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1 Abstract 1

Figure 1.1: Three autonomous robots build a wall from stigmergic blocks

1 Abstract
In this document, we summarize the hardware implementation of our multi-robot con-
struction system, which consists of stigmergic blocks and autonomous robots (Figure 1.1).
The following sections detail the electronics, software, and mechanical design of these
two components. This document is part of the supplementary material available for [1].
The accompanying videos for this supplementary material can be found online1.

1Website: http://iridia.ulb.ac.be/supp/IridiaSupp2017-004/index.html
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Figure 2.1: Internal view of a stigmergic block

2 Stigmergic Blocks

We have designed the stigmergic blocks to simplify the actuation and sensing require-
ments of the autonomous robots so that we can focus our work on developing decentral-
ized control strategies for multi-robot construction.

In brief, a stigmergic block is an advanced cubic building material capable of compu-
tation, data storage, and communication (Figure 2.1). There are currently two types of
communication used in the proposed construction scenarios. The irst type uses a near
ield communication (NFC) interface to enable robot-to-block communication. The sec-
ond type utilizes LEDs on the faces of a block to enable block-to-robot communication,
which is facilitated by robot vision. The electronics of a block is implemented using
a central circuit board and six face circuit boards. The exterior of a block has a side
length of 55 millimeters and is printed using selective laser sintering.

The simpliication of the actuation and sensing requirements is partially achieved by
attaching the localizable tags presented in [2] to the stigmergic blocks, which enable the
robots to accurately locate a block in an environment. Furthermore, we have added a
freely-rotating, spherical magnet into each corner of a block to enable self-alignment and
to reduce cumulative misalignment during construction. These spherical magnets also
increase the structural integrity of a structure.
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2.1 Electronics
At the core of a stigmergic block is a microcontroller2, which runs a block’s software.
We have mounted the microcontroller on the central circuit board to manage power and
the routing of data between various interfaces.

The microcontroller is programmed with the Optiboot bootloader3, which enables
reprogramming using the microcontroller’s serial port. We have connected the serial
port of the microcontroller to a USB-to-serial converter IC with USB battery charger
detection4. This coniguration allows for recharging, reprogramming, and debugging a
stigmergic block over a single USB connection.

The USB-to-serial converter is conigured over USB to provide control signals for
a power management IC5. These signals inform the power management IC how much
current may safely be drawn from the USB connection. The power management IC
allocates this power to the system and to the attached lithium-ion battery for recharging.
The system power is connected to two switching regulators, which can be switched on/of
using the push button located near the USB port. The irst regulator provides 3.3V for
the digital electronics, while the second regulator provides 5V for the LEDs on the face
circuit boards.

We provide a standard socket for a wireless module6 on the central circuit board.
The purpose of this wireless module is to enable remote debugging and monitoring of a
stigmergic block. This wireless module connects to the microcontroller via a serial port.
As the microcontroller only has one serial port, which is used for reprogramming via USB,
a second serial port is emulated by using the 16-bit timer with the AltSoftwareSerial7
library.

The central circuit board provides six connectors for each of the face circuit boards.
These connectors provide each face circuit board with power, an interrupt line, and an
I2C bus. As the face circuit boards are identical, the I2C bus is segmented so that there
are no address conlicts.

Each face circuit board contains a near ield communication (NFC) transceiver and
an LED driver. The LED driver is used to set the brightness of the red, blue, and green
channels of four multi-color LEDs on a face circuit board. An autonomous robot can
sense the color of these LEDs from a distance while inspecting the containing structure.
The NFC transceiver allows messages to be sent and received wirelessly to nearby robots
or blocks.

2ATMega328P: http://www.atmel.com/devices/atmega328p.aspx
3Optiboot: https://github.com/optiboot/optiboot
4FT231X: http://www.ftdichip.com/products/ics/ft231x.html
5BQ24075: http://www.ti.com/product/bq24075
6Xbee Wireless Modules: https://www.digi.com/lp/xbee
7AltSoftwareSerial: https://github.com/paulstoffregen/altsoftserial
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Figure 2.2: Plot of the attraction force between two spherical magnets

2.2 Mechanical Design
A stigmergic block is assembled from circuit boards, spherical magnets, and covers that
we have printed using selective laser sintering. In this design, we use three types of
covers: a side cover, a top cover, and a bottom cover. A stigmergic block is cubic in
shape and has a side length of 55 millimeters.

