
The irace Package: User Guide

M. López-Ibáñez, L. Pérez Cáceres, J.
Dubois-Lacoste, T. Stützle, and M. Birattari

IRIDIA – Technical Report Series

Technical Report No.

TR/IRIDIA/2016-004

May 2016
Last revision: October 2016

IRIDIA – Technical Report Series
ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Université Libre de Bruxelles
Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2016-004

Revision history:

TR/IRIDIA/2016-004.001 May 2016
TR/IRIDIA/2016-004.002 October 2016

The information provided is the sole responsibility of the authors and does not necessarily
reflect the opinion of the members of IRIDIA. The authors take full responsibility for
any copyright breaches that may result from publication of this paper in the IRIDIA –
Technical Report Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.

The irace Package: User Guide

Manuel López-Ibáñez, Leslie Pérez Cáceres, Jérémie Dubois-Lacoste,
Thomas Stützle and Mauro Birattari

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium

October 11, 2016

Contents
1 General information 4

1.1 Background . 4
1.2 Version . 4
1.3 License . 4

2 Before starting 4

3 Installation 5
3.1 System requirements . 5
3.2 irace installation . 5

3.2.1 Install automatically within R . 6
3.2.2 Manual download and installation . 6
3.2.3 Local installation . 6
3.2.4 Testing the installation and invoking irace 7

4 Running irace 8
4.1 Step-by-step setup guide . 9
4.2 Set-up example for ACOTSP . 12

5 Defining a configuration scenario 13
5.1 Target algorithm parameters . 13

5.1.1 Parameter types . 13
5.1.2 Parameter domains . 14
5.1.3 Conditional parameters . 14
5.1.4 Parameter file format . 14
5.1.5 Parameters R format . 15

5.2 Target algorithm runner . 17
5.2.1 Target runner executable program . 17
5.2.2 Target runner R function . 18

5.3 Target evaluator . 19
5.3.1 Target evaluator executable program . 20
5.3.2 Target evaluator R function . 20

5.4 Training instances . 20

1

5.5 Initial configurations . 22
5.6 Forbidden configurations . 22

6 Parallelization 23

7 Testing of configurations 24

8 Recovering irace runs 25

9 Output and results 25
9.1 Text output . 25
9.2 Data file output . 28
9.3 Analysis of results . 33

10 Advanced topics 36
10.1 Tuning budget . 36
10.2 Multi-objective tuning . 37
10.3 Tuning for minimizing computation time . 37
10.4 Heterogeneous scenarios . 38
10.5 Choosing the statistical test . 38
10.6 Complex parameters . 39
10.7 Unreliable target algorithms . 40

11 List of command-line and scenario options 40
11.1 General options . 40
11.2 Elitist irace . 41
11.3 Internal irace options . 42
11.4 Target algorithm parameters . 43
11.5 Target algorithm execution . 43
11.6 Initial configurations . 44
11.7 Training instances . 44
11.8 Tuning budget . 44
11.9 Statistical test . 45
11.10 Recovery . 45
11.11 Testing . 45

12 FAQ 46
12.1 Is irace minimizing or maximizing the output of my algorithm? 46
12.2 Is it possible to configure a MATLAB algorithm with irace? 46
12.3 My program works perfectly on its own, but not when running under irace. Is

irace broken? . 46
12.4 My program may be buggy and run into an infinite loop. Is it possible to set a

maximum timeout? . 46
12.5 When using the mpi option, irace is aborted with an error message indicating

that a function is not defined. How to fix this? 47
12.6 Error: 4 arguments passed to .Internal(nchar) which requires 3 47

13 Resources and contact information 47

14 Acknowledgements 48

2

References 48

Appendix A R installation 49
A.1 GNU/Linux . 49
A.2 OS X . 49
A.3 Windows . 49

Appendix B targetRunner script check list 49

Appendix C Glossary 51

Appendix D NEWS 52

3

1 General information

1.1 Background
The irace package implements an iterated racing procedure, which is an extension of Iterated
F-race (I/F-Race) [1]. The main use of irace is the automatic configuration of optimization
and decision algorithms, that is, finding the most appropriate settings of an algorithm given
a set of instances of a problem. However, it may also be useful for configuring other types of
algorithms when performance depends on the used parameter settings. It builds upon the race
package by Birattari and it is implemented in R. The irace package is available from CRAN.
More information about irace is available at http://iridia.ulb.ac.be/irace.

1.2 Version
The current version of the irace package is 2.0. Previous versions of the package can be found in
the CRAN website.

https://cran.r-project.org/web/packages/irace/

Previous versions of irace might not be compatible with the file formats detailed in this
document.

See the technical report [3] for details of the previous implementation of irace.

1.3 License
The irace package is Copyright © 2016 and distributed under the GNU General Public License
version 3.0 (http://www.gnu.org/licenses/gpl-3.0.en.html). The irace package is free soft-
ware (software libre): you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

The irace package is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE.

Please be aware that the fact that this program is released as Free Software does not excuse
you from scientific propriety, which obligates you to give appropriate credit! If you write a
scientific paper describing research that made substantive use of this program, it is your obligation
as a scientist to (a) mention the fashion in which this software was used in the Methods section;
(b) mention the algorithm in the References section. The appropriate citation is:

Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Thomas Stützle, and
Mauro Birattari. The irace package: Iterated Racing for Automatic Algorithm Configu-
ration. Operations Research Perspectives, 2016. doi: 10.1016/j.orp.2016.09.002

2 Before starting
The irace package provides an automatic configuration tool for tuning optimization algorithms,
that is, automatically finding good configurations for the parameters values of a (target) algo-
rithm saving the effort that normally requires manual tuning.

4

Training
instances

Parameter
space

Configuration
scenario

targetRunner

calls with θ,i returns c(θ,i)
iraceirace

Figure 1: Scheme of irace flow of information.

Figure 1 gives a general scheme of how irace works. Irace receives as input a parameter
space definition corresponding to the parameters of the target algorithm that will be tuned, a
set of instances for which the parameters must be tuned for and a set of options for irace that
define the configuration scenario. Then, irace searches in the parameter search space for good
performing algorithm configurations by executing the target algorithm on different instances
and with different parameter configurations. A targetRunner must be provided to execute the
target algorithm with a specific parameter configuration (θ) and instance (i). The targetRunner
function (or program) acts as an interface between the execution of the target algorithm and
irace: It receives the instance and configuration as arguments and must return the evaluation of
the execution of the target algorithm.

The following user guide contains guidelines for installing irace, defining configuration sce-
narios, and using irace to automatically configure your algorithms.

3 Installation

3.1 System requirements
• R (version ≥ 2.15) is required for running irace, but you don’t need to know the R language

to use it. R is freely available and you can download it from the R project website (http:
//www.r-project.org). See Appendix A for a quick installation guide of R.

• For GNU/Linux and OS X, the command-line executables irace and parallel-irace require
GNU Bash. There is also a irace.bat for Windows. Individual examples may require
additional software.

3.2 irace installation
The irace package can be installed automatically within R or by manual download and installa-
tion. We advise to use the automatic installation unless particular circumstances do not allow
it. The instructions to install irace with the two mentioned methods are the following:

5

3.2.1 Install automatically within R

Execute the following line in the R console to install the package:

install.packages("irace")

Select a mirror close to your location, and test the installation in the R console with:

library("irace")
q() # To exit R

Alternatively, within the R graphical interface, you may use the Packages and data->Package
installer menu on OS X or the Packages menu on Windows.

3.2.2 Manual download and installation

From the irace package CRAN website (https://cran.r-project.org/package=irace), down-
load one of the three versions available depending on your operating system:

• irace_2.0.tar.gz (Unix/BSD/GNU/Linux)

• irace_2.0.tgz (OS X)

• irace_2.0.zip (Windows)

To install the package on GNU/Linux and OS X, you must execute the following command
at the shell:

Replace <package> with the path to the downloaded file.
R CMD INSTALL <package>

To install the package on Windows, open R and execute the following line on the R console:

Replace <package> with the path to the downloaded file.
install.packages("<package>", repos = NULL)

If the previous installation instructions fail because of insufficient permissions and you do
not have sufficient admin rights to install irace system-wide, then you need to force a local
installation.

