
Université Libre de Bruxelles
Institut de Recherches Interdisciplinaires
et de Développements en Intelligence Artificielle

An Introduction to

Ant Colony Optimization

Marco Dorigo and Krzysztof Socha

IRIDIA – Technical Report Series

Technical Report No.

TR/IRIDIA/2006-010

April 2006
Last revision: April 2007

Published as a chapter in Approximation Algorithms and Metaheuristics, a book edited by

T. F. Gonzalez.

IRIDIA – Technical Report Series
ISSN 1781-3794

Published by:
IRIDIA, Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Université Libre de Bruxelles
Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2006-010

Revision history:
TR/IRIDIA/2006-010.001 April 2006
TR/IRIDIA/2006-010.002 February 2007
TR/IRIDIA/2006-010.003 April 2007

The information provided is the sole responsibility of the authors and
does not necessarily reflect the opinion of the members of IRIDIA. The
authors take full responsability for any copyright breaches that may
result from publication of this paper in the IRIDIA – Technical Report
Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.

An Introduction to Ant Colony Optimization

Marco Dorigo1 and Krzysztof Socha2

IRIDIA, Université Libre de Bruxelles, CP 194/6,
Av. Franklin D. Roosevelt 50, 1050 Brussels, Belgium

http://iridia.ulb.ac.be

April 30, 2007

1mdorigo@ulb.ac.be
2ksocha@ulb.ac.be

IRIDIA – Technical Report Series: TR/IRIDIA/2006-010 1

25.1 Introduction

This chapter presents an overview of ant colony optimization (ACO)—a meta-
heuristic inspired by the behavior of real ants. Ant colony optimization was
proposed by Dorigo and colleagues [1–3] as a method for solving hard combina-
torial optimization problems (COPs).

Ant colony optimization algorithms are part of swarm intelligence, that is,
the research field that studies algorithms inspired by the observation of the
behavior of swarms. Swarm intelligence algorithms are made up of simple in-
dividuals that cooperate through self-organization, that is, without any form
of central control over the swarm members. A detailed overview of the self-
organization principles exploited by these algorithms, as well as examples from
biology, can be found in Ref. [4]. Many swarm intelligence algorithms have been
proposed in the literature. For an overview of the field of swarm intelligence,
we refer the interested reader to Ref. [5].

This chapter, which is dedicated to present a concise overview of ACO,
is organized as follows. Section 25.2 presents the biological phenomenon that
provided the original inspiration. Section 25.3 presents a formal description
of the ACO metaheuristic. Section 25.4 overviews the most popular variants
of ACO and gives examples of their application. Section 25.5 shows current
research directions, and Section 25.6 summarizes and concludes the chapter.

25.2 From Biology to Algorithms

Ant colony optimization was inspired by the observation of the behavior of real
ants. In this section, we present a number of observations made in experiments
with real ants, and then we show how these observations inspired the design of
the ACO metaheuristic.

25.2.1 Ants

One of the first researchers to investigate the social behavior of insects was
the French entomologist Pierre-Paul Grassé. In the 1940s and 1950s, he was
observing the behavior of termites—in particular, the Bellicositermes natalensis
and Cubitermes species. He discovered [6] that these insects are capable to
react to what he called “significant stimuli,” signals that activate a genetically
encoded reaction. He observed [7] that the effects of these reactions can act
as new significant stimuli for both the insect that produced them and for the
other insects in the colony. Grassé used the term stigmergy [7] to describe this
particular type of indirect communication in which “the workers are stimulated
by the performance they have achieved.”

The two main characteristics of stigmergy that differentiate it from other
means of communication are:

• the physical, nonsymbolic nature of the information released by the com-
municating insects, which corresponds to a modification of physical envi-
ronmental states visited by the insects; and

2 IRIDIA – Technical Report Series: TR/IRIDIA/2006-010

• the local nature of the released information, which can only be accessed by
those insects that visit the place where it was released (or its immediate
neighborhood).

Examples of stigmergy can be observed in colonies of ants. In many ant
species, ants walking to—and from—a food source, deposit on the ground a
substance called pheromone. Other ants are able to smell this pheromone, and
its presence influences the choice of their path, that is, they tend to follow
strong pheromone concentrations. The pheromone deposited on the ground
forms a pheromone trail, which allows the ants to find good sources of food that
have been previously identified by other ants.

Some researchers investigated experimentally this pheromone laying and fol-
lowing behavior to better understand it and to be able to quantify it. Deneubourg
et al. [8] set up an experiment called a “binary bridge experiment.” They used
Linepithema humile ants (also known as Argentine ants). The ants’ nest was
connected to a food source by two bridges of equal length. The ants could freely
choose which bridge to use when searching for food and bringing it back to the
nest. Their behavior was then observed over a period of time.

In this experiment, initially there is no pheromone on the two bridges. The
ants start exploring the surroundings of the nest and eventually cross one of
the bridges and reach the food source. When walking to the food source and
back, the ants deposit pheromone on the bridge they use. Initially, each ant
randomly chooses one of the bridges. However, because of random fluctuations,
after some time there will be more pheromone deposited on one of the bridges
than on the other. Because ants tend to prefer in probability to follow a stronger
pheromone trail, the bridge that has more pheromone will attract more ants.
This in turn makes the pheromone trail grow stronger, until the colony of ants
converges toward the use of a same bridge.1

This colony level behavior, based on autocatalysis, that is, on the exploita-
tion of positive feedback, can be exploited by ants to find the shortest path
between a food source and their nest. This was demonstrated in another ex-
periment conducted by Goss et al. [9], in which the two bridges were not of
the same length: one was significantly longer than the other. In this case, the
stochastic fluctuations in the initial choice of a bridge were much reduced as a
second mechanism played an important role: those ants choosing by chance the
shorter bridge were also the first to reach the nest, and when returning to the
nest, they chose the shorter bridge with higher probability as it had a stronger
pheromone trail. Therefore, the ants—thanks to the pheromone following and
depositing mechanism—quickly converged to the use of the shorter bridge.