Eight spherical neodymium magnets8 are located in the corners of a block and enable
a self-alignment characteristic, which also increases the structural integrity of a structure.
These magnets are six millimeters in diameter and weigh 0.9 grams each. Figure 2.2
shows the attraction force between two of these magnets with respect to the separation
distance.

Figure 2.3 shows the mechanical design of the diferent covers. We have designed
the side covers to be used in an alternating up and down coniguration. The top and
bottom covers have their side cover slots and receptacles at diferent orientations to
accommodate and align with the up and down coniguration of the side covers. The
side covers contain printed springs, which have been orientated so that the adjacent side
covers are held in place using tension. This coniguration provides the stigmergic block
with structural integrity while allowing the top and bottom covers to be easily removed.

The top and bottom covers both contain four small insets for the spherical magnets.
These magnets are held in place using small tabs on the sides of each inset, which allow
a magnet to be inserted into position while remaining free to rotate. In addition, the
top cover contains a small hole located above the power and reset switch on the central
circuit board. This hole provides access to the switch using a small screwdriver.

8Datasheet for the magnets: https://www.supermagnete.de/eng/data_sheet_K-06-C.pdf
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Figure 2.3: Mechanical design of the top (a) and bottom (b) covers and the side cover (c)
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A block consists of four side covers, a top cover, and a bottom cover. To assemble
a block, a face circuit board is attached to each of these covers using the two small
clips. Each side cover and face circuit board assembly is then attached to a central
circuit board by connecting the headers on the face circuit board to the receptacles
on the central circuit board. A small lithium-ion battery is connected to and placed
underneath the central circuit board.

The top and bottom covers both require four spherical magnets to be inserted into
the magnet insets. The face circuit boards in the top and bottom covers connect to the
central circuit board using a cable. After the spherical magnets have been inserted and
the face circuit boards have been connected, the top and bottom covers slide over the
side covers to complete the assembly of a block as visually summarized in Figure 2.4. A
localizable tag is placed on each cover of a block so that it can be seen by an autonomous
robot.

2.3 Software
The microcontroller on the central circuit board contains 32KB of lash memory, 2KB of
SRAM, and 1KB of EEPROM. The lash memory is partitioned to include the Optiboot
bootloader, which enables reprogramming the microcontroller over USB. The bootloader
has been conigured with a baud rate of 57600 and runs following a reset of the micro-
controller. The microcontroller is programmed using AVRDUDE9, which automatically
resets the microcontroller by pulsing the DTR signal, assuming the Arduino proile is
selected.

The irmware for the stigmergic block is written in C++. After the C++ runtime com-
pletes its initialization, the microcontroller enters the main function, where a singleton
instance of a irmware class is created. The constructor for this class initializes several
peripherals such as a timer, controllers for the serial ports, and a controller for the I2C
bus. Following initialization of the peripherals, the microcontroller probes each of its
ports to determine whether a face circuit board is connected.

For each connected face circuit board, the irmware initializes the NFC controller
and the LED driver. Once the irmware has initialized each face circuit board, it enters
and remains in a loop, until an interrupt is received from one of the faces circuit boards.
This interrupt indicates that a robot is trying to communicate with a block using its
NFC interface on one of block’s face circuit boards. Upon receiving a message from a
robot, a block uses the irst byte of this message to conigure the color of its LEDs.

This software is relatively simple with respect to the potential functionality of the
stigmergic block. For instance, we are currently investigating an implementation of a
light-weight pre-emptive operating system for the block. This would enable messages
to be sent and received from diferent faces of a block concurrently, allowing for block-
to-block communication inside a structure. Further work based on this block-to-block
communication may include adding routing protocols, eventually leading to research into
the autonomous construction and maintenance of smart structures.