3.2.3 Local installation

Let’s assume you wish to install irace on a path denoted by <R_LIBS_USER>, which is a filesystem
path for which you have sufficient rights. This directory must exist before attempting the
installation. Moreover, you must provide to R the path to this library when loading the package.
However, the latter can be avoided by adding the path to the system variable R_LIBS or to the
R internal variable .libPaths, as we will see below.1

On GNU/Linux or OS X, execute the following commands to install the package on a local
directory:

1On Windows, see also https://cran.r-project.org/bin/windows/base/rw-FAQ.html#I-don_0027t-have-
permission-to-write-to-the-R_002d3_002e3_002e1_005clibrary-directory.

6

export R_LIBS_USER="<R_LIBS_USER>"
Create R_LIBS_USER if it doesn't exist
mkdir $R_LIBS_USER
Replace <package> with the path to the downloaded file.
R CMD INSTALL --library=$R_LIBS_USER <package>
Tell R where to find R_LIBS_USER
export R_LIBS=${R_LIBS_USER}:${R_LIBS}

On Windows, you can install the package on a local directory by executing the following lines
in the R console:

Replace <package> with the path to the downloaded file.
Replace <R_LIBS_USER> with the path used for installation.
install.packages("<package>", repos = NULL, lib = "<R_LIBS_USER>")
Tell R where to find R_LIBS_USER.
This must be executed for every new session.
.libPaths(c("<R_LIBS_USER>", .libPaths()))

3.2.4 Testing the installation and invoking irace

Once irace has been installed, load the package and test that the installation was successful by
opening an R console and executing:

Load the package
library("irace")
Obtain the installation path
system.file(package = "irace")

The last command must print out the filesystem path where irace is installed. In the remain-
der of this guide, the variable $IRACE_HOME is used to denote this path. When executing any
provided command that includes the $IRACE_HOME variable do not forget to replace this variable
with the installation path of irace.

On GNU/Linux or OS X, you can let the operating system know where to find irace by
defining the $IRACE_HOME variable and adding it to the system PATH. Append the following
commands to ~/.bash_profile, ~/.bashrc or ~/.profile:

Replace <IRACE_HOME> with the irace installation path
export IRACE_HOME=<IRACE_HOME>
export PATH=${IRACE_HOME}/bin/:$PATH
Tell R where to find R_LIBS_USER
Use the following line only if local installation was forced
export R_LIBS=${R_LIBS_USER}:${R_LIBS}

Then, open a new terminal and launch irace as follows:

irace --help

On Windows, you need to add both R and the installation path of irace to the environment
variable PATH. To edit the PATH, search for “Environment variables” in the control panel, edit PATH
and add a string similar to C:\R_PATH\bin;C:\IRACE_HOME\bin where R_PATH is the installation

7

path of R and IRACE_HOME is the installation path of irace. If irace was installed locally, you also
need to edit the environment variable R_LIBS to add R_LIBS_USER. Then, open a new terminal
(run program cmd.exe) and launch irace as:

irace.bat --help

Alternatively, you may directly invoke irace from within the R console by executing:

library("irace")
irace.cmdline("--help")

4 Running irace
Before performing the tuning of your algorithm, it is necessary to define a tuning scenario that
will give irace all the necessary information to optimize the parameters of the algorithm. The
tuning scenario is composed of the following elements:

1. Target algorithm parameter description (see Section 5.1).

2. Target algorithm runner (see Section 5.2).

3. Training instances list (see Section 5.4)

4. irace options (see Section 11).

5. Optional: Initial configurations (see Section 5.5).

6. Optional: Forbidden configurations (see Section 5.6).

7. Optional: Target algorithm evaluator (see Section 5.3).

These scenario elements can be provided as plain text files or as R objects. This user guide
provides examples of both types, but we advise the use of plain text files, which we consider the
simpler option.

For a step-by-step guide to create the scenario elements for your target algorithm continue
to Section 4.1. For an example execution of irace using the ACOTSP scenario go to Section 4.2.

Once all the scenario elements are prepared you can execute irace, either using the command-
line wrappers provided by the package or directly from the R console:

• Execute irace from the command-line as (on Windows, you should execute irace.bat):

$IRACE_HOME is the installation directory of irace.
$IRACE_HOME/bin/irace --scenario scenario.txt

For this example we assume that the needed scenario files have been set properly in the
scenario.txt file using the options described in Section 11. Most irace options can be
specified in the command line or directly in the scenario.txt file.

• Or execute irace from the R console as:

8

library("irace")
parameters <- readParameters("parameters.txt")
scenario <- readScenario(filename = "scenario.txt",

scenario = defaultScenario())
irace(scenario = scenario, parameters = parameters)

The irace executable provides an option (--check) to check that the scenario is correctly
defined. We recommend to perform a check every time you create a new scenario. When
performing the check, irace will verify that the scenario and parameter definitions are correct
and will test the execution of the target algorithm. To check your scenario execute the following
commands:

• From the command-line (on Windows, execute irace.bat):

$IRACE_HOME is the installation directory of irace.
$IRACE_HOME/bin/irace --scenario scenario.txt --check

• Or from the R console:

library("irace")
parameters <- readParameters("parameters.txt")
scenario <- readScenario(filename = "scenario.txt",

scenario = defaultScenario())
checkIraceScenario(scenario = scenario, parameters = parameters)

4.1 Step-by-step setup guide
This section provides a guide to setup a basic execution of irace. The template files provided
in the package ($IRACE_HOME/templates) will be used as basis for creating your new scenario.
Please follow carefully the indications provided in each step and in the template files used; if you
have doubts check the the sections that describe each option in detail.

1. Create a directory (e.g., ~/tuning/) for the scenario setup. This directory will contain all
the files that describe the scenario. On GNU/Linux or OS X, you can do this as follows:

mkdir ~/tuning
cd ~/tuning

2. Copy all the template files from the $IRACE_HOME/templates/ directory to the scenario
directory.

$IRACE_HOME is the installation directory of irace.
cp $IRACE_HOME/templates/*.tmpl ~/tuning/

Remember that $IRACE_HOME is the path to the installation directory of irace. It can be
obtained in the R console with:

9

library("irace")
system.file(package = "irace")

3. For each template in your tuning directory, remove the .tmpl suffix, and modify them
following the next steps.

4. Define the target algorithm parameters to be tuned by following the instructions in parameters.txt.
Available parameter types and other guidelines can be found in Section 5.1.

5. Optional : Define the initial parameter configuration(s) of your algorithm, which allows you
to provide good starting configurations (if you know some) for the tuning. Follow the in-
structions in configurations.txt and set configurationsFile="configurations.txt"
in scenario.txt. More information in Section 5.5. If you do not need to define initial
configurations remove this file from the directory.

6. Optional : Define forbidden parameter value combinations, that is, configurations that irace
must not consider in the tuning. Follow the instructions in forbidden.txt and update
scenario.txt with forbiddenFile = "forbidden.txt". More information about forbidden
configurations in Section 5.6. If you do not need to define forbidden configurations remove
this file from the directory.

7. Place the instances you would like to use for the tuning of your algorithm in the folder
~/tuning/Instances/. In addition, you can create a file (e.g., instances-list.txt) that
specifies which instances from that directory should be run and which instance-specific pa-
rameters to use. To use such an instance file, set the appropriate option in scenario.txt,
e.g., trainInstancesFile = "instances-list.txt". See Section 5.4 for guidelines.

8. Uncomment and assign in scenario.txt only the options for which you need a value different
from the default. Some common parameters that you might want to adjust are:

execDir (--exec-dir): the directory in which irace will execute the target algorithm; the
default value is the current directory.

maxExperiments (--max-experiments): the maximum number of executions of the target
algorithm that irace will perform.

maxTime (--max-time): the total maximum execution time of the target algorithm. Note
that you must provide either maxTime or maxExperiments.

For setting the tuning budget see Section 10.1. For more information on irace options and
their default values, see Section 11.

