sti c. or g: The official Web site of the ant colony metaheuristic.

— www. met aheuri stics. org: Web site of the “Metaheuristics Network” project. This Bpean Union funded project |is
dedicated to the theoretical analysis and experimentapacison of metaheuristics.

o Books:

— M. Dorigo and T. StitzleAnt Colony OptimizationMIT Press, Cambridge, MA, 2004.
— E. Bonabeau, M. Dorigo, and G. Theraul&yarm Intelligence: From Natural to Artificial Systenm@xford University Press,
1999.

« Scientific Journals Scientific articles on ACO are published in many journaigluding “IEEE Transactions on Systems, Man,
and Cybernetics”, “IEEE Transactions on Evolutionary Catagion”, “Artificial Life”, “INFORMS Journal on Computing “Journal
of Heuristics”, “Computers and Operations Research”, “@otational Optimization and Applications”, and “Europedournal of
Operational Research”. The first issue of the new “Journgwérm Intelligence” is forecast for late 2007.

« Conferences:

— The biannual series of workshops “ANTS — From Ant ColoniedAttificial Ants: A Series of International Workshops on Ant
Algorithms” (i ri di a. ul b. ac. be/ ~ant s), held for the first time in 1998, is the oldest conferenceha ACO and swarm
intelligence fields.

— The series of conferences “IEEE Swarm Intelligenckt t(p: / / www. conput el | i gence. or g/ si s/) focuses on swarm
intelligence techniques and also ant colony optimization.

— Articles on ACO are regularly presented at other conferermech as “IEEE Congress on Evolutionary Computation (CHC)”
“Genetic and Evolutionary Computation Conference (GECC@arallel Problem Solving from Nature (PPSN)”, “INFORM
meetings, “European Chapter on Combinatorial Optimira(BCCO)” meetings, the “Metaheuristics International feoance
(MIC)” and many others,

« Software: Software, distributed under the GNU license, is availatievaw. aco- net aheuri sti c. or g/ aco- code/

o Popular press: ACO is often covered by the popular press. Pointers to pojakion articles can be found atww.
aco- net aheuri stic.org/aco-in-the-press. htnm

o Mailing listt A moderated mailing list dedicated to the exchange of infdiom related to ACO is accessible atww.
aco- net aheuristic.org/mailing-list.htm

U7

A. Applications ta\NP-hard problems plications of ACO algorithms; for a detailed description of

The usual approach to show the usefulness of a ndbgse and several other applications, we refer the rgad_er to
metaheuristic technique is to apply it to a number of diffire [34]- The overall result that emerges from these applioatio
problems and to compare its performance with that of alrealfythat, for many problems, ACO algorithms produce results
available techniques. In the case of ACO, this researcialigit that are very close to those of the best-performing algorsth
consisted of testing the algorithms on TSP. Subsequerttigr o while on some _problems they are _the stat_e-of-the-art. These
N'P-hard problems were also considered. So far, ACO hi¥ter problems include the sequential ordering problepee
been tested on probably more than one hundred differéfoP Scheduling problems, some variants of vehicle routing
NP-hard problems. Many of the tackled problems can gyoblems, classification problems, and protein—ligandkohag
considered as falling into one of the following categories:
routing problemsas they arise, for example, in the distributio®- Applications to telecommunication networks
of goods;assignment problemsvhere a set of items (objects, ACO algorithms have shown to be a very effective approach
activities, etc.) has to be assigned to a given number fof routing problems in telecommunication networks whée t
resources (locations, agents, etc.) subject to some edmtstr properties of the system, such as the cost of using linkseor th
scheduling problemsvhich—in the widest sense—are concernealailability of nodes, varies over time. ACO algorithms wer
with the allocation of scarce resources to tasks over timd; afirst applied to routing problems in circuit switched netk®r
subset problemsvhere a solution to a problem is considered t(like telephone networks) [69] and then in packet-switched
be a selection of a subset of available items. In additionQACworks (like local area networks or the Internet) [70]. Faling
has been successfully applied to other problems emergingtie proof of concept provided by Schoonderwoerd et al., ant-
fields such as machine learning and bioinformatics. inspired strategies for network communication improved to