In the next section we explain how these experiments and findings were used
to develop optimization algorithms.

1Deneubourg et al. [8] conducted several experiments, and results show that each of the
two bridges was used in about 50% of the cases.

IRIDIA – Technical Report Series: TR/IRIDIA/2006-010 3

25.2.2 Algorithms

Stimulated by the interesting results of the experiments described in the previous
section, Goss et al. [9] developed a model to explain the behavior observed in
the binary bridge experiment. Assuming that after t time units since the start
of the experiment, m1 ants had used the first bridge and m2 the second one,
the probability p1 for the (m + 1)th ant to choose the first bridge can be given
by

p1(m+1) =
(m1 + k)h

(m1 + k)h + (m2 + k)h
(25.1)

where parameters k and h are needed to fit the model to the experimental
data. The probability that the same (m + 1)th ant chooses the second bridge is
p2(m+1) = 1−p1(m+1). Monte Carlo simulations, run to test whether the model
corresponds to the real data [10], showed very good fit for k ≈ 20 and h ≈ 2.

This basic model, which explains the behavior of real ants, may be used as an
inspiration to design artificial ants that solve optimization problems defined in
a similar way. In the above described ant foraging behavior example, stigmergic
communication happens via the pheromone that ants deposit on the ground.
Analogously, artificial ants may simulate pheromone laying by modifying ap-
propriate pheromone variables associated with problem states they visit while
building solutions to the optimization problem. Also, according to the stigmer-
gic communication model, the artificial ants would have only local access to
these pheromone variables.

Therefore, the main characteristics of stigmergy mentioned in the previous
section can be extended to artificial agents by

• associating state variables with different problem states; and

• giving the agents only local access to these variables.

Another important aspect of real ants’ foraging behavior that may be ex-
ploited by artificial ants is the coupling between the autocatalytic mechanism
and the implicit evaluation of solutions. By implicit solution evaluation, we
mean the fact that shorter paths (which correspond to lower cost solutions in
the case of artificial ants) are completed earlier than longer ones, and therefore
they receive pheromone reinforcement quicker. Implicit solution evaluation cou-
pled with autocatalysis can be very effective: the shorter the path, the sooner
the pheromone is deposited, and the more ants use the shorter path. If appro-
priately used, it can be a powerful mechanism in population-based optimization
algorithms (e.g., in evolutionary algorithms [11, 12] autocatalysis is implemented
by the selection/reproduction mechanism).

Stigmergy, together with implicit solution evaluation and autocatalytic be-
havior, gave rise to ACO. The basic idea of ACO follows very closely the bi-
ological inspiration. Therefore, there are many similarities between real and
artificial ants. Both real and artificial ant colonies are composed of a popula-
tion of individuals that work together to achieve a certain goal. A colony is a
population of simple, independent, asynchronous agents that cooperate to find

4 IRIDIA – Technical Report Series: TR/IRIDIA/2006-010

a good solution to the problem at hand. In the case of real ants, the problem
is to find the food, while in the case of artificial ants, it is to find a good solu-
tion to a given optimization problem. A single ant (either a real or an artificial
one) is able to find a solution to its problem, but only cooperation among many
individuals through stigmergy enables them to find good solutions.

In the case of real ants, they deposit and react to a chemical substance called
pheromone. Real ants simply deposit it on the ground while walking. Artificial
ants live in a virtual world, hence they only modify numeric values (called
for analogy artificial pheromones) associated with different problem states. A
sequence of pheromone values associated with problem states is called artificial
pheromone trail. In ACO, the artificial pheromone trails are the sole means of
communication among the ants. A mechanism analogous to the evaporation of
the physical pheromone in real ant colonies allows the artificial ants to forget
the history and focus on new promising search directions.

Just like real ants, artificial ants create their solutions sequentially by moving
from one problem state to another. Real ants simply walk, choosing a direction
based on local pheromone concentrations and a stochastic decision policy. Arti-
ficial ants also create solutions step by step, moving through available problem
states and making stochastic decisions at each step.

There are however some important differences between real and artificial
ants:

• Artificial ants live in a discrete world—they move sequentially through a
finite set of problem states.

• The pheromone update (i.e., pheromone depositing and evaporation) is not
accomplished in exactly the same way by artificial ants as by real ones.
Sometimes the pheromone update is done only by some of the artificial
ants, and often only after a solution has been constructed.

• Some implementations of artificial ants use additional mechanisms that
do not exist in the case of real ants. Examples include look-ahead, local
search, backtracking, etc.

25.3 The Ant Colony Optimization
Metaheuristic

Ant colony optimization has been formalized into a combinatorial optimization
metaheuristic by Dorigo et al. [13, 14] and has since been used to tackle many
combinatorial optimization problems (COPS).

Given a COP, the first step for the application of ACO to its solution consists
in defining an adequate model. This is then used to define the central component
of ACO: the pheromone model. The model of a COP may be defined as follows:

IRIDIA – Technical Report Series: TR/IRIDIA/2006-010 5

Definition 25.1 A model P = (S,Ω, f) of a COP consists of

• a search space S defined over a finite set of discrete decision variables and
a set Ω of constraints among the variables;

• an objective function f : S → R+
0 to be minimized.2

The search space S is defined as follows: Given is a set of discrete variables
Xi, i = 1, . . . , n, with values vj

i ∈ Di = {v1
i , . . . , v

|Di|
i }. A variable instantiation,

that is, the assignment of a value vj
i to a variable Xi, is denoted by Xi ← vj

i . A
solution s ∈ S, that is, a complete assignment in which each decision variable
has a value assigned that satisfies all the constraints in the set Ω, is a feasible
solution of the given COP. If the set Ω is empty, P is called an unconstrained
problem model, otherwise it is said to be constrained. A solution s∗ ∈ S is called
a global optimum if and only if f(s∗) ≤ f(s) ∀s ∈ S. The set of all globally
optimal solutions is denoted by S∗ ⊆ S. Solving a COP requires finding at least
one s∗ ∈ S∗.