9. Modify the target-runner script to run your algorithm. This script must execute your
algorithm with the parameters and instance specified by irace and return the evaluation of
the execution and optionally the execution time (cost [time]). When the maxTime option
is used, returning time is mandatory. The target-runner template is written in GNU
Bash scripting language, which can be executed easily in GNU/Linux and OS X systems.
However, you may use any other programming language. As an example, we provide a
Python example in the directory $IRACE_HOME/examples/python. Follow these instructions
to adjust the given target-runner template to your algorithm:

(a) Set the EXE variable with the path to the executable of the target algorithm.

10

(b) Set the FIXED_PARAMS if you need extra arguments in the execution line of your algo-
rithm. An example could be the time that your algorithm is required to run (FIXED_PARAMS
="--time 60") or the number of evaluations required (FIXED_PARAMS="--evaluations
10000").

(c) The line provided in the template executes the executable described in the EXE variable.

$EXE ${FIXED_PARAMS} -i ${INSTANCE} --seed ${SEED} ${CONFIG_PARAMS}

You must change this line according to the way your algorithm is executed. In this
example, the algorithm receives the instance to solve with the flag -i and the seed of
the random number generator with the flag --seed. The variable CONFIG_PARAMS adds
to the command line the parameters that irace has given for the execution. You must
set the command line execution as needed. For example, the instance might not need
a flag and might need to be the first argument:

$EXE ${INSTANCE} ${FIXED_PARAMS} --seed ${SEED} ${CONFIG_PARAMS}

The output of your algorithm is saved to the file defined in the $STDOUT variable, and
error output is saved in the file given by $STDERR. The line:

if [-s "$STDOUT"]; then

checks if the file containing the output of your algorithm is not empty. The example
provided in the template assumes that your algorithm prints in the last output line the
best result found (only a number). The line:

COST=$(cat ${STDOUT} | grep -e 'ˆ[[:space:]]*[+-]\?[0-9]' | cut -f1)

parses the output of your algorithm to obtain the result from the last line. The
target-runner script must return only one number. In the template example, the
result is returned with echo "$COST" (assuming maxExperiments is used) and the
used files are deleted.

The target-runner script must be executable.

You can test the target runner from the R console by checking the scenario as explained
earlier in Section 4.
If you have problems related to the target-runner script when executing irace, see
Appendix B for a check list to help diagnose common problems. For more information
about the targetRunner, please see Section 5.2,

10. Optional : Modify the target-evaluator file. This is rarely needed and the target-runner
template does not use it. Section 5.3 explains when a targetEvaluator is needed and how
to define it.

Once the files have been prepared, you can execute irace using the command-line or directly
from the R console:

• On the console, call the command:

cd ~/tuning/
$IRACE_HOME/bin/irace

11

• On the R console, open an R console and execute:

library("irace")
Go to the directory containing the scenario files
setwd("~/tuning")
Create the R objects scenario and parameters
parameters <- readParameters("parameters.txt")
scenario <- readScenario(filename = "scenario.txt",

scenario = defaultScenario())
irace(scenario = scenario, parameters = parameters)

This will perform one run of irace. See the output of irace --help in the command-line or
irace.usage() in R for quick information on additional irace parameters. For more information
about irace options, see Section 11.

Command-line options override the same options specified in the scenario.txt file.

4.2 Set-up example for ACOTSP
The ACOTSP tuning example can be found in the package installation:

$IRACE_HOME/examples/acotsp

Additionally, a number of example scenarios can be found in the examples folder. More examples
of tuning scenarios can be found in the Algorithm Configuration Library (AClib):

http://www.aclib.net/

In this section, we describe how to execute the ACOTSP scenario. If you wish to start setting
up your own scenario, continue to the next section. For this example, we assume a GNU/Linux
system but making the necessary changes in the commands and targetRunner, it can be executed
in any system that has a C compiler. To execute this scenario follow the steps described in the
following:

1. Create a directory for the tuning (e.g., ~/tuning/) and copy the example scenario files
located in the examples folder to the created directory:

mkdir ~/tuning
cd ~/tuning
$IRACE_HOME is the installation directory of irace.
cp $IRACE_HOME/examples/acotsp/* ~/tuning/

2. Download the training instances from http://iridia.ulb.ac.be/irace/ to the ~/tuning/
directory.

3. Create the instance directory (e.g., ~/tuning/Instances) and decompress the instance files
on it.

12

mkdir ~/tuning/Instances/
cd ~/tuning/
tar -xvf tsp-instances-training.tar.bz2 Instances/

4. Download the ACOTSP software from http://www.aco-metaheuristic.org/aco-code/ to
the ~/tuning/ directory and compile it.

cd ~/tuning/
tar -xvf ACOTSP-1.03.tgz
cd ~/tuning/ACOTSP-1.03
make

5. Create a directory for the executable and copy it:

mkdir ~/bin/
cp ~/tuning/ACOTSP-1.03/acotsp ~/bin/

6. Create a directory for executing the experiments and execute irace:

mkdir ~/tuning/acotsp-arena/
cd ~/tuning/
$IRACE_HOME is the installation directory of irace.
$IRACE_HOME/bin/irace

7. Or you can also execute irace from the R console using:

library("irace")
setwd("~/tuning/")
parameters <- readParameters("parameters-acotsp.txt")
scenario <- readScenario(filename = "scenario.txt",

scenario = defaultScenario())
irace(scenario = scenario, parameters = parameters)

5 Defining a configuration scenario

5.1 Target algorithm parameters
The parameters of the target algorithm are defined by a parameter file as described in Sec-
tion 5.1.4. Optionally, when executing irace from the R console, the parameters can be specified
directly as an R object (see Section 5.1.5). For defining your parameters follow the guidelines
provided in the following sections.

5.1.1 Parameter types

Each target parameter has an associated type that defines its domain and the way irace handles
them internally. Understanding the nature of the domains of the target parameters is important
to select appropriate types. The four basic types supported by irace are the following:

13

• Real parameters are numerical parameters that can take floating-point values within a given
range. The range is specified as an interval ‘(<lower bound>,<upper bound>)’. This interval
is closed, that is, the parameter value may eventually be one of the bounds. The possible
values are rounded to a number of decimal places specified by option digits. For example,
given the default number of digits of 4, the values 0.12345 and 0.12341 are both rounded to
0.1234.

• Integer parameters are numerical parameters that can take only integer values within the
given range. The range is specified as for real parameters.

• Categorical parameters are defined by a set of possible values specified as ‘(<value 1>, ...,
<value n>)’. The values are quoted or unquoted character strings. Empty strings and strings
containing commas or spaces must be quoted.

• Ordinal parameters are defined by an ordered set of possible values in the same format as for
categorical parameters. They are handled internally as integer parameters, where the integers
correspond to the indexes of the values.

5.1.2 Parameter domains

For each target parameter, an interval or a set of values must be defined according to its type,
as described above. There is no limit for the size of the set or the length of the interval, but
keep in mind that larger domains could increase the difficulty of the tuning task. Choose always
values that you consider relevant for the tuning. In case of doubt, we recommend to choose larger
intervals, as occasionally best parameter settings may be not intuitive a priori. All intervals are
considered as closed intervals.

It is possible to define parameters that will have always the same value. Such “fixed ” param-
eters will not be tuned but their values are used when executing the target algorithm and they
are affected by constraints defined on them. All fixed parameters must be defined as categorical
parameters and have a domain of one element.

5.1.3 Conditional parameters

Conditional parameters are active only when others have certain values. These dependencies
define a hierarchical relation between parameters. For example, the target algorithm may have a
parameter localsearch that takes values (sa,ts) and another parameter ts-length that only
needs to be set if the first parameter takes precisely the value ts. Thus, parameter ts-length
is conditional on localsearch == "ts".