Common to many of these applications is that the beshe point of being state-of-the-art in wired networks. A el
performing ACO algorithms make intensive use of the optionknown example is AntNet [70]. AntNet has been extensively
local search phase of the ACO metaheuristic (see Algtested, in simulation, on different networks and underedéht
rithm 1). This is typically very effective since, on the ondraffic patterns, proving to be highly adaptive and robust. A
hand, the solutions constructed by ants can often be imgrox@mparison with state-of-the-art routing algorithms hasmn
by an adequate local search algorithm; on the other haldat, in most of the considered situations, AntNet outpenfo
generating proper initial solutions for local search aidpons its competitors.
is a difficult task and many experimental results show that Ant-based algorithms have given rise to several other rout-
the probabilistic, adaptive solution generation procesamt ing algorithms, enhancing performance in a variety of wired
colony optimization is particularly suited to this task. network scenarios; see [71], [72] for a survey. More regentl

In Table II, we report some of the most noteworthy apan ACO algorithm designed for the challenging class of neobil
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TABLE Il
A NON-EXHAUSTIVE LIST OF APPLICATIONS OFACO ALGORITHMS GROUPED BY PROBLEM TYPE

Problem type  Problem name Authors Year References
Routing Traveling salesman Dorigo et al. 1991, 1996 [6], [8]
Dorigo & Gambardella 1997 [11]
Stitzle & Hoos 1997, 2000 [15], [47]
Vehicle routing Gambardella et al. 1999 [48]
Reimann et al. 2004 [49]
Sequential ordering Gambardella & Dorigo 2000 [50]
Assignment Quadratic assignment Stitzle & Hoos 2000 [15]
Maniezzo 1999 [18]
Course timetabling Socha et al. 2002, 2003  [35], [51]
Graph coloring Costa & Hertz 1997 [52]
Scheduling Project scheduling Merkle et al. 2002 [53]
Total weighted tardiness  den Besten et al. 2000 [54]
Total weighted tardiness  Merkle & Middendorf 2000 [55]
Open shop Blum 2005 [56]
Subset Set covering Lessing et al. 2004 [57]
l-cardinality trees Blum & Blesa 2005 [58]
Multiple knapsack Leguizamon & Michalewicz 1999 [59]
Maximum clique Fenet & Solnon 2003 [60]
Other Constraint satisfaction Solnon 2000, 2002 [61], [62]
Classification rules Parpinelli et al. 2002 [63]
Martens et al. 2006 [64]
Bayesian networks Campos, Fernandez-Luna, 2002 [65], [66
Protein folding Shmygelska & Hoos 2005 [67]
Docking Korb et al. 2006 [68]

ad hoc networks was shown to be competitive with state-afiaker. Still another vehicle routing application was deped
the-art routing algorithms [73], [74], while at the same ¢imby BiosGroup for the French company Air Liquide. Other
offering better scalability. interesting real-world applications are those by GravekeP
and Gagné [75], who have applied ACO to an industrial

The good results of ACO a|gorithms on scheduling problem in an aluminum casting center, and by

. Bautista and Pereira [76], who successfully applied ACO to
academic prOblemS has made them a‘p_solve an assembly line balancing problem with multi-obyect

pealing for applications in industrial set- function and constraints between tasks for a bike assembly

V. CURRENTHOT TOPICS INACO

C. Applications to industrial problems _A signi_fica_nt part of research on ACO is sti_II concerngd
. . with applications as they have been presented in the prgviou
The success on academic problems has raised the attenligftion. However, increasing attention is and will be given
of a number of companies that have started to use AGQ even more challenging problems that, for example, ireolv
algorithms for real-world applications. Among the first tqnjtiple objectives dynamic modificationsf the data, and
exploit algorithms based on the ACO metaheuristic is Eurgse stochastic natureof the objective function and of the
Bios (wwv. eur obi os. com. They have applied ACO 10 a cqngtraints. Other developments focus on the extensioheof t
number of different scheduling problems such as a Com'suoébplicability of ACO algorithms from discrete to continsou

two-stage flow shop problem with finite reservoirs. The proRyysimization problems and to the study of parallel implemen
lems modeled included various real-world constraints sagh tations of ACO algorithms.

setup times, capacity restrictions, resource compdtésiland

maintenance calendars. Another company that has playdd, an ) o

still plays, a very important role in promoting the real-tebr A- Dynamic optimization problems

application of ACO is AntOptimaviww. ant opt i ma. com. Dynamic problems are characterized by the fact that the
AntOptima’s researchers have developed a set of tools &®arch space changes during time. Hence, while searching,
the solution of vehicle routing problems whose optimizatiothe conditions of the search, the definition of the problem
algorithms are based on ACO. Particularly successful prtsduinstance and, thus, the quality of the solutions alreadydiou
based on these tools are (i) DYVOIL, for the managementay change. In such a situation, it is crucial that the atgori
and optimization of heating oil distribution with a nonhobe able to adjust the search direction, following the change
mogeneous fleet of trucks, used for the first time by Pira the problem being solved.