The model of a COP is used to derive the pheromone model used by ACO.
First, an instantiated decision variable Xi = vj

i (i.e., a variable Xi with a value
vj

i assigned from its domain Di) is called a solution component and denoted by
cij . The set of all possible solution components is denoted by C. A pheromone
trail parameter Tij is then associated with each component cij . The set of all
pheromone trail parameters is denoted by T. The value of a pheromone trail
parameter Tij is denoted by τij (and called pheromone value).3 This pheromone
value is then used and updated by the ACO algorithm during the search. It
allows modeling the probability distribution of different components of the so-
lution.

In ACO, artificial ants build a solution to a COP by traversing the so-called
construction graph, GC(V,E). The fully connected construction graph consists
of a set of vertices V and a set of edges E. The set of components C may
be associated either with the set of vertices V of the graph GC , or with the
set of its edges E. The ants move from vertex to vertex along the edges of the
graph, incrementally building a partial solution. Additionally, the ants deposit a
certain amount of pheromone on the components, that is, either on the vertices
or on the edges that they traverse. The amount ∆τ of pheromone deposited
may depend on the quality of the solution found. Subsequent ants utilize the
pheromone information as a guide toward more promising regions of the search
space.

The ACO metaheuristic is shown in Algorithm 1. It consists of an initializa-
tion step and a loop over three algorithmic components. A single iteration of the
loop consists of constructing solutions by all ants, their (optional) improvement
with the use of a local search algorithm, and an update of the pheromones. In
the following, we explain these three algorithmic components in more detail.

2Note that minimizing over an objective function f is the same as maximizing over −f .
Therefore, every COP can be described as a minimization problem.

3Note that pheromone values are in general a function of the algorithm’s iteration t : τij =
τij(t).

6 IRIDIA – Technical Report Series: TR/IRIDIA/2006-010

Algorithm 1 Ant colony optimization metaheuristic
Set parameters, initialize pheromone trails
while termination conditions not met do

ConstructAntSolutions
ApplyLocalSearch {optional}
UpdatePheromones

end while

ConstructAntSolutions A set of m artificial ants construct solutions from
elements of a finite set of available solution components C = {cij}, i = 1, . . . , n, j =
1, . . . , |Di|. A solution construction starts with an empty partial solution sp = ∅.
Then, at each construction step, the current partial solution sp is extended
by adding a feasible solution component from the set of feasible neighbors
N(sp) ⊆ C. The process of constructing solutions can be regarded as a path on
the construction graph GC = (V,E). The allowed paths in GC are implicitly
defined by the solution construction mechanism that defines the set N(sp) with
respect to a partial solution sp.

The choice of a solution component from N(sp) is done probabilistically at
each construction step. The exact rules for the probabilistic choice of solution
components vary across different ACO variants. The best known rule is the one
of ant system (AS) [3]:

p(cij |sp) =
τα
ij · η(cij)β

∑
cil∈N(sp) τα

il · η(cil)β
, ∀cij ∈ N(sp) (25.2)

where τij is the pheromone value associated with the component cij , and η(·) is a
function that assigns at each construction step a heuristic value to each feasible
solution component cij ∈ N(sp). The values that are returned by this function
are commonly called heuristic information. Furthermore, α and β are positive
parameters, whose values determine the relative importance of pheromone ver-
sus heuristic information. Eq. (25.2) is a generalization of Eq. (25.1) presented
in Section 25.2: ACO formalization follows closely the biological inspiration.

ApplyLocalSearch Once solutions have been constructed, and before updat-
ing pheromones, often some optional actions may be required. These are often
called daemon actions, and can be used to implement problem specific and/or
centralized actions, which cannot be performed by single ants. The most used
daemon action consists in the application of local search to the constructed solu-
tions: the locally optimized solutions are then used to decide which pheromones
to update.

UpdatePheromones The aim of the pheromone update is to increase the
pheromone values associated with good or promising solutions, and to decrease
those that are associated with bad ones. Usually, this is achieved (i) by de-
creasing all the pheromone values through pheromone evaporation, and (ii) by

IRIDIA – Technical Report Series: TR/IRIDIA/2006-010 7

increasing the pheromone levels associated with a chosen set of good solutions
Supd:

τij ← (1− ρ)τij + ρ
∑

s∈Supd|cij∈s

F (s) (25.3)

where Supd is the set of solutions that are used for the update, ρ ∈ (0, 1] is
a parameter called evaporation rate, and F : S → R+

0 a function such that
f(s) < f(s′) ⇒ F (s) ≥ F (s′),∀s 6= s′ ∈ S. F (·) is commonly called the fitness
function.

Pheromone evaporation is needed to avoid a too rapid convergence of the
algorithm. It implements a useful form of forgetting, favoring the exploration
of new areas in the search space. Different ACO algorithms, for example, Ant
Colony System (ACS) [15] or MAX -MIN Ant System (MMAS) [16] differ
in the way they update the pheromone.

Instantiations of the update rule presented in Eq. (25.3) are obtained by
different specifications of Supd , which in many cases is a subset of Siter ∪ {sbs},
where Siter is the set of solutions that were constructed in the current iteration,
and sbs the best-so-far solution, that is, the best solution found since the first
algorithm iteration. A well-known example is the AS-update rule, that is, the
update rule of AS [3], where

Supd ← Siter (25.4)

An example of a pheromone update rule that is more often used in practice
is the IB-update rule (where IB stands for iteration best):

Supd ← arg max
s∈Siter

F (s) (25.5)

The IB-update rule introduces a much stronger bias toward the good solu-
tions found than the AS-update rule. Although this increases the speed with
which good solutions are found, it also increases the probability of premature
convergence. An even stronger bias is introduced by the BS-update rule, where
BS refers to the use of the best-so-far solution sbs . In this case, Supd is set to
{ssb}. In practice, ACO algorithms that use variants of the IB or the BS-update
rules and that additionally include mechanisms to avoid premature convergence
achieve better results than those that use the AS-update rule.