9AVRDUDE: http://www.nongnu.org/avrdude/
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(a) (b)

(c) (d)

Figure 2.4: The assembly of a stigmergic block: (a) four side covers attach to four face circuit
boards following an alternating up down coniguration, (b) each side cover and
face circuit board assembly connects to the central circuit board, (c) the top and
bottom covers attach to two face circuit boards, (d) the top cover and bottom
cover, including the attached face circuit boards, slide over the side covers of a
block to complete its assembly
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(a) (b)

Figure 3.1: (a) The BeBot mobile robotics platform (b) the upgraded mobile robotics plat-
form with the manipulator

3 Autonomous Robots
The autonomous robots consist of a mobile robotics platform (an upgraded version of
the BeBot [3]) and a manipulator for working with the stigmergic blocks (Figure 3.1).
The mobile robotics platform consists of twelve equally-spaced range inders mounted to
a molded interconnect device (MID) chassis. The range inders connect to a microcon-
troller on the chassis, which samples the sensors and provides access to their readings
over a serial interface. Two motors mounted to the chassis form a diferential drive, al-
lowing the mobile robotics platform to move around its environment. Two circuit boards,
which slot into the chassis, are responsible for routing the power, expansion port signals,
as well as the sensor and actuator signals to a central microprocessor.

Since the microprocessor used in the original mobile robotics platform was inade-
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quate with respect to our computer vision requirements, we have redesigned the two
circuit boards around a later generation microprocessor. To reduce development time
and manufacturing costs, we have used a Duovero Computer-on-Module (COM) from
Gumstix10.

To enable an autonomous robot to assemble stigmergic blocks into a structure, we
have designed a manipulator, which attaches to the top of the mobile robotics platform.
The manipulator controls the vertical position of an end-efector, consisting of four
semi-permanent electromagnets. These electromagnets couple with the freely-rotating,
spherical magnets inside a stigmergic block, holding it in place during transport.

To locate the stigmergic blocks in an environment, the end-efector is equipped with
four range inders and a camera. We have mounted the camera at an angle of 45
degrees from the horizontal. This angle provides a compromise between allowing an
autonomous robots to see a stigmergic block at a distance as well as when it is nearby.
When the end-efector is positioned at its maximum height from the ground (3.5 blocks,
or 19.25 centimeters), the camera can see blocks on the ground up to approximately 35
centimeters away from the center of the robot. When the end-efector is positioned at
its minimum height from the ground (1 block, or 5.5 centimeters), the blocks can be
tracked until they disappear underneath the end-efector.

In the following sections, we provide a detailed overview of the electronics, mechanical
design and software of the autonomous robot.

3.1 Electronics
As shown in Figure 3.2, an autonomous robot consists of six interconnected circuit
boards. Two of these boards belong to the manipulator, while the other four are part of
the mobile robotics platform. Although the camera circuit board is physically connected
to the manipulator, we consider it as part of the mobile robotics platform as this is where
its power, data, and control signals are routed to and from.

There are two microcontrollers on the power circuit board and one on the manipu-
lator circuit board, all of which communicate with a main microprocessor using a serial
interface. This microprocessor runs Linux and is located on the microprocessor circuit
board. The microprocessor is capable of reprogramming the microcontrollers on the
other circuit boards. We have designed this capability to enable the reprogramming of
the attached microcontrollers wirelessly via the microprocessor. This circumvents the
need for physical access to the hardware during an upgrade of the software on a large
group of robots. The camera and interface circuit boards, as well as the MID chassis,
provide access to their sensors and actuators over an I2C interface. We have not designed
these circuit boards to be reprogrammed.

Camera circuit board Computer vision on the autonomous robot is provided using
a dedicated circuit board to support an image sensor module from Leopard Imaging

10Gumstix: https://www.gumstix.com/
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Figure 3.2: Connectivity diagram for the autonomous robot

(Figure 3.3). This image sensor module is based on the OV5640 image sensor from
OmniVision.

The OV5640 image sensor requires a clock signal as well as a digital and an analog
power supply. We satisfy these requirements using a 24 MHz oscillator, and two low-
dropout (LDO) regulators. We have selected LDO regulators to ensure a noise-free
power supply for the image sensor. We have placed four white LEDs around the image
sensor to optionally enhance the illumination of the captured scene.

The pixel data from the image sensor is routed from the camera circuit board to
the microprocessor circuit board using a cable. This cable also provides the camera
circuit board with power and the required control signals over an I2C bus. The I2C bus
connects to the image sensor to control image acquisition, to an LED driver to control
the brightness of the four white LEDs, and to a general purpose input/output (GPIO)
expander to provide the enable and reset signals for the image sensor and its oscillator
and regulators. This level of control is required to correctly power up the image sensor.
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(a) (b)

Figure 3.3: Computer vision hardware for the autonomous robot. (a) A module from Leopard
Imaging containing the OmniVision OV5640 image sensor. (b) A camera circuit
board with an installed module
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Figure 3.4: The microprocessor circuit board for the mobile robotics platform

Microprocessor circuit board Figure 3.4 shows the DuoVero COM attached to the
microprocessor circuit board. The DuoVero COM provides the main microprocessor
for an autonomous robot. This microprocessor runs Linux and has two cores, which
are clocked at 1 GHz and share 1 GB of memory. The DuoVero COM also provides
Bluetooth and facilitates access to a standard wireless network.