5.1.4 Parameter file format

For simplicity, the description of the parameters space is given as a table. Each line of the table
defines a configurable parameter

<name> <label> <type> <range> [| <condition>]

where each field is defined as follows:

14

<name> The name of the parameter as an unquoted alphanumeric string, e.g., ‘ants’.
<label> A label for this parameter. This is a string that will be passed together with

the parameter to targetRunner. In the default targetRunner provided with
the package (Section 5.2), this is the command-line switch used to pass the
value of this parameter, for instance ‘"--ants "’.
The value of the parameter is concatenated without separator to the switch
string when invoking targetRunner, thus whitespace is significant. Following
the same example, when parameter ants takes value 5, the default targetRun-
ner will pass the parameter as "–ants 5".

<type> The type of the parameter, either integer, real, ordinal or categorical, given as
a single letter: ‘i’, ‘r’, ‘o’ or ‘c’.

<range> The range or set of values of the parameter delimited by parentheses.
e.g., (0,1) or (a,b,c,d).

<condition> An optional condition that determines whether the parameter is enabled or
disabled, thus making the parameter conditional. If the condition evaluates to
false, then no value is assigned to this parameter, and neither the parameter
value nor the corresponding label are passed to targetRunner. The condition
must be a valid R logical expression2. The condition may contain the name of
other parameters as long as the dependency graph does not contain any cycle.
Otherwise, irace will detect the cycle and stop with an error.

As an example, Figure 2 shows the parameters file of the ACOTSP scenario.

name switch type values [conditions (using R syntax)]
algorithm "--" c (as,mmas,eas,ras,acs)
localsearch "--localsearch " c (0, 1, 2, 3)
alpha "--alpha " r (0.00, 5.00)
beta "--beta " r (0.00, 10.00)
rho "--rho " r (0.01, 1.00)
ants "--ants " i (5, 100)
nnls "--nnls " i (5, 50) | localsearch %in% c(1, 2, 3)
q0 "--q0 " r (0.0, 1.0) | algorithm == "acs"
dlb "--dlb " c (0, 1) | localsearch %in% c(1,2,3)
rasrank "--rasranks " i (1, 100) | algorithm == "ras"
elitistants "--elitistants " i (1, 750) | algorithm == "eas"

Figure 2: Parameter file (parameters.txt) for tuning ACOTSP.

5.1.5 Parameters R format

The target parameters are stored in an R list that you can obtain from the R console using the
following command:

parameters <- readParameters(file = "parameters.txt")

See the help of the readParameters function (?readParameters) for more information. The
structure of the parameter list that is created is as follows:

2For a quick list of R operators see: https://stat.ethz.ch/R-manual/R-devel/library/base/html/Syntax.
html

15

names Vector that contains the names of the parameters.
types Vector that contains the type of each parameter ’i’, ’c’, ’r’, ’o’.

switches Vector that contains the labels of the parameters. e.g., switches to be used
for the parameters on the command line.

domain List of vectors, where each vector may contain two values (minimum, maxi-
mum) for real and integer parameters, or a set of values for categorical and
ordinal parameters.

conditions List of R logical expressions, with variables corresponding to parameter
names.

isFixed Logical vector that specifies which parameter is fixed and, thus, it does not
need to be tuned.

nbParameters An integer, the total number of parameters.
nbFixed An integer, the number of parameters with a fixed value.

nbVariable Number of variable (i.e., to be tuned) parameters.

The following example shows the structure of the parameters R object for the algorithm,
ants and q0 parameters of the ACOTSP scenario:

> print(parameters)

$names
[1] "algorithm" "ants" "q0"

$types
algorithm ants q0

"c" "i" "r"

$switches
algorithm ants q0

"--" "--ants " "--q0 "

$domain
$domain$algorithm
[1] "as" "mmas" "eas" "ras" "acs"

$domain$ants
[1] 5 100

$domain$q0
[1] 0 1

$conditions
$conditions$algorithm
expression(TRUE)

$conditions$ants
expression(TRUE)

16

$conditions$q0
expression(algorithm %in% c("acs"))

$isFixed
algorithm ants q0

FALSE FALSE FALSE

$nbParameters
[1] 3

$nbFixed
[1] 0

$nbVariable
[1] 3

5.2 Target algorithm runner
The execution of a candidate configuration on a single instance is done by means of a user-given
auxiliary program or, alternatively, a user-given R function. The function (or program name)
is specified by the option targetRunner. The targetRunner must return the evaluation of the
execution unless a post-execution evaluation (e.g., multi-objective evaluation) is required, see
Section 5.3 for details.

The objective of irace is to minimize the obtained evaluations. If you wish to maximize, you can
multiply the evaluations by -1 before returning them to irace.

5.2.1 Target runner executable program

When targetRunner is an auxiliary executable program, it is invoked for each candidate config-
uration, passing as arguments:

<id.configuration> <id.instance> <seed> <instance> [<extra.params>] <configuration>

id.configuration an alphanumeric string that uniquely identifies a configuration;
id.instance an alphanumeric string that uniquely identifies a pair (instance, seed);

seed seed for the random number generator to be used for this evaluation,
ignore the seed for deterministic algorithms;

instance string giving the instance to be used for this evaluation;
extra.params user-defined parameters associated to the instance;
configuration the pairs parameter label-value that describe this candidate configuration.

Typically given as command-line switches to be passed to the executable
program.

The experiment list shown in Section 5.2.2, would result in the following execution line:

17

target-runner 1 113 734718556 /home/user/instances/tsp/2000-533.tsp \
--eas --localsearch 0 --alpha 2.92 --beta 3.06 --rho 0.6 --ants 80

The command line switches that describe the candidate configuration are constructed by ap-
pending to each parameter label (switch), without separator, the value of the parameter, following
the order given in the parameter table. The program targetRunner must print a real number,
which corresponds to the cost measure of the candidate configuration for the given instance
and optionally its execution time (mandatory when maxTime is used). The working directory of
targetRunner is set to the execution directory specified by the option execDir. This allows the
user to execute independent runs of irace in parallel using different values for execDir, without
the runs interfering with each other.

5.2.2 Target runner R function

When targetRunner is an R function, it is invoked for each candidate configuration as:

targetRunner(experiment, scenario)

where experiment is a list that contains information about configuration and instance to execute
one experiment, and scenario is the scenario list. The structure of the experiment list is as
follows:

id.configuration an alphanumeric string that uniquely identifies a configuration;
id.instance an alphanumeric string that uniquely identifies a pair (instance, seed);

seed seed to be used for this evaluation;
instance string giving the instance to be used for this evaluation;

extra.params user-defined parameters associated to the instance;
configuration 1-row data frame with a column per parameter name.

switches vector of parameter switches in the order of parameters used in
configuration.

The following is an example of an experiment list for the ACOTSP scenario:

> print(experiment)

$id.configuration
[1] 1

$id.instance
[1] 113

$seed
[1] 734718556

$configuration
algorithm localsearch alpha beta rho ants nnls q0 dlb

1 eas 0 2.92 3.06 0.6 80 NA NA <NA>
rasrank elitistants

18

1 NA 588

$instance
[1] "/home/user/instances/tsp/2000-533.tsp"

$extra.params
NULL

$switches
algorithm localsearch alpha

"--" "--localsearch " "--alpha "
beta rho ants

"--beta " "--rho " "--ants "
nnls q0 dlb

"--nnls " "--q0 " "--dlb "
rasrank elitistants

"--rasranks " "--elitistants "

The function targetRunner must return a list with one element "cost", the numerical value
corresponding to the evaluation of the candidate configuration on the given instance and, op-
tionally, another element "time", the execution time (mandatory when maxTime is used).

5.3 Target evaluator
Normally, targetRunner returns the cost of the execution of a candidate configuration (see Sec-
tion 5.2). However, there are cases when the cost evaluation must be delayed until all candidate
configurations in a race have been executed on a instance.

The targetEvaluator option defines an auxiliary program (or an R function) that allows
postponing the evaluations of the candidate configurations. For each instance seen, the program
targetEvaluator is only invoked after all the calls to targetRunner for all alive candidate
configurations on the same instance have already finished.

When using targetEvaluator, targetRunner must not return the evaluation of the
configuration. If maxTime is used, targetRunner must return only execution time.