25.3.1 Example: The Traveling Salesman Problem

One of the most popular ways to illustrate how the ACO metaheuristic works, is
via its application to the traveling salesman problem (TSP). The TSP consists
of a set of locations (cities) and a traveling salesman that has to visit all the
locations once and only once. The distances between the locations are given
and the task is to find a Hamiltonian tour of minimal length. The problem has
been proven to be NP-hard [17].

8 IRIDIA – Technical Report Series: TR/IRIDIA/2006-010

Figure 25.1: Example construction graphs for a four-city TSP when (a) compo-
nents are associated with the edges of the graph, and when (b) components are
associated with the vertices of the graph. Note that cij ≡ cji.

The application of ACO to the TSP is straightforward. The moves between
the locations become the solution components, that is, the move from city i
to city j becomes a solution component cij ≡ cji. The construction graph
GC = (V,E) is defined by associating the set of locations with the set V of
vertices of the graph. Since, in principle, it is possible to move from any city
to any other one, the construction graph is fully connected and the number of
vertices is equal to the number of locations defined by the problem instance. Fur-
thermore, the lengths of the edges between the vertices are proportional to the
distances between the locations represented by these vertices. The pheromone
is associated with the set E of edges of the graph. An example of the resulting
construction graph GC is presented in Figure 25.1(a).

The ants construct the solutions as follows. Each ant starts from a randomly
selected location (vertex of the graph GC). Then, at each construction step it
moves along the edges of the graph. Each ant keeps a memory of its path
through the graph, and in subsequent steps it chooses among the edges that
do not lead to vertices that it has already visited. An ant has constructed a
solution once it has visited all the vertices of the graph. At each construction
step an ant chooses probabilistically the edge to follow among the available
ones (those that lead to yet unvisited vertices). The exact rule depends on the
implementation, an example being Eq. (25.2). Once all the ants have completed

IRIDIA – Technical Report Series: TR/IRIDIA/2006-010 9

their tour, the pheromone on the edges is updated according to one of the
possible implementations of Eq. (25.3). Ant colony optimization has been shown
to perform quite well on the TSP [18].

It is worth noticing that it is also possible to associate the set of solution
components of the TSP (or any other COP) with the set of vertices V rather
than the set of edges E of the construction graph GC . For the TSP, this would
mean associating the moves between locations with the set V of vertices of
the construction graph, and the locations with the set E of its edges. The
corresponding example construction graph for a four-city TSP is presented in
Figure 25.1(b). When using this approach, the ants’ solution construction pro-
cess has to be also properly modified: the ants would have to move from vertex
to vertex of the construction graph choosing thereby the connections between
the cities.

It is important to note that both ways of defining the construction graph
are correct and both may be used in practice. Although for the TSP the first
way seems more intuitive and was in fact used in all the applications of ACO
to the TSP that we are aware of, in other cases the second way might be better
suited. For example, it was the selected choice in the case of the university
course timetabling problem (UCTP) [19].

25.4 Main Variants of ACO

Several variants of ACO have been proposed in the literature. Here we present
the three most successful ones, Ant System (AS)—the first implementation of
an ACO algorithm—followed by MAX -MIN Ant System (MMAS) and Ant
Colony System (ACS), together with a short list of their applications.

To illustrate the differences between them clearly, we use the example of the
TSP, as described in Section 25.3.1.

25.4.1 Ant System

Ant System was the first ACO algorithm to be proposed in the literature [1–3].
Its main characteristic is that the pheromone values are updated by all the ants
that have completed the tour. The pheromone update for τij , that is, for edge
joining cities i and j, is performed as follows:

τij ← (1− ρ) · τij +
m∑

k=1

∆τk
ij (25.6)

where ρ is the evaporation rate, m is the number of ants, and ∆τk
ij is the quantity

of pheromone per unit length laid on edge (i, j) by the kth ant:

∆τk
ij =

{
Q
Lk

if ant k used edge (i, j) in its tour

0 otherwise
(25.7)

where Q is a constant and Lk is the tour length of the kth ant.

10 IRIDIA – Technical Report Series: TR/IRIDIA/2006-010

When constructing the solutions, the ants in AS traverse a construction
graph and make a probabilistic decision at each vertex. The transition proba-
bility pk

ij of the kth ant moving from city i to city j is given by

pk
ij =

τα
ij ·ηβ

ijP
l∈ allowedk

τα
il ·ηβ

il

if j ∈ allowedk

0 otherwise
(25.8)

where allowedk is the list of cities not yet visited by the kth ant, and α and β
are the parameters that control the relative importance of the pheromone versus
the heuristic information ηij given by

ηij =
1

dij
(25.9)

where dij is the length of edge (i, j).
Several implementations of the AS algorithm have been applied to different

COPs. The first and best known is the application to the TSP [1–3]. However,
AS was also used successfully to tackle other combinatorial problems. The AS–
QAP [20, 21] algorithm was used for solving the quadratic assignment problem
(QAP), AS–JSP [22] for the job-shop scheduling problem (JSP), AS–VRP [23,
24] for the vehicle routing problem (VRP), and AS–SCS [25, 26] for the shortest
common supersequence (SCS) problem.

25.4.2 MAX -MIN Ant System

MAX -MIN Ant System is an improvement over the original AS idea. MMAS
was proposed by Stützle and Hoos [16], who introduced a number of changes of
which the most important are the following:

• only the best ant can update the pheromone trails, and

• the minimum and maximum values of the pheromone are limited.