The microprocessor on the DuoVero COM provides two camera serial interface (CSI)
ports, which can simultaneously capture video. We have routed both of these ports
to two custom connectors, which can connect to two camera circuit boards. These
connectors are located on the bottom of the microprocessor circuit board near the cut
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Figure 3.5: Image acquisition connectivity diagram

out on the left-hand side (see Figure 3.4). For a use case involving the capture of video
from two identical camera circuit boards, an issue arises due to address conlicts on the
I2C bus. Figure 3.5 shows how we have solved this issue by adding a multiplexer to the
microprocessor circuit board, segmenting the I2C bus. Capturing video over CSI enables
the use of the microprocessor’s dedicated image processing hardware. This hardware can
capture, scale, and compress the video stream from a connected camera. In contrast, a
USB camera requires that most of these operations be performed on the CPU, which
consumes resources that an autonomous robot could otherwise use for computer vision.

To store the captured images from an autonomous robot, we have added an SD card
reader to the microprocessor circuit board. In addition, a standard USB host port is
provided, to which any standard USB device can be connected.

To ease development, an autonomous robot can be connected to a PC via its micro-
USB port. This port is routed to an integrated USB hub, which provides a developer with
low-level access to a robot’s bootloader (via an onboard USB-to-serial converter) and
high-level access to the robot’s operating system by emulating an Ethernet connection
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Figure 3.6: The power circuit board for the mobile robotics platform

over USB On-The-Go (OTG). The integrated USB hub is compliant with the USB
battery charging speciication, enabling the robot to safely draw current from the USB
connection in order to run its system, charge its batteries, or both.

The DuoVero COM on the microprocessor circuit board provides two serial ports.
The irst serial port is used to access the robot’s bootloader and the second serial port
is connected to a socket for a low-power wireless module11. In our design, we require
four further serial connections to communicate with the two microcontrollers on the
power circuit board, the microcontroller on the manipulator circuit board, and one
additional serial connection for an infrared interface, which is used to maintain backward
compatibility with the modules described in [4]. To satisfy this requirement, we include
two I2C to serial bridges in our design, which provide the four serial connections.

For debugging and inter-robot communication, twelve multi-color LEDs are evenly
spaced around the perimeter of the microprocessor circuit board.

Power circuit board The power circuit board hosts two systems: the sensor-actuator
system and the power management system. The sensor-actuator system provides a dif-
ferential drive for the mobile robotics platform. This system contains a microcontroller,
which implements a closed-loop controller for the left and right wheels. Embedded shaft
encoders in the motors enable the microcontroller to measure changes in the position of
the wheels. The target velocity for the closed-loop controller is set by the microprocessor
using a serial interface.

11Xbee Wireless Modules: https://www.digi.com/lp/xbee
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The closed-loop controller for the wheels has an update period of 16.3 milliseconds.
During this period, the rotation of the two wheels is measured using an interrupt routine,
which is triggered on the rising and falling edges of the shaft encoder signals. A timer
overlow interrupt ires at the end of this period, triggering an update of the closed-
loop controller. The closed-loop controller then calculates two output duty cycles to be
applied to the motors over the next period. These duty cycles are used to conigure
the irst timer on the microcontroller to generate two pulse width modulation (PWM)
waveforms. These waveforms are routed to a motor driver, which is connected to the
left and right motors.

The closed-loop controller consists of two PID controllers for the left and right wheels.
The tuning of these controllers is prodominantly integral, due to issues with the mechan-
ical design of the original hardware. As the wheels are directly attached to motor shafts,
the entire weight of the autonomous robot creates a bending moment along the shafts of
the motors, probably interfering with the operation of the internal planetary gearboxes
in the motors. This interference results in unpredictable friction and occasional jamming.
We were only able to partially mitigate these issues by tuning the PID controllers.

In addition to the diferential drive for the mobile robotics platform, the sensor-
actuator system includes a digital gyroscope-accelerometer sensor. The readings of this
sensor are made available to the microprocessor over a serial interface.