As an example, targetEvaluator may be used to dynamically find normalization bounds for
the output returned by an algorithm for each individual instance. In this case, targetRunner
will save the output of the algorithm, then the first call to targetEvaluator will examine the
output produced by all calls to targetRunner for the same instance, update the normalization
bounds and return the normalized output. Subsequent calls to targetEvaluator for the same
instance will simply return the normalized output.

A similar need arises when using quality measures for multi-objective optimization algorithms,
such as the hypervolume, which typically require specifying reference points or sets. By using
targetEvaluator, it is possible to dynamically compute the reference points or sets while irace
is running. Examples are provided at examples/hypervolume. See also Section 10.2 for more
information on how to tune multi-objective algorithms.

19

5.3.1 Target evaluator executable program

When targetEvaluator is an auxiliary executable program, it is invoked for each candidate
with the following arguments:

<id.configuration> <id.instance> <seed> <instance> <num.configs> <all.conf.id>

id.configuration an alphanumeric string that uniquely identifies a configuration;
id.instance an alphanumeric string that uniquely identifies a pair (instance, seed);

seed seed to be used for this evaluation;
instance string giving the instance to be used for this evaluation;

num.configs number of alive candidate configurations;
all.conf.id list of IDs of the alive configurations separated by whitespace.

The targetEvaluator executable must print a numerical value corresponding to the cost
measure of the candidate configuration on the given instance.

5.3.2 Target evaluator R function

When targetEvaluator is an R function, it is invoked for each candidate configuration as:

targetEvaluator(experiment, num.configs, all.conf.id, scenario,
target.runner.call)

where experiment is a list that contains information about one experiment (See Section 5.2.2),
num.configs is the number of configurations alive on the race, all.conf.id is the vector of IDs
of the alive candidates configurations, scenario is the scenario list and target.tunner.call is
the string of the targetRunner execution line.

The function targetEvaluator must return a list with one element "cost", the numerical
value corresponding to the cost measure of the candidate configuration on the given instance.

5.4 Training instances
The irace options trainInstancesDir and trainInstancesFile specify where to find the train-
ing instances.

By default, the value of trainInstancesFile is empty. This means that irace will consider
all files within the directory given by trainInstancesDir (by default ./Instances) as training
instances.

Otherwise, the value of trainInstancesFile may specify a text file. The format of this file
is one instance per line, and the first alphanumeric string of each line corresponds to the instance
filename. The remainder text within each line are considered as extra parameters to be supplied
to targetRunner for this specific instance. The following example shows a training instance file
for the ACOTSP scenario:

Example training instances file
100/100-1_100-2.tsp --time 1
100/100-1_100-3.tsp --time 2
100/100-1_100-4.tsp --time 3

Figure 3: Training instances file for tuning ACOTSP.

20

The value of trainInstancesDir is always prefixed to the instance name, that is, the in-
stances names are treated as relative to this directory. For example, given the above file as
trainInstancesFile and the default value of trainInstancesDir (./Instances), then a pos-
sible invocation of targetRunner would be:

target-runner 1 113 734718 ./Instances/100/100-1_100-2.tsp --time 1 \
--alpha 2.92 ...

Training instances do not need to be files, irace just passes their names to targetRunner,
thus the names can denote benchmark functions or descriptive labels that the target algorithm
understands. The extra instance parameters could actually be the definition of the instance. In
that case, trainInstancesDir is usually set to the empty string (--train-instances-dir="").
For example,

Example training instances file
rosenbrock_20 --function=12 --nvar 20
rosenbrock_30 --function=12 --nvar 30
rastrigin_20 --function=15 --nvar 20
rastrigin_30 --function=15 --nvar 30

Optionally, when executing irace from the R console, the list of instances and their spe-
cific parameters might be provided explicitly by means of the variables scenario$instances
and scenario$instances.extra.params, respectively. Thus, the previous example would be
equivalent to:

scenario$instances <- c("rosenbrock_20", "rosenbrock_40",
"rastrigin_20", "rastrigin_40")

scenario$instances.extra.params <-
c("--function=12 --nvar 20", "--function=12 --nvar 30",

"--function=15 --nvar 20", "--function=15 --nvar 30")

By default, irace assumes that the target algorithm is stochastic (the value of the option
deterministic is 0), thus, the same configuration can be executed more than once on the same
instance and obtain different results. In this case, irace generates pairs (instance,seed) by
assigning a random seed to each instance. Once all pairs have been seen within a run of irace,
new pairs are generated with different seeds.

If deterministic is set to 1, then each instance will be used at most once per race. This
should only be used for target algorithms that do not have a stochastic behavior and, therefore,
executing the target algorithm on the same instance several times with different seeds does not
make sense.

If deterministic is active and the number of training instances provided to irace is less than
firstTest (default: 5), no statistical test will be performed on the race.

Finally, irace randomly re-orders the sequence of instances provided. This random sampling
may be disabled by using the option sampleInstances (--sample-instances 0) if keeping the
order provided in the instance file is important.

We advise to always sample instances to prevent biasing the tuning due to the instance order.

21

5.5 Initial configurations
The scenario option configurationsFile allows specifying a text file that contains an initial set
of configurations to start the execution of irace. If the number of initial configurations supplied in
the file is less than the number of configurations required by irace in the first iteration, additional
configurations will be sampled uniformly at random.

The format of the configurations file is one configuration per line, and one parameter value
per column. The first line must give the parameter name corresponding to each column (names
must match those given in the parameters file). Each configuration must satisfy the parameter
conditions (NA should be used for those parameters that are not enabled for a given configuration)
and not be forbidden by the constraints that define forbidden configurations (Section 5.6), if any.

Figure 4 gives an example file that corresponds to the ACOTSP scenario.

Initial candidate configuration for irace
algorithm localsearch alpha beta rho ants nnls dlb q0 rasrank elitistants
as 0 1.0 1.0 0.95 10 NA NA 0 NA NA

Figure 4: Initial configuration file (default.txt) for tuning ACOTSP.

We advise to use this feature when a default configuration of the target algorithm exists or
when different sets of good parameter values are known. This will allow irace to start the search
from those parameter values and attempt to improve their performance.

5.6 Forbidden configurations
The scenario option forbiddenFile specifies a text file containing logical expressions of param-
eter values that valid configurations should not satisfy, that is, no configuration that satisfies
any of these logical expressions will be evaluated by irace. This is useful when some combination
of parameter values could cause the target algorithm to crash, consume excessive CPU time or
memory, or when it is known that they do no produce satisfactory results.

The format of the forbidden configurations file is one constraint per line, where each constraint
is a logical expression (in R syntax) containing parameter names as defined by the parameterFile
(Section 5.1), values and logical operators. For a quick list of R logical operators see:

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Syntax.html

If a parameter configuration is generated that makes any of the logical expressions evaluate
to TRUE, then the configuration is considered forbidden and it is discarded. Figure 5 shows an
example file that corresponds to the ACOTSP scenario.

Examples of valid logical operators are:
== != >= <= > < & | ! %in%
(alpha == 0.0) & (beta == 0.0)

Figure 5: Forbidden configurations file (forbidden.txt) for tuning ACOTSP.

If initial configuration are provided (Section 5.5), they must also comply with the constraints
defined in forbiddenFile.

22

6 Parallelization
A single run of irace can be done much faster by executing the calls to targetRunner (the runs
of the target algorithm) in parallel. There are four ways to parallelize a single run of irace:

• Parallel processes: The option parallel allows executing in parallel, within a single com-
puter, the calls to targetRunner, by means of the parallel R package. For example, adding
--parallel N to the command line of irace will launch in parallel up to N calls of the target
algorithm.

• MPI: By enabling the option mpi, calls to targetRunner will be executed in parallel by using
the message passing interface (MPI) protocol (requires the Rmpi R package). In this case,
the option parallel controls the number of slave nodes used by irace. For example, adding
--mpi 1 --parallel N to the command-line will create N slaves + 1 master, and execute
up to N calls of targetRunner in parallel.
The user is responsible for setting up the required MPI environment. MPI is commonly
available in computing clusters and requires launching irace in some particular way. An
example script for using MPI mode in a SGE cluster is given at $IRACE_HOME/examples/mpi/.