Eq. (25.6) takes the following new form:

τij ← (1− ρ) · τij + ∆τbest
ij (25.10)

where ∆τbest
ij is the pheromone update value defined by

∆τbest
ij =

{
1

Lbest
if the best ant used edge (i, j) in its tour

0 otherwise
(25.11)

Lbest is the length of the tour of the best ant. This may be (subject to the
algorithm designer decision) either the best tour found in the current iteration—
iteration best, Lib—or the best solution found since the start of the algorithm—
best-so-far, Lbs—or a combination of both.

Concerning the limits on the minimal and maximal pheromone values al-
lowed, respectively τmin and τmax, Stützle and Hoos suggest that they should

IRIDIA – Technical Report Series: TR/IRIDIA/2006-010 11

be chosen experimentally based on the problem at hand. The maximum value
τmax may be calculated analytically provided that the optimum ant tour length
is known. In the case of the TSP, τmax is given by

τmax =
1
ρ
· 1
L∗

(25.12)

where L∗ is the length of the optimal tour. If L∗ is not known, it can be
approximated by Lbs. The minimum pheromone value τmin should be chosen
with caution as it has a rather strong influence on the algorithm performance.
Stützle and Hoos present an analytical approach to finding this value based on
the probability pbest that an ant constructs the best tour found so far. This is
done as follows. First, it is assumed that at each construction step an ant has
a constant number k of options available. Therefore, the probability that an
ant makes the right decision (i.e., the decision that belongs to the sequence of
decisions leading to the construction of the best tour found so far) at each of
n steps is given by pdec = n−1

√
pbest. The analytical formula they suggest for

finding τmin is

τmin =
τmax · (1− pdec)

k · pdec
(25.13)

For more details on how to choose τmax and τmin , we refer to Ref. [16]. It is
important to mention here that it has also been shown [19] that for some prob-
lems the choice of an appropriate τmin value is more easily done experimentally
than analytically.

The process of pheromone update in MMAS is concluded by verifying that
all pheromone values are within the imposed limits:

τij =

τmin if τij < τmin

τij if τmin ≤ τij ≤ τmax

τmax if τij > τmax

(25.14)

MAX -MIN Ant System provided a significant improvement over the basic
AS performance. While the first implementations focused on the TSP [16], it has
been later applied to many other COPs such as the QAP [27], the UCTP [19],
the generalized assignment problem (GAP) [28], and the set-covering problem
(SCP) [29].

25.4.3 Ant Colony System

Another improvement over the original AS was Ant Colony System (ACS),
introduced by Gambardella and Dorigo [15, 30]. The most interesting contri-
bution of ACS is the introduction of a local pheromone update in addition to
the pheromone update performed at the end of the construction process (called
here offline pheromone update).

The local pheromone update is performed by all the ants after each con-
struction step. Each ant applies it only to the last edge traversed:

τij = (1− ϕ) · τij + ϕ · τ0 (25.15)

12 IRIDIA – Technical Report Series: TR/IRIDIA/2006-010

where ϕ ∈ (0, 1) is the pheromone decay coefficient, and τ0 is the initial value
of the pheromone.

The main goal of the local update is to diversify the search performed by
subsequent ants during one iteration. In fact, decreasing the pheromone con-
centration on the edges as they are traversed during one iteration encourages
subsequent ants to choose other edges and hence to produce different solutions.
This makes less likely that several ants produce identical solutions during one
iteration.

The offline pheromone update, similarly to MMAS, is applied at the end of
each iteration by only one ant (either the one that found the best solution in the
iteration or the best-so-far). However, the update formula is slightly different:

τij ←
{

(1− ρ) · τij + ρ ·∆τij if edge (i, j) belongs to the tour of the best ant

τij otherwise
(25.16)

and in case of the TSP, ∆τij = 1
Lbest

(as in MMAS, Lbest can be set to either
Lib or Lbs.)

Another important difference between AS and ACS is in the decision rule
used by the ants during the construction process. Ants in ACS use the so-called
pseudorandom proportional rule: the probability for an ant to move from city i
to city j depends on a random variable q uniformly distributed over [0, 1], and
a parameter q0; if q ≤ q0, then j = argmaxl∈N(sp){τilη

β
il}, otherwise Eq. (25.8)

is used.
Ant Colony System has been initially developed for the TSP [15, 30], but it

was later used to tackle various COPs, including vehicle routing [31], sequential
ordering [32], and timetabling [33].

25.5 Current Research Directions

Research in ACO is very active. It includes the application of ACO algorithms to
new real-world optimization problems or new types of problems, such as dynamic
optimization [34], multiobjective optimization [35], stochastic problems [36], or
continuous and mixed-variable optimization [37, 42]. Also, with an increasing
popularity of parallel hardware architectures (multicore processors and the grid
technology), a lot of research is being done on creating parallel implementations
of ACO that will be able to take advantage of the available hardware. In this
section we briefly present current research in these new areas.

25.5.1 Other Types of Problems

One of the new areas of application of ACO is dynamic optimization. This
type of problems is characterized by the fact that the search space dynamically
changes. While an algorithm searches for good solutions, the conditions of the
search as well as the quality of the solutions already found may change. This
poses a whole new set of issues for designing successful algorithms that can

IRIDIA – Technical Report Series: TR/IRIDIA/2006-010 13

deal with such situations. It becomes crucial for an algorithm to be able to
adjust the search direction, following the changes of the problem being solved.
Initial attempts to apply ACO to dynamic optimization problems have been
quite successful [34, 38, 39].

Multiobjective optimization is another area of application for metaheuristics
that has received increasing attention over the past years. A multiobjective opti-
mization problem involves solving simultaneously several optimization problems
with potentially conflicting objectives. For each of the objectives, a different ob-
jective function is used to assess the quality of the solutions found. Algorithms
usually aim at finding the so-called Pareto set, that is, a set of nondominated
solutions, based on the defined objective functions. In the Pareto set, no solu-
tion is worse than any other in the set, when evaluated over all the objective
functions. Some ACO algorithms designed to tackle multiobjective problems
have been proposed in the literature [35, 40, 41].