The power management system is responsible for routing power and for recharging
the batteries in the mobile robotics platform. The power management is broken down
into two domains: the system power domain and the actuator power domain. Both
of these power domains have their own battery and power management IC (PMIC).
External power can be applied to the mobile robotics platform using either the standard
5.5/2.1 millimeter power jack on the power circuit board or the micro-USB connector
on the microprocessor circuit board. As shown in Figure 3.7, the external power inputs
are connected to the system power management IC, which routes power to the actuator
power management IC.

The software controlling the power management system is implemented on a mi-
crocontroller. This software conigures the integrated USB hub on the microprocessor
circuit board and reads the result from the USB hub’s battery charger detection cir-
cuitry. The software on the microcontroller allocates the power to the mobile robotics
platform according to the following prioritized list:

1. system power (if switched on)
2. actuator power (if switched on)
3. system battery (if battery is low)
4. actuator battery (if battery is low)

For each above use of power, the microcontroller subtracts the required amount of
power for that use from the remaining available power, which is initially calculated from
the input power to the system. As the batteries can be recharged at diferent rates, the
software sets the recharge rate with respect to the remaining available power.



3 Autonomous Robots 15

Microprocessor circuit board

Power circuit board

Data
Power

USB port

ControlData
Power

USB hub

Control

Microcontroller

Power

Adapter

ControlPower
Power Power

Power

System PMIC

Control
Power

Power

Actuator PMIC

Power

System battery

Power

Actuator battery
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Manipulator The manipulator adjusts the height of the stigmergic blocks by raising
and lowering its end-efector. The height of the end-efector is controlled using a stepper
motor and is constrained by two limit switches at the top and bottom of the manipula-
tor. These limit switches trigger as the end-efector starts to move out of range. Four
semi-permanent electromagnets are located in the end-efector, which couple with the
spherical magnets in a stigmergic block. Depending on the direction of a current applied
to the semi-permanent electromagnets, the magnet ield can be either strengthened or
weakened. This current is generated by precharging four 6.8 millifarad capacitors to
25 volts. The direction of the current is controlled using a H-bridge. An autonomous
robot strengthens the magnetic ield during block attachment. This strengthening of
the ield improves the alignment of the stigmergic block with the end-efector prior to
the attachment. An autonomous robot weakens the magnetic ield in order to detach a
block and assemble it into a structure.

In addition, the electronics for the manipulator consists of two circuit boards. A
main circuit board (Figure 3.8) and an interface circuit board (Figure 3.9).

The main circuit board contains a microcontroller, which executes the manipulator’s
software and communicates with the microprocessor on the mobile robotics platform
using a serial connection. This serial connection is multiplexed with a USB-to-serial
converter. When a USB cable is attached, the serial connection is rerouted over the
USB connection to a development PC, which can be used for debugging and upgrading
the manipulator’s software. The USB-to-serial converter also implements battery charger
detection, which conigures a power management IC. The manipulator contains its own
battery and is charged over the USB connection.
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Figure 3.9: Interface circuit board of the manipulator attached to the end-efector

The interface circuit board contains an NFC transceiver for communicating with a
stigmergic block. Two rangeinders are mounted directly to the interface circuit board,
which an autonomous robot uses during alignment with a block or with a structure.
The interface circuit board also provides two connectors for two additional range inders
which are connected to the end-efector.

The software on the microcontroller samples the rangeinders, implements a controller
for the NFC transceiver, and regulates the precharging of the capacitors as well as
the coniguration of the semi-permanent electromagnet H-bridge. The software on the
microcontroller also implements an open-loop controller for the height of the end-efector.
This controller performs self-calibration of the end-efector, regulates the position of the
end-efector, and monitors the state of the limit switches.

3.2 Mechanical Design
The autonomous robot consists of the mobile robotics platform and a manipulator, which
is mounted on top of the platform. Two motors in the mobile robotics platform constitute
a diferential drive, allowing the robot to move around its environment. The footprint of
the mobile robotics platform is a square with a side length of 9 centimeters. The height
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Figure 3.10: Component diagram for the manipulator base

of the platform is 7 centimeters.
The manipulator is 30 centimeters tall, and once mounted on top of the mobile

robotics platform, gives the autonomous robot an overall height of 37 centimeters. Fig-
ure 3.10 shows the base of the manipulator, which is printed from a clear photopolymer
resin using stereolithography. A stepper motor is attached to the base using four screws.
The motor’s shaft is supported by a bearing and drives a worm gear. This worm gear
interfaces a pinion, which rotates the lower shaft, driving two sprockets. These sprock-
ets are connected to chains which provide the upwards and downwards motion required
by the end-efector. The shafts, bearings, worm gear, pinion, and sprockets are all
of-the-shelf components, which have been sourced from Vex Robotics12.