• SGE cluster: This mode uses the commands qsub and qstat often found in Sun Grid Engine
(SGE) and compatible clusters. The command qsub must return a message that contains the
string: "Your job JOBID", where JOBID is a unique identifier for the job submitted. The
command qstat -j JOBID must return nonzero if JOBID has finished its execution, and zero
otherwise.
Enabling the option sgeCluster (--sge-cluster 1), irace will launch in parallel as many
calls of targetRunner as possible and use qstat to wait for cluster jobs.

In this mode, irace must run in the submission node of the cluster, and hence, qsub should
not be used to invoke irace itself. The user must call qsub from within targetRunner with
the appropriate settings for their cluster, otherwise targetRunner will not submit jobs to the
cluster. The use of a separate targetEvaluator script is required to evaluate the results of
targetRunner and return them to irace.

See the examples in $IRACE_HOME/examples/sge-cluster/.

• targetRunnerParallel: This option allows users to fully control the parallelization of the
execution of targetRunner. Its value must be an R function that will be invoked by irace as
follows:

targetRunnerParallel(experiments, exec.target.runner, scenario)

where experiments is a list that contains elements with information about configurations
and instances to be executed (see Section 5.2 for a description), exec.target.runner is
the function within irace that takes care of executing targetRunner, check its output and,
possibly, retry in case of error (targetRunnerRetries) and scenario is the scenario list. The
targetRunnerParallel function may call the given exec.target.runner for each element
in the experiments list. A trivial example would be:

targetRunnerParallel <- function(experiments, exec.target.runner, scenario)
{
return (lapply(experiments, exec.target.runner, scenario = scenario))

}

23

However, the user is free to set up the calls in any way, perhaps implementing its own
replacement for exec.target.runner.

The only requirement is that the targetRunnerParallel function must return a list of the
same length as experiments, where each element is the output expected from the corre-
sponding call to targetRunner (see Section 5.2). The following is an example of the output
of a call to targetRunnerParallel with 2 experiments, in which the execution time is not
reported:

print(output)

[[1]]
[[1]]$cost
[1] 38546312
##
[[1]]$time
[1] NA
##
##
[[2]]
[[2]]$cost
[1] 39347203
##
[[2]]$time
[1] NA

7 Testing of configurations
Once the tuning process is finished, irace commonly returns a set of configurations correspond-
ing to the elite configurations at the end of the run, ordered from best to worst. To further
investigate the quality of these configurations, irace offers the possibility of evaluating these con-
figurations on a test instance set, typically different from the training set used during the tuning
phase. These evaluations will use the same settings for parallel execution, targetRunner and
targetEvaluator.

The test instance set can be specified by the options testInstancesDir and testInstancesFile,
or by setting directly the variable scenario$testInstances, which behave the same as their
counterparts for the training instances (Section 5.4). In particular, each test instance is assigned
a different seed in the same way as done for the training instances.

The options testNbElites and testIterationElites control which configurations are eval-
uated during the testing phase. In particular, setting testIterationElites = 1 will test not
only the final set of elite configurations (those returned at the end of the training phase), but
also the set of elites at the end of each race (iteration). The option testNbElites limits the
maximum number of configurations considered within each set. Some examples:

• testIterationElites = 0; testNbElites = 1means that only the best configuration found
during the run of irace, the final best, will be used in the testing phase.

• testIterationElites = 1; testNbElites = 1 will test, in addition to the final best, the
best configuration found at each iteration.

24

• testIterationElites = 1; testNbElites = 2 will test the two best configurations found
at each iteration, in addition to the final best and second-best configurations.

The testing can be also (re-)executed at a later time by using the following R command:

testing.main(logFile = "./irace.Rdata")

This line will load the irace results found in the generated logFile file to perform the testing.
The testing results will be saved in the irace log file specified in scenario$logFile in the
iraceResults$testing R object. The structure of the object is described in Section 9.2. For
examples on how to analyse the data see Section 9.3.

8 Recovering irace runs
Problems like power cuts, hardware malfunction or the need to use computational power for other
tasks may occur during the execution of irace, terminating a run before completion. At the end
of each iteration, irace saves an R data file (logFile, by default "./irace.Rdata") that not
only contains information about the tuning progress (Section 9.2), but also internal information
that allows recovering an incomplete execution.

To recover an incomplete irace run, set the option recoveryFile to the log file previously
produced, and irace will continue the execution from the last saved iteration. The state of the
random generator is saved and loaded, therefore, as long as the execution is continued in the same
machine, the obtained results will be exactly the same as executing irace in one step (external
factors, such as CPU load and disk caches, may affect the target algorithm and that may affect
the results). You can specify the recoveryFile from the command-line or from the scenario file,
and execute irace as described in Section 4. For example, from the command-line use:

irace --recovery-file "./irace-backup.Rdata"

When recovering a previous run, irace will try to save data on the file specified by the logFile
option. Thus, you must specify different files for logFile and recoveryFile. Before recovering,
we strongly advise to rename the saved R data file as in the example above, which uses
"irace-backup.Rdata".

Do not change anything in the log file or the scenario file before recovering, as it may have
unexpected effects on the recovered run of irace. In case of doubt, please contact us first
(Section 13).

9 Output and results
During its execution, irace prints information about the progress of the tuning in the standard
output. Additionally, after each iteration, an R data file is saved (logFile option) containing
the state of irace.

9.1 Text output
Figure 6 shows the output, up to the end of the first iteration, of a run of elitist irace applied to
the ACOTSP scenario with 1000 evaluations as budget.

25

First, irace gives the user a warning informing that it has found a file with the default scenario
filename and it will use it. Then, general information about the selected irace options is printed:

• nbIterations indicates the minimum number of iterations irace has calculated for the sce-
nario. Depending on the development of the tuning the final iterations that are executed can
be more.

• minNbSurvival indicates the minimum number of alive configurations that are required to
continue a race. When less configurations are alive the race is stopped and a new iteration
begins.

• nbParameters is the number of parameters of the scenario.

• seed is the number that was used to initialize the random number generator in irace.

• confidence level is the confidence level of the statistical test.

• budget is the total number of evaluations available for the tuning.

• time budget is the maximum execution time available for the tuning.

• mu is a value used for calculating the minimum number of iterations.

• deterministic indicates if the target algorithm is assumed to be deterministic.

At each iteration, information about the progress of the execution is printed as follows:

• experimentsUsedSoFar is the number of experiments from the total budget that have been
used up to the current iteration.

• timeUsed is the execution time used so far in the experiments. Only available when reported
in the targetRunner (activate it with the maxTime option).

• remainingBudget is the number of experiments that have not been used yet.

• timeEstimate estimation of the mean execution time. This is used to calculate the remaining
budget when maxTime is used.

• currentBudget is the number of evaluations irace has allocated to the current iteration.

• nbConfigurations is the number of configurations irace will use in the current iteration. In
the first iteration, this number of configurations include the initial configurations provided;
in later iterations, it includes the elite configurations from the previous iterations.

After the iteration information, a table shows the progress of the iteration execution. Each
row of the table gives information about the execution of an instance in the race. The first
column contains a symbol that describes the results of the statistical test:

|x| No statistical test was performed for this instance. The options firstTest and eachTest
control on which instances the statistical test is performed.

|-| Statistical test performed and configurations have been discarded. The column Alive gives
an indication of how many configurations have been discarded.

|=| Statistical test performed and no configurations have been discarded. This means irace
needs more information to identify the best configurations.

26

Warning: A default scenario file './scenario.txt' has been found and will be read
2016-05-02 19:24:50 CEST: Elitist race
Elitist instances: 1
Elitist limit: 2

2016-05-02 19:24:50 CEST: Initialization
nbIterations: 5
minNbSurvival: 5
nbParameters: 11
seed: 1234
confidence level: 0.95
budget: 1000
time budget: 0
mu: 5
deterministic: FALSE

2016-05-02 19:24:50 CEST: Iteration 1 of 5
experimentsUsedSoFar: 0
remainingBudget: 1000
currentBudget: 200
nbConfigurations: 33

Markers:
x No test is performed.
- The test is performed and some configurations are discarded.
= The test is performed but no configuration is discarded.
! The test is performed and configurations could be discarded but elite

configurations are preserved.