Finally, recently researchers attempted to apply ACO algorithms to contin-
uous optimization problems. When an algorithm designed for combinatorial
optimization is used to tackle a continuous problem, the simplest approach is
to divide the domain of each variable into a set of intervals. The set of intervals
is finite and may be handled by the original discrete optimization algorithm.
However, when the domain of the variables is large, and the required accuracy
is high, this approach runs into problems. The problem size (i.e., the num-
ber of intervals) grows, and combinatorial optimization algorithms become less
efficient. Also, this approach requires setting the number of intervals a priori—
before the algorithm is run. In case of real-world problems, this is not always a
sensible thing to do.

Owing to these reasons, optimization algorithms able to handle continuous
parameters natively have been developed. Recently, Socha and Dorigo [37,
42] have extended ACO to continuous (and mixed-variable—continuous and
discrete) problems. Research in this respect is ongoing and should result in new,
efficient ACO implementations for continuous and mixed-variable problems.

25.5.2 Parallel ACO Implementations

Parallelization of algorithms becomes more and more an interesting and practi-
cal option for algorithm designers. Ant colony optimization is particularly well
suited for parallel implementations, thanks to ants operating in an independent
and asynchronous way. There have already been many attempts to propose
parallel ACO algorithms. They are usually classified by their parallel grain,
that is, the relationship between computation and communication. We can
then distinguish between coarse- and fine-grained models. While the formers
are characterized by many ants using the same CPU and rare communication
between the CPUs, in the latters only few ants use each CPU and there is a
lot of communication going on. An overview of the trends and strategies in
designing parallel metaheuristics may be found in Refs. [43, 44].

Randall and Lewis [45] proposed a first reasonably complete classification of
parallel ACO implementations. Although many parallel ACO implementations

14 IRIDIA – Technical Report Series: TR/IRIDIA/2006-010

have been proposed in the literature [46–51], the results are fragmented and
difficult to compare. Experiments are usually of limited scale and concern dif-
ferent optimization problems. Also, not all parallel implementations proposed
are compared with their sequential counterparts, which is an essential measure
of their usefulness [51]. All this implies that more research is necessary in the
area of parallelization of the ACO metaheuristic (for some recent work in this
direction see Ref. [52]).

25.6 Conclusions

We have presented an introduction to ACO—a metaheuristic inspired by the
foraging behavior of real ants. The central component of ACO is the pheromone
model based on the underlying model of the problem being solved. The basic
idea of ACO, which has been formalized into a metaheuristic framework, leaves
many options and choices to the algorithm designer. Several variants of ACO
have been already proposed, the most successful being MMAS and ACS.

Ant colony optimization is a relatively young metaheuristic, when compared
to others such as evolutionary computation, tabu search, or simulated anneal-
ing. Yet, it has proven to be quite efficient and flexible. Ant colony optimiza-
tion algorithms are currently state-of-the-art for solving many COPs including
the sequential ordering problem [32], the resource constraint project schedul-
ing problem [53], and the open-shop scheduling problem [54]. For an in-depth
overview of ACO, including theory and applications, the interested reader should
refer to Ref. [55].

Acknowledgments

Marco Dorigo acknowledges support from the Belgian FNRS, of which he is a
research director. This work was supported by the “ANTS” project, an “Action
de Recherche Concertée” funded by the Scientific Research Directorate of the
French Community of Belgium.

Bibliography

[1] Dorigo, M., Maniezzo, V., and Colorni, A., Positive Feedback as a Search
Strategy, Technical report 91-016, Dipartimento di Elettronica, Politecnico
di Milano, Italy, 1991.

[2] Dorigo, M., Optimization, Learning and Natural Algorithms, Ph.D. thesis,
Dipartimento di Elettronica, Politecnico di Milano, 1992 (in Italian).

[3] Dorigo, M., Maniezzo, V., and Colorni, A., Ant System: Optimization by a
colony of cooperating agents, IEEE Trans. Syst., Man, and Cybern. – Part
B, 26(1), 29, 1996.

[4] Camazine, S., Deneubourg, J.-L., Franks, N., Sneyd, J., Theraulaz, G., and
Bonabeau, E., Self-Organization in Biological Systems, Princeton Univer-
sity Press, Princeton, NJ, 2003.

[5] Bonabeau, E., Dorigo, M., and Theraulaz, G., Swarm Intelligence: From
Natural to Artificial Systems, Oxford University Press, New York, NY,
1999.

[6] Grassé, P.-P., Recherches sur la biologie des termites champignonnistes
(Macrotermitina), Ann. Sc. Nat., Zool. Biol. anim., 6, 97, 1944.

[7] Grassé, P.-P., La reconstruction du nid et les coordinations interindividu-
elles chez bellicositermes natalensis et cubitermes sp. La théorie de la stig-
mergie: essai d’interprétation du comportement des termites constructeurs,
Insectes Sociaux, 6, 41, 1959.

[8] Deneubourg, J.-L., Aron, S., Goss, S., and Pasteels, J.-M., The self-
organizing exploratory pattern of the Argentine ant, J. Insect Behav., 3,
159, 1990.

[9] Goss, S., Aron, S., Deneubourg, J.-L., and Pasteels, J.-M., Self-organized
shortcuts in the Argentine ant, Naturwissenschaften, 76, 579, 1989.

[10] Pasteels, J.M., Deneubourg, J.-L., and Goss,
S., Self-organization mechanisms in ant societies
(i): Trail recruitment to newly discovered food sources, Experientia
Supplementum, 54, 155, 1987.