Figure 3.11 shows two chains running from the bottom sprockets to two upper sprock-
ets, which are suspended by two upper shafts and four bearings. These chains attach
directly to the end-efector to change the end-efector’s height. To balance the load on
the chain, two lead counterweights attach to the chain, opposite the end-efector. To-
gether with the weight from the stepper motor, the weight of the counterweights balances
the weight of the electromagnets at the front of the autonomous robot.

The electromagnets, counterweights, sprockets and bearings are of-the-shelf compo-
nents. The remaining structural components have been printed using either a gray or
a clear photopolymer resin using stereolithography. Figure 3.12 shows an example part
from the manipulator, which we have printed using this technique. The part is the top
of the manipulator structure, which aligns the manipulator’s columns and supports the
bearings for the upper shafts. To prepare this part for use, the support material must
be removed. To improve functionality and aesthetics, it is necessary to inish the parts
with sandpaper and a polish for plastic surfaces.

12Vex Robotics: http://www.vexrobotics.com/
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Figure 3.12: An example of a component for the manipulator printed using stereolithography

3.3 Software
Operating system The microprocessor in the mobile robotics platform runs a cus-
tom variant of the Linux operating system. This custom variant of Linux is downloaded,
conigured, and compiled by the Yocto build system13. The build system uses recipes,
which describe the numerous tasks required to prepare a bootable image for an embed-
ded system. These tasks may include fetching software from a version control system,
applying local patches, as well as compiling and installing the software into the target
root ile system.

The image for the mobile robotics platform is based on the Gumstix console image14,
which provides a basic coniguration of the Linux operating system for the microproces-
sor. This coniguration includes a shell, utilities, and tools for networking and system
coniguration. We have enhanced this image to support the hardware on the mobile
robotics platform by coniguring the Linux kernel and adding additional software pack-
ages.

We have selected the hardware for the mobile robotics platform with respect to
the availability of drivers in the Linux kernel mainline. These drivers are considered
to be stable and are well maintained by the Linux community. Furthermore, we have
selected hardware for which device tree bindings already exist15. This choice of hardware
signiicantly simpliies the process of coniguring Linux for the mobile robotics platform.

We have, however, encountered a bug in the Linux kernel, which prevents the clocks

13Yocto Project: https://www.yoctoproject.org/
14Gumstix Developer Center: http://gumstix.org/
15The Devicetree Speciication: https://www.devicetree.org/
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of peripheral devices from being detected in the device tree. This bug is ixed in a
later version of the Linux kernel (4.1), which, however, had an issue with the power
management of the microprocessor’s imaging subsystem. During the coniguration of
the Linux kernel for the mobile robotics platform, we also found an issue with enable
signals for peripheral clocks connected to I2C GPIO expanders. This coniguration
generates kernel warnings due to the latencies involved with enabling a clock over an
I2C bus. To resolve these issues in a timely manner, we have used an older version of
the Linux kernel (3.17) that supports the imaging subsystem. To work around the clock
issues, we have patched the drivers to enable their clocks using the Linux GPIO interface
and hard coded the respective clock frequencies into the drivers.

Although the driver used for the microprocessor’s imaging subsystem is in the Linux
kernel mainline, it is part of the staging directory and its quality is not guaranteed.
Furthermore, the driver for the robot’s camera is out-of-tree and is unmaintained by
the Linux community. These drivers required patching before they would work on the
mobile robotics platform.

We enhanced the Gumstix console image with additional software packages to sup-
port our application. For example, we have included tools for capturing and working
with images from the robot camera such as media-ctl16, yavta17, and OpenCV18. We
have added a recipe to compile and install the detector from the AprilTags visual idu-
cial system as a shared library (see [2]). We have also created a test application called
blocktracker, an executable which conigures the autonomous robot and runs test rou-
tines. We have extended the blocktracker test application to implement the hardware
experiments presented in this work.

Blocktracker The behavior of the autonomous robot is implemented by the block-
tracker executable, which is written in C++ and built using CMake19. The executable
has four main components: a packet control interface, an image processing pipeline, a
inite state machine, and a control loop.