+-+---------+------+-----+------------+-----------+--------+-----+----+------+
| | Instance| Alive| Best| Mean best| Exp so far| W time| rho|KenW| Qvar|
+-+---------+------+-----+------------+-----------+--------+-----+----+------+
x	1	33	15	23268924.00	33	00:01:55	NA	NA	NA
x	2	33	8	23185736.50	66	00:01:53	+0.97	0.99	0.0025
x	3	33	8	23239054.33	99	00:01:56	+0.96	0.97	0.0030
x	4	33	8	23168442.50	132	00:01:55	+0.96	0.97	0.0027
-	5	3	8	23222299.80	165	00:01:56	-0.05	0.16	0.7109
+-+---------+------+-----+------------+-----------+--------+-----+----+------+
Best configuration: 8 mean value: 23222299.80
Description of the best configuration:

.ID. algorithm localsearch alpha beta rho ants nnls q0 dlb rasrank
8 8 acs 1 3.8157 8.5915 0.4141 59 10 0.5812 1 NA

elitistants .PARENT.
NA NA

2016-05-02 19:34:27 CEST: Elite configurations:
algorithm localsearch alpha beta rho ants nnls q0 dlb rasrank elitistants

8 acs 1 3.8157 8.5915 0.4141 59 10 0.5812 1 NA NA
18 mmas 2 3.1134 7.3864 0.4623 60 32 NA 1 NA NA
15 ras 3 2.5838 6.5086 0.5082 42 6 NA 0 90 NA

Figure 6: Sample text output of irace.

|!| This indicator exists only for the elitist version of irace. It indicates that the statistical test
was performed and some elite configurations show bad performance and could be discarded
but they are kept because of the elitist rules. See option elitist in Section 11 for more
information.

The instance column gives the number of (instance,seed) pair executed. This number

27

corresponds to the index of the list found in state$.irace$instancesList. See Section 9.2 for
more information.

The Alive column gives the number of configurations that have not been discarded after the
statistical test was performed. The column Best gives the ID of the best configuration according
to the instances seen so far in this race (i.e., not including previous iterations). The Mean best
column gives the mean of the best configuration across the instances seen so far in this race. The
Exp so far gives the number of experiments performed so far. The W time column gives the
wall-clock time spent on that instance.

The columns rho, KenW, and Qvar give the values of Spearman’s rank correlation coefficient
rho, Kendall’s concordance coefficient W, and a variance measure described in [4], respectively,
of the configurations across the instances executed so far in this race. Use rho, KenW and Qvar to
analyze how consistent is the performance of the configurations across the instances. Note that
these values are only valid for the instances that were already executed in the iteration. Values
close to 1 for rho and KenW and values close to 0 for Qvar indicate that the scenario is highly
homogeneous. For heterogeneous scenarios, we provide advice in Section 10.4.

Finally, irace outputs the best configuration found and a list of the elite configurations. The
elite configurations are configurations that did not show statistically significant difference during
the race; they are ordered according to their mean performance on the executed instances.

9.2 Data file output
The R data file created by irace (logFile) contains an object called iraceResults. You can
load this data in the R console by:

load("irace-output.Rdata")

The iraceResults object is a list, and the elements of a list can be accessed in R by using
the $ or [[]] operators:

> iraceResults$irace.version

[1] "2.0.1602M"

> iraceResults[["irace.version"]]

[1] "2.0.1602M"

The iraceResults list contains the following elements:

• scenario: The scenario R object containing the irace options used for the execution. See
Section 11 and the help of the irace package; open an R console and type: ?defaultScenario.
See Section 11 for more information.

• parameters: The parameters R object containing the description of the target algorithm
parameters. See Section 5.1.

• allConfigurations: The target algorithm configurations generated by irace. This object is
a data frame, each row is a candidate configuration; the first column (.ID.) indicates the
internal identifier of the configuration; the final column (.PARENT.) is the identifier of the
configuration from which the current configuration was sampled; and the remaining columns
correspond to the parameter values; each column is named as the parameter name specified
in the parameter object.

28

> head(iraceResults$allConfigurations)

.ID. algorithm localsearch alpha beta rho ants nnls
1 1 eas 3 3.8790 5.7359 0.1968 77 9
2 2 ras 3 4.8365 2.1590 0.8683 45 28
3 3 eas 2 4.5386 3.4449 0.1142 94 14
4 4 mmas 1 3.3175 7.8390 0.4453 94 17
5 5 mmas 3 3.6775 5.9009 0.8165 89 39
6 6 acs 2 4.3985 6.3044 0.6171 8 16

q0 dlb rasrank elitistants .PARENT.
1 NA 1 NA 312 NA
2 NA 1 14 NA NA
3 NA 0 NA 320 NA
4 NA 1 NA NA NA
5 NA 1 NA NA NA
6 0.776 1 NA NA NA

• allElites: A list that contains one element per iteration. Each element contains the inter-
nal identifier of the elite candidate configurations of the corresponding iteration (identifiers
correspond to allConfigurations$.ID.).

> print(iraceResults$allElites)

[[1]]
[1] 7 8

[[2]]
[1] 7 35 44 8 51

[[3]]
[1] 7 77 82 63 35

[[4]]
[1] 105 92 7

[[5]]
[1] 105 133 92 137 7

[[6]]
[1] 161 167 157 137 105

[[7]]
[1] 161 167 170 157 137

The configurations are ordered by mean performance, that is, the ID of the best configuration
corresponds to the first ID. To obtain the values of the parameters of all elite configurations
found by irace use:

29

> getFinalElites(irace.logFile = "irace-output.Rdata", n = 0)

.ID. algorithm localsearch alpha beta rho ants nnls
1 161 acs 3 4.6845 3.1955 0.0258 39 21
2 167 acs 3 3.6517 5.6677 0.1831 48 11
3 170 acs 3 3.2484 3.7442 0.8329 64 12
4 157 acs 3 3.7901 3.3825 0.383 61 10
5 137 acs 3 3.3603 2.972 0.7943 58 9

q0 dlb rasrank elitistants .PARENT.
1 0.575 1 NA NA 133
2 0.4411 0 NA NA 92
3 0.1332 1 NA NA 137
4 0.3534 1 NA NA 7
5 0.1769 1 NA NA 7

• iterationElites: A vector containing the best candidate configuration ID of each iteration.
The best configuration found corresponds to the last one of this vector.

> print(iraceResults$iterationElites)

[1] 7 7 7 105 105 161 161

One can obtain the full configuration with:

> last <- length(iraceResults$iterationElites)
> id <- iraceResults$iterationElites[last]
> getConfigurationById(irace.logFile = "irace-output.Rdata", ids = id)

.ID. algorithm localsearch alpha beta rho ants
161 161 acs 3 4.6845 3.1955 0.0258 39

nnls q0 dlb rasrank elitistants .PARENT.
161 21 0.575 1 NA NA 133

• experiments: A matrix with configurations as columns and instances as rows. Column names
correspond to the internal identifier of the configuration (allConfigurations$.ID.). The
results of a particular configuration can be obtained using:

> # As an example, we use the best configuration found
> best.config <- getFinalElites(iraceResults = iraceResults, n = 1)
> id <- best.config$.ID.
> # Obtain the configurations using the identifier
> # of the best configuration
> all.exp <- iraceResults$experiments[,as.character(id)]
> all.exp[!is.na(all.exp)]

1 2 3 4 5 6
23137895 22951779 23269922 22847534 23201364 23226978

30

7 8 9 10 11 12
23396990 23087555 23305271 23108650 23091331 23250300

13 14
23064013 23337202

When a configuration was not executed on an instance, its value is NA. A configuration may
not be executed on an instance because: 1) it was not created yet when the instance was
used, or 2) it was discarded by the statistical test and not executed on subsequent instances,
or 3) the race terminated before this instance was considered.