15

16 IRIDIA – Technical Report Series: TR/IRIDIA/2006-010

[11] Holland, J. H., Adaptation in Natural and Artificial Systems, University of
Michigan Press, MI, 1975.

[12] Fogel, D. B., Evolutionary Computation, IEEE Press, Piscataway, NJ, 1995.

[13] Dorigo, M. and Di Caro, G., The ant colony optimization meta-heuristic,
in New Ideas in Optimization, Corne, D., Dorigo, M., and Glover, F., Eds.,
McGraw-Hill, New York, 1999, p. 11.

[14] Dorigo, M., Di Caro, G., and Gambardella, L.M., Ant algorithms for dis-
crete optimization, Artif. Life, 5(2), 137, 1999.

[15] Dorigo, M. and Gambardella, L.M., Ant Colony System: a cooperative
learning approach to the traveling salesman problem, IEEE Trans. Evol.
Comput., 1(1), 53, 1997.

[16] Stützle, T. and Hoos, H.H., MAX-MIN Ant System, Future Generation
Comput. Syst., 16(8), 889, 2000.

[17] Lawler, E.L., Lenstra, J.K., Rinnooy-Kan, A.H.G., and Shmoys, D.B., The
Travelling Salesman Problem, Wiley, New York, NY, 1985.

[18] Stützle, T. and Dorigo, M., ACO algorithms for the traveling salesman
problem, in Evolutionary Algorithms in Engineering and Computer Science,
Miettinen, K., Mäkelä, M.M., Neittaanmäki, P., and Périaux, J., Eds.,
Wiley, New York, 1999, p. 163.

[19] Socha, K., Knowles, J., and Sampels, M., A MAX -MIN Ant System for
the university timetabling problem, Proc. ANTS 2002 – 3rd Int. Work-
shop on Ant Algorithms, Lecture Notes in Computer Science, Vol. 2463,
Springer, Berlin, 2002, p. 1.

[20] Maniezzo, V., Colorni, A., and Dorigo, M., The Ant System Applied to the
Quadratic Assignment Problem, Technical report IRIDIA/94-28, IRIDIA,
Université Libre de Bruxelles, Belgium, 1994.

[21] Maniezzo, V. and Colorni, A., The Ant System applied to the quadratic
assignment problem, IEEE Trans. Knowl. Data Eng., 11(5), 769, 1999.

[22] Colorni, A., Dorigo, M., Maniezzo, V., and Trubian, M., Ant System for
job-shop scheduling, JORBEL—Belgian J. Operations Res., Stat. Comput.
Sci., 34(1), 39, 1994.

[23] Bullnheimer, B., Hartl, R.F., and Strauss, C., Applying the Ant System to
the vehicle routing problem, in Meta-Heuristics: Advances and Trends in
Local Search Paradigms for Optimization, Osman, I.H., Voß, S., Martello,
S., and Roucairol, C., Eds., Kluwer Academic Publishers, Dordrecht, 1998,
p. 109.

[24] Bullnheimer, B., Hartl, R.F., and Strauss, C., An improved Ant System
algorithm for the vehicle routing problem, Ann. Oper. Res., 89, 312, 1999.

IRIDIA – Technical Report Series: TR/IRIDIA/2006-010 17

[25] Michel, R. and Middendorf, M., An island model based Ant System with
lookahead for the shortest supersequence problem, Proc. PPSN-V, 5th Int.
Conf. on Parallel Problem Solving from Nature, Springer, Berlin, 1998, p.
692.

[26] Michel, R. and Middendorf, M., An ACO algorithm for the shortest com-
mon supersequence problem, in New Ideas in Optimisation, Corne, D.,
Dorigo, M., and Glover, F., Eds., McGraw-Hill, Boston, MA, 1999, p. 51.

[27] Stützle, T. and Hoos, H., The MAX-MIN Ant System and local search
for combinatorial optimization problems: towards adaptive tools for com-
binatorial global optimisation, in Meta-Heuristic, Advances and Trends in
Local Search Paradigms for Optimization, Voss, S., Martello, S., Osman,
I.H., and Roucairol, C., Eds., Kluwer Academic Publishers, Dordrecht,
1998, p. 313.

[28] Lourenço, H.R. and Serra, D., Adaptive approach heuristics for the gener-
alized assignment problem, TR Economic Working Papers Series No. 304,
Universitat Pompeu Fabra, Department of Economics and Management,
Barcelona, Spain, 1998.

[29] Lessing, L., Dumitrescu, I., and Stützle. T., A comparison between ACO
algorithms for the set covering problem, Proc. 4th Int. Workshop on Ant
Algorithms and Swarm Intelligence, Lecture Notes in Computer Science,
Vol. 3172, Springer, Berlin, 2004, p. 1.

[30] Gambardella, L.M. and Dorigo, M., Solving symmetric and asymmetric
TSPs by ant colonies, Proc. ’96 IEEE Int. Conf. on Evolutionary Compu-
tation (ICEC’96), IEEE Press, New York, 1996, p. 622.

[31] Bianchi, L., Birattari, M., Chiarandini, M., Manfrin, M., Mastrolilli, M.,
Paquete, L., Rossi-Doria, O., and Schiavinotto, T., Metaheuristics for the
vehicle routing problem with stochastic demands, Proc. Parallel Problem
Solving from Nature—PPSN VIII, 8th International Conference, Lecture
Notes in Computer Science, Vol. 3242, Springer, Berlin, 2004, p. 450.

[32] Gambardella, L.M. and Dorigo, M., Ant Colony System hybridized with a
new local search for the sequential ordering problem, INFORMS J. Com-
put., 12(3), 237, 2000.

[33] Socha, K., Sampels, M., and Manfrin, M., Ant algorithms for the univer-
sity course timetabling problem with regard to the state-of-the-art, Proc.
EvoCOP 2003 – 3rd European Workshop on Evolutionary Computation
in Combinatorial Optimization, Lecture Notes in Computer Science, Vol.
2611, Springer, Berlin, 2003, p. 334.