Petroli in Switzerland, and (ii) AntRoute, for the routing o A paradigmatic example is routing in telecommunication
hundreds of vehicles of companies such as Migros, the maiaetworks, an application problem already discussed in the
Swiss supermarket chain, or Barilla, the main Italian paspaevious section. For this problem, ACO algorithms belong
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to the state-of-the-art techniques [70], [74]. ACO alduris to single processors and information exchange among the
have also been applied to dynamic versions of the TSP, wherecessors is frequent. lcoarse-grainedapproaches, on the
either the distance between some pairs of cities changés [7@ontrary, larger subpopulations are assigned to singleggro
[79], or cities are dynamically added or removed from thsors and information exchange is rather rare. Research on
set of cities to be visited. More recently, an ACS algorithmarallel ACO algorithms has quickly shown that fine-grained
has also been applied to dynamic vehicle routing problerparallelization results in a very significant communicatio
[80], showing good behavior on randomly generated as weNerhead. Therefore, the focus has mostly turned to coarse-
as real-world instances. grained parallelization schemes, whereolonies run parallel

on p processors [91]-[95].

B. Stochastic optimization problems

In stochastic optimization problems, some variables haveEa Continuous optimization

stochastic nature. Apart from the network routing problems Recently, ACO algorithms have been applied to continuous
for which the main focus was put on their dynamic charactejptimization. When an algorithm designed for combinatoria
the probabilistic traveling salesman problem (PTSP) was tBptimization is used to tackle a continuous problem, the
first stochastic problem tackled by ACO algorithms. In thgimplest approach would be to divide the domain of each
PTSP, each city has a given probability of requiring a visifariable into a set of intervals. However, when the domain
and the goal is to find aa priori tour of minimal expected of the variables is large and the required accuracy is hhjs, t
length over all the cities, with the strategy of visiting adam approach is not viable. For this reason, ACO algorithms have
subset of cities in the same order as they appear in the a prigéen developed, which are specifically designed for coatiau

tour. The first ACO algorithm for this problem was proposegnd mixed continuous-discrete variables [96], [97]. Redea
by Bianchi et al. [81]. Further ACO algorithms for the PTSRh this direction is currently ongoing.

have been proposed by Branke and Guntsch [82], Gutjahr [83],

[84], and Birattari et al. [85] VI. OTHER ANT-INSPIRED ALGORITHMS

C. Multi-objective optimization The source of inspiration of ACO is the path marking behav-

' ior that some ant species exhibit when foraging. Nonetkeles
Multiple objectives can often be handled by ordering ahis behavior is not the only behavior of ants that has iesbir
weighting them according to their relative importance.He t computer scientists. We present here, in a very concise way,
two-colony ACS algorithm for the vehicle routing problensome other examples of algorithms that are inspired by ants.
with time window constraints [48] and in th&1MAS for The common trait of all these techniques is that they make
the bi-objective two-machine permutation flow shop problegise ofstigmergic variablesthat is, variables associated with
[86], the multi-objective optimization problem is handleyl the environment that hold the information that artificiatsan

ordering the objectives; differently, Doerner et al. [8Ppy share and exploit. (A more comprehensive discussion of ant
ACO to a bi-objective transportation problem and combiree thy|gorithms and stigmergy can be found in [98].)

objectives in a weighted sum. On the other hand, if prefagnc

or weights cannot be givem priori, the goal is to find a set of Various algorithmic techniques have been
non-dominatedsolutions that are optimal in the Pareto sense.

The first ACO algorithm for finding non-dominated solutiondNSpired by behaviors of ants. Ant colony

was proposed by Iredi et al. [88] for the bi-objective scHedprtimization is the most successful and
ing problem. Other applications include portfolio optigimn

[89] and the quadratic assignment problem [90]. best-known among them.