The microcontrollers on the manipulator and power circuit boards communicate
with the microprocessor using a packet control interface. We have designed this inter-
face to support multi-byte commands. The packet control interface also checksums the
commands and validates their length. Figure 3.13 shows an example command, which
queries the battery voltage on a remote microcontroller. A valid command always starts
with a two-byte preamble and ends with a two-byte postamble. We have selected the
values of these bytes due to their visibility on an oscilloscope. As the example command
has no arguments, its length ield is zero. For commands which do have arguments,
the length ield is nonzero and the bytes for the arguments are inserted between the
length and checksum ields. In this case, the checksum ield represents the summation
of the bytes of the arguments. Incoming bytes are stored in a bufer and searched for

16Media-ctl: https://git.linuxtv.org/v4l-utils.git/tree/utils/media-ctl
17Yavta: http://git.ideasonboard.org/yavta.git/tree
18OpenCV: http://opencv.org/
19CMake: https://cmake.org/
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F0 CA 01 00 00 53 0F

Preamble PostambleChecksumType Length

Figure 3.13: An example command for the packet control interface

valid commands using a specialized state machine. If the bufer overlows or an invalid
command is detected, the state machine searches for the next preamble, lushing out
any data found before it.

The image processing pipeline is broken down into an asynchronous component and
a synchronous component. The implementation of the asynchronous component was
motivated due to an earlier implementation, where the microprocessor wasted signiicant
processing time, waiting for the microcontrollers on the manipulator and power circuit
boards to respond to commands. The asynchronous component of the pipeline enables
the microprocessor to capture and process images from the camera while waiting for the
microcontrollers to respond. The asynchronous component of the pipeline is built on
top of the concurrency extensions to the C++ standard library20. The implementation
of the asynchronous component deines an operation class, which contains an operation
method, a management thread, a queue of image bufers to be processed, and a pointer to
the next operation. When an operation is enabled, its management thread inspects the
queue of image bufers every ive milliseconds. If an image bufer is found in the queue,
the queue is temporarily locked and the image bufer is extracted for processing. Once
processing is complete, the operation attempts to lock the queue of the next operation as
deined by its next pointer. Once this queue is locked, the operation moves the processed
bufer into the next operations queue.

The operation class is specialized to perform the following functions: (i) to capture
a frame from the camera, (ii) to stream a frame over a wireless network, (iii) to save
a frame to local memory, (iv) to detect the stigmergic blocks in a frame, and (v) to
annotate a frame with the output from the detection operation. Upon initialization of
the pipeline, we create four image bufers and enqueue them inside the capture operation.
The operations are connected in a loop so that the image bufers are recycled and
dynamic memory allocation is not required while the pipeline is running.

The stigmergic block detection operation uses the detector from the AprilTags visual
iducial system to ind the tags on the stigmergic blocks. This operation also samples
the colors of the LEDs on a stigmergic block, which are used for block-to-robot commu-
nication. As the images from the microprocessor’s imaging subsystem are in the YUV
format, we have selected four LED colors with respect to the four quadrants of the UV
color space (Figure 3.14). This selection of colors from the UV color space avoids the
requirement of performing a color space conversion.

20Concurrency extensions in C++: https://isocpp.org/wiki/faq/cpp11-library-concurrency
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Figure 3.14: The YUV color space with Y = 0.5, showing the four colors used to represent
diferent types of blocks

The stigmergic block detection operation maintains a queue of its detections from the
processed frames. This queue is lockable and accessible from the synchronous component
of the image processing pipeline, which is executed in the control loop. The synchronous
component of the image processing pipeline tracks stigmergic blocks using the Hungarian
algorithm with a modiied cost matrix, which accommodates new and lost blocks [5]. The
tracked blocks are clustered into structures by comparing the distance between any two
blocks with a threshold. The results of the image processing pipeline are then available
to the inite state machine.