[34] Guntsch, M. and Middendorf, M., Applying population based ACO to dy-
namic optimization problems, Proc. ANTS 2002—3rd Int. Workshop on
Ant Algorithms, Lecture Notes in Computer Science, Vol. 2463, Springer,
Berlin, 2002, p. 111.

18 IRIDIA – Technical Report Series: TR/IRIDIA/2006-010

[35] Iredi, S., Merkle, D., and Middendorf, M., Bi-criterion optimization with
multi colony ant algorithms, Proc. Evolutionary Multi-Criterion Optimiza-
tion, 1st Int. Conf. (EMO’01), Lecture Notes in Computer Science, 1993,
Springer, Berlin, 2001, p. 359.

[36] Gutjahr, W.J., S-ACO: An ant-based approach to combinatorial opti-
mization under uncertainty, Proc. 4th Int. Workshop on Ant Algorithms
and Swarm Intelligence, Lecture Notes in Computer Science, Vol. 3172,
Springer, Berlin, 2004, p. 238.

[37] Socha, K., ACO for continuous and mixed-variable optimization, Proc.
Ant Colony Optimization and Swarm Intelligence, 4th Int. Workshop,
ANTS 2004, Lecture Notes in Computer Science, Vol. 3172, Springer,
Berlin, 2004, p. 25.

[38] Di Caro, G., and Dorigo, M., AntNet: distributed stigmergetic control for
communications networks, J. Artif. Intell. Res. (JAIR), 9, 317, 1998.

[39] Guntsch, M., Middendorf, M., and Schmeck, H., An ant colony optimiza-
tion approach to dynamic TSP, Proc. Genetic and Evolutionary Computa-
tion Conference (GECCO-2001), Morgan Kaufmann, San Francisco, CA,
2001, p. 860.

[40] Guntsch, M. and Middendorf, M., Solving multi-criteria optimization prob-
lems with population-based ACO, Proc. of Evolutionary Multi-Criterion
Optimization: 2nd Int. Conf. EMO 2003, Lecture Notes in Computer Sci-
ence, Vol. 2632, Springer, Berlin, 2003, p. 464.

[41] Doerner, K., Gutjahr, W., Hartl, R., Strauss, C., and Stum-
mer, C., Pareto ant colony optimization: a metaheuristic approach
to multiobjective portfolio selection, Ann. Oper. Res., 131(1–4), 79,
2004.

[42] Socha, K. and Dorigo, M., Ant Colony Optimization for Con-
tinuous Domains, European Journal of Operational Research,
doi:10.1016/j.ejor.2006.06.046, in press.

[43] Cung, V.-D., Martins, S.L., Ribeiro, C.C., and Roucairol, C., Strategies
for the parallel implementation of metaheuristics, in Essays and Surveys
in Metaheuristics, Ribeiro, C.C. and Hansen, P., Eds., Operations Re-
search/Computer Science Interfaces, Vol. 15, Kluwer Academic Publishers,
Dordrecht, 2001, chap. 13.

[44] Alba, E., Parallel Metaheuristics. A New Class of Algorithms, Wiley, Cam-
bridge, NJ, 2005.

[45] Randall, M. and Lewis, A., A parallel implementation of ant colony opti-
mization, J. Parallel Distributed Comput., 62(9), 1421, 2002.

IRIDIA – Technical Report Series: TR/IRIDIA/2006-010 19

[46] Merkle, D. and Middendorf, M., Fast ant colony optimization on runtime
reconfigurable processor arrays, Genet. Programming and Evolvable Ma-
chines, 3(4), 345, 2002.

[47] Talbi, E.-G., Roux, O., Fonlupt, C., and Robillard, D., Parallel ant colonies
for combinatorial optimization problems, Proc. 11th IPPS/SPDP’99 Work-
shops held in conjunction with the 13th International Parallel Processing
Symp. and the 10th Symp. on Parallel and Distributed Processing, Springer,
Berlin, 1999, p. 239.

[48] Gambardella, L.M., Taillard, E., and Agazzi, G., MACS-VRPTW: A mul-
tiple Ant Colony System for vehicle routing problems with time windows,
in New Ideas in Optimization, Corne, D., Dorigo, M., and Glover, F., Eds.,
McGraw-Hill, New York, 1999, p. 63.

[49] Rahoual, M., Hadji, R., and Bachelet, V., Parallel Ant System for the set
covering problem, Proc. Ant Algorithms—3rd Int. Workshop, ANTS 2002,
Lecture Notes in Computer Science, Vol. 2463, Springer, Berlin, 2002, p.
262.

[50] Bullnheimer, B., Kotsis, G., and Strauß, G., Parallelization strategies for
the Ant System, Technical report 8, Vienna University of Economics and
Business Administration, Vienna, Austria, 1997.

[51] Stützle, T., Parallelization strategies for ant colony optimization, Proc.
Parallel Problem Solving from Nature—PPSN V: 5th Int. Conf., LNCS,
1498, Springer, Berlin, 1998, p. 722.

[52] Manfrin, M., Birattari, M., Stützle, T., and Dorigo, M., Parallel Ant
Colony Optimization for the Traveling Salesman Problem, Technical re-
port TR/IRIDIA/2006-007, IRIDIA, Université Libre de Bruxelles, Bel-
gium, 2006.

[53] Merkle, D., Middendorf, M., and Schmeck, H., Ant colony optimization for
resource-constrained project scheduling, IEEE Trans. Evol. Comput., 6(4),
333, 2002.

[54] Blum, C., Beam-ACO—Hybridizing ant colony optimization with beam
search: An application to open shop scheduling, Comput. Oper. Res., 32(6),
1565, 2005.

[55] Dorigo, M. and Stützle, T., Ant Colony Optimization, MIT Press, Cam-
bridge, MA, 2004.