It is foreseeable that future research on
ACO will focus more strongly on rich opti- A. Other algorithms inspired by foraging and path marking
mization problems that include stochastic- Apart from ACO, a few other approaches take inspiration

. q ic d difi . d | from the path marking behavior of ants. Two algorithms
|tYs ynamic ata modifications, ana mui- have been proposed for graph exploratiefige Ant Walk

tiple objectives. [99] and Vertex Ant Walk[100]. In these algorithms, ants
mark with pheromone the edges they visit to coordinate
graph exploration. Contrary to ACO, in these algorithms the
) ) pheromones direct the ants toward unexplored areas of the
D. Parallel implementations search space. In fact, their goal is to cover the graph; that i
ACO algorithms lend themselves to be parallelized in the visit all the nodes, without knowing the graph topology.
data or population domains. In particular, any parallel modnother example of algorithm inspired by ants’ path marking
els used in other population-based algorithms can be easilya search algorithm for continuous optimization problems
adapted to ACO. Two main strategies have been followed. mat was inspired by the foraging behavior of fachycondyla
fine-grainedparallelization, very few individuals are assignedpicalis ants [101].
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B. Algorithms inspired by brood sorting

properties of ACO algorithm is certainly another research

Brood sorting is an activity that can be observed in marffjréction that will be pursued in the future.

ant species (e.g., iRheidole pallidulaants [102]). These ants

Fifteen years ago, when the first ACO algorithm was intro-

compactly cluster their smaller eggs and microlarvae at tf&ced, taking inspiration from ants for designing optirtiaa

center of the nest brood area and the largest larvae at

glgorithms seemed a crazy idea. The many successful appli-

periphery of the brood cluster. Deneubourg et al. [102] haf&tions presented in this article have changed our perspect
proposed a model of this phenomenon in which an ant picks Wﬂi‘at _s_eemed a far out idea is now C(_)n5|dered one of the.most
and drops an item according to the number of similar surreurff ©MISINg approaches to the approximate solution of difficu
ing items. Lumer and Faieta [103] and Kuntz et al. [104] haPtimization problems.

applied this model to a specific clustering problem, obtajni
results that were qualitatively equivalent to those ol&din

by classical techniques but at a lower computational cost[1]
Recently, Handl et al. [105] described an improved version o
Lumer and Faieta’s algorithm, and compared its performancéz]
to other standard clustering techniques, such as k-meanss. O
of the salient features of this ant-based algorithm is iitab

to propose a “natural” number of clusters. For an overview of
other developments, we refer to [105].

(3]

(4]

C. Algorithms inspired by division of labor
T, - (5]
In ant colonies, individual workers tend to specialize on

specific tasks in their lifetime [106]. However, ants cangda
their behavior to the circumstances: a soldier ant can becom!®
a forager, a nurse ant a guard, and so on. This combination of
specialization and flexibility is a desirable feature forltau  [7]
agent optimization and control, especially in task or reseu
allocation problems that require continuous adaptation tgsg)
changing conditions. Many approaches inspired by division
of labor in real ant colonies are based on a threshold mod ]
developed by Robinson [106], in which workers with low
response thresholds respond to lower levels of stimuli than
do workers with high response thresholds. Such a response-
threshold model has been applied to the problem of choosing)
a paint booth for trucks coming out of an assembly line in a
truck factory [98], [107]-[110]. [11

D. Algorithms inspired by cooperative transport [12]

The behavior of ant colonies has also inspired research in
robotics, in particular for the design of distributed cohtr
algorithms for groups of robots [111]. An example of a task13]
that has been used as a benchmark for ant algorithms applied
to distributed robotics problems is cooperative box pughini4
[112]. Another example of application of ant algorithms is
the one to the related problem of pulling an object. This haaS]
been achieved [113] within th&warm-bots project (wwv.
swar m bot s. or g), a project dedicated to the study of ant[16]
algorithms for autonomous robotics applications.

[17]
VIl. OUTLOOK AND CONCLUSIONS

As we have discussed, nowadays hundreds of researchars
worldwide are applying ACO to classitP-hard optimization
problems, while only a few works concern variations thajwl
include dynamic and stochastic aspects as well as multiple
objectives. The study of how best to apply ACO to such
variations will certainly be one of the major research dimets
in the near future. A better understanding of the theorktica
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