We have developed a state machine library for implementing the behavior of an
autonomous robot. The motivation for developing this library (as opposed to using a
pre-existing library) was to take advantage of the features in C++11 to create a state
machine library that supported reusable sub-states while being compact and easy to read.
An example instantiation of a state machine using this library is shown in Listing 3.1.
This example demonstrates how classes inherited from the CState class can be composed
and customized to implement arbitrary behavior. For instance, the class CStatePrint
inherits from CState to deine a state that writes the contents of a std::string to a
std::ostream. Line 25 of the example shows how the class CStatePrint is conigured
using its constructor via the templated AddState method. The AddState method uses
the perfect forwarding and variadic template mechanisms of C++11 to automatically
insert the parent pointer as the second argument to the CStatePrint constructor. The
class CStateFooBar demonstrates how the CStatePrint class is composed using the
initialization list and how the transitions are deined in the constructor body to create the
inite state machine shown in Figure 3.15, which writes the string “foobar” to std::cout
and exits.
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1 #include <iostream >
2

3 #include "state.h"
4

5 class CStatePrint : public CState {
6 public:
7 CStatePrint(const std::string& str_id,
8 CState* pc_parent ,
9 std::ostream& c_device ,

10 const std::string& str_data) :
11 /* init the base class id and function with a lambda */
12 CState(str_id, pc_parent , [this, &c_device] {
13 c_device << m_strData;
14 }),
15 m_strData(str_data) {
16 }
17 std::string m_strData;
18 };
19

20 class CStateFooBar : public CState {
21 public:
22 CStateFooBar(const std::string& str_id, CState* pc_parent = nullptr) :
23 CState(str_id, pc_parent , nullptr, CState::TVector {
24 /* add states */
25 AddState <CStatePrint >("print_foo", std::cout, "foo"),
26 AddState <CState >("print_bar", nullptr, CState::TVector {
27 /* add sub-states */
28 AddState<CStatePrint >("print_b", std::cout, "b"),
29 AddState<CStatePrint >("print_a", std::cout, "a"),
30 AddState<CStatePrint >("print_r", std::cout, "r"),
31 }),
32 }) {
33 /* declare state transitions */
34 AddTransition("print_foo","print_bar");
35 AddExitTransition("print_bar");
36 /* declare sub-state transitions */
37 GetState("print_bar").AddTransition("print_b","print_a");
38 GetState("print_bar").AddTransition("print_a","print_r");
39 GetState("print_bar").AddExitTransition("print_r");
40 }
41 };
42

43 int main(int argc, char* args[]) {
44 /* instansiate state machine */
45 CStateFooBar cStateFooBar("fsm");
46 /* run until exit transition */
47 for(;;) {
48 if(cStateFooBar.Step() != false) {
49 break;
50 }
51 }
52 return 0;
53 }

Listing 3.1: Example instantiation of a inite state machine that writes the string “foobar”
to std::cout and exits
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Figure 3.15: The inite state machine CStateFooBar as produced by the code in Listing 3.1

The blocktracker executable starts with an initialization routine, which connects to
the remote microcontrollers on the power and manipulator circuit boards and checks if
they are responding to commands using the packet control interface. The initialization
routine then conigures the microprocessors imaging subsystem as well as the camera,
before initializing the image processing pipeline.

The blocktracker executable then enters the exec method. This method starts by
enabling the actuator power domain and the diferential drive system. The method then
requests the manipulator to perform its self-calibration routine. After the calibration
is complete, the exec method enters the control loop, which samples an autonomous
robot’s sensors, steps its behavioral state machine, and updates its actuators. The
control loop continues until the behavioral state machine exits. The image processing
pipeline is the largest bottleneck in the control loop and limits the update period to
approximately 160 milliseconds in good lighting conditions. To keep the update period
for the high-level closed-loop controllers constant, we lengthen the update period so that
it always lasts 200 milliseconds.

Figure 3.16 shows the base behavioral state machine for an autonomous robot. The
state machine starts with an autonomous robot searching its environment for unused
blocks. Once an unused block is found, the robot picks it up and begins to search the
environment for a partially-built structure. When such a structure is found, the robot
inspects it to determine if a pattern of blocks with an associated construction action
can be found. If such a pattern is found, the robot performs the construction action.
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Figure 3.16: The base behavioral state machine for an autonomous robot

Otherwise, the robot continues searching for another partially-built structure. Patterns
are deined by matching a set of conditions, which are expressed in terms of the structural
arrangement of the stigmergic blocks and their LED markings.
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4 Conclusion
This document has summarized the electronics, mechanical design, and software of the
stigmergic block and the autonomous robot used in our multi-robot construction system.
For demonstrations of how this hardware is used to enable multi-robot construction, we
refer the reader to the main article [1] and its accompanying videos, which can be found
online21.
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