The row names correspond to the identifier of the (instance,seed) pairs defined in state$.irace$instancesList.
The instance and seed used for a particular experiment can be obtained with:

> # As an example, we get seed and instance of the experiments
> # of the best candidate.
> # Get index of the instances
> pair.id <- names(all.exp[!is.na(all.exp)])
> index <- iraceResults$state$.irace$instancesList[pair.id,"instance"]
> # Obtain the instance names
> iraceResults$scenario$instances[index]

[1] "1000-2.tsp" "1000-6.tsp" "1000-5.tsp" "1000-8.tsp"
[5] "1000-9.tsp" "1000-4.tsp" "1000-1.tsp" "1000-7.tsp"
[9] "1000-10.tsp" "1000-3.tsp" "1000-7.tsp" "1000-5.tsp"
[13] "1000-3.tsp" "1000-10.tsp"

> # Get the seeds
> iraceResults$state$.irace$instancesList[index,"seed"]

[1] 1134643124 1572606322 1130238881 867955448 438950909
[6] 1648957064 1418959772 660707147 2116630940 681812790
[11] 660707147 1130238881 681812790 2116630940

• experimentLog: A matrix with columns iteration,instance,configuration. This matrix
contains the log of all the experiments that irace performs during its execution. The instance
column refers to the index of the state$.irace$instancesList data frame.

• softRestart: A logical vector that indicates if a soft restart was performed on each iteration.
If FALSE, then no soft restart was performed. See option softRestart in Section 11.

• state: A list that contains the state of irace, the recovery (Section 8) is done using the
information contained in this object. The probabilistic model of the last elite configurations
can be found here by doing:

> # As an example, we get the model probabilities for the
> # localsearch parameter.
> iraceResults$state$model["localsearch"]

$localsearch

31

$localsearch$`161`
[1] 0.0003406192 0.0003406192 0.0003406192 0.9989781425

$localsearch$`167`
[1] 0.0003406192 0.0003406192 0.0003406192 0.9989781425

$localsearch$`157`
[1] 0.0003406192 0.0003406192 0.0003406192 0.9989781425

$localsearch$`137`
[1] 0.0003406192 0.0003406192 0.0003406192 0.9989781425

$localsearch$`105`
[1] 0.0003406192 0.0003406192 0.0003406192 0.9989781425

> # The order of the probabilities corresponds to:
> iraceResults$parameters$domain$localsearch

[1] "0" "1" "2" "3"

The example shows a list that has one element per elite configuration (ID as element name).
In this case, localsearch is a categorical parameter and it has a probability for each of its
values.

• testing: A list that contains the testing results. The list contains the following elements:

– experiments: Matrix of experiments in the same format as the tuning experimentmatrix.
The column names indicate the candidate configuration identifier and the row names
contain the name of the instances.

> # Get the experiments of the testing
> iraceResults$testing$experiments

7 105 161 167 170
1000-1.tsp 23422883 23434524 23396807 23398392 23492489
1000-2.tsp 23143580 23139728 23158742 23157600 23132283
1000-3.tsp 23079258 23077771 23076515 23079039 23080455
1000-4.tsp 23248570 23209263 23246553 23211778 23225725
1000-5.tsp 23291205 23271729 23280510 23301127 23325487
1000-6.tsp 22968212 22936994 23016309 23044538 22971473
1000-7.tsp 23133822 23093897 23075447 23083434 23096950
1000-8.tsp 22893610 22852609 22845096 22837813 22862142
1000-9.tsp 23209338 23260171 23252558 23234576 23253747
1000-10.tsp 23377509 23308479 23374315 23341120 23387433

157 137
1000-1.tsp 23413454 23372295
1000-2.tsp 23120557 23147010
1000-3.tsp 23070476 23104852
1000-4.tsp 23199432 23228511
1000-5.tsp 23269900 23306022

32

1000-6.tsp 23000932 23015965
1000-7.tsp 23084433 23161158
1000-8.tsp 22878572 22846533
1000-9.tsp 23187021 23225545
1000-10.tsp 23330331 23305499

– seeds: The seeds used for the experiments, each seed corresponds to each instance in the
rows of the test experiments matrix.

> # Get the experiments of the testing
> iraceResults$testing$seeds

[1] 715330295 1759233637 2075657094 1867045630 1027409966
[6] 586438054 1780920838 1121114427 1495450707 340367534

In the example, instance 1000-1.tsp is executed with seed 715330295.

9.3 Analysis of results
The final configurations returned by irace are the elites of the final race. They are reported in
decreasing order of performance, that is, the best configuration is reported first.

If testing is performed, you can further analyze the resulting best configurations by performing
statistical tests in R or just plotting the results:

> results <- iraceResults$testing$experiments
> # Wilcoxon paired test
> conf <- gl(ncol(results), # number of configurations
+ nrow(results), # number of instances
+ labels = colnames(results))
> pairwise.wilcox.test (as.vector(results), conf, paired = TRUE, p.adj = "bonf")

Pairwise comparisons using Wilcoxon signed rank test

data: as.vector(results) and conf

7 105 161 167 170 157
105 1.00 - - - - -
161 1.00 1.00 - - - -
167 1.00 1.00 1.00 - - -
170 1.00 0.78 1.00 1.00 - -
157 0.78 1.00 1.00 1.00 1.00 -
137 1.00 1.00 1.00 1.00 1.00 1.00

P value adjustment method: bonferroni

> # Plot the results
> boxplot (iraceResults$testing$experiments,
+ ylab = "solution quality",
+ xlab = "configuration id")

33

7 105 161 167 170 157 137

22
90

00
00

23
10

00
00

23
30

00
00

23
50

00
00

configuration id

so
lu

tio
n

qu
al

ity

Figure 7: Boxplot of the testing results of the best configurations.

During the tuning, irace iteratively updates the sampling models of the parameters to focus
on the best regions of the parameter search space. The frequency of the sampled configurations
can provide insights on the parameter search space. We provide a function for plotting the
frequency of the sampling of a set of configurations. For more information on this function,
please see the R help, type in the R console: ?parameterFrequency. The following example
plots the frequency of the parameters sampled during one irace run:

> parameterFrequency(iraceResults$allConfigurations, iraceResults$parameters)

Plotting: algorithm
Plotting: localsearch
Plotting: alpha
Plotting: beta
Plotting: rho
Plotting: ants
Plotting: nnls
Plotting: q0
Plotting: dlb
Plotting: rasrank
Plotting: elitistants

34

as eas ras acs

algorithm

values

F
re

qu
en

cy

0
40

10
0

0 1 2 3

localsearch

values

F
re

qu
en

cy

0
60

12
0

alpha

values

P
ro

ba
bi

lit
y

de
ns

ity

0 1 2 3 4 5

0.
00

0.
25

beta

values

P
ro

ba
bi

lit
y

de
ns

ity

0 2 4 6 8 10

0.
00

0.
15

rho

values

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

ants

values

P
ro

ba
bi

lit
y

de
ns

ity

20 40 60 80 100

0.
00

0
0.

01
5

nnls

values

P
ro

ba
bi

lit
y

de
ns

ity

10 20 30 40 50

0.
00

0.
03

q0

values

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
5

0 1 <NA>

dlb

values

F
re

qu
en

cy

0
40

80

rasrank

values

P
ro

ba
bi

lit
y

de
ns

ity

0 20 40 60 80 100

0.
00

0
0.

01
5

elitistants

values

P
ro

ba
bi

lit
y

de
ns

ity

0 200 400 600

0.
00

0
0.

00
4

Figure 8: Parameters sampling frequency.

By using parallel coordinates plots, it is possible to analyze how the parameters interact with
each other. For more information on this function, please see the R help, type in the R console:
(?parallelCoordinatesPlot). The following example shows how to create a parallel coordinate
plot of the configurations in the last two iterations of irace.

Get last iteration number
last <- length(iraceResults$iterationElites)
Get configurations in the last two iterations
conf <- getConfigurationByIteration(iraceResults = iraceResults,

iterations = c(last - 1, last))
parallelCoordinatesPlot (conf, iraceResults$parameters,

35

param_names = c("algorithm", "alpha",
"beta", "rho", "q0"),

hierarchy = FALSE)

Parameters parallel coordinates

al
go

rit
hm

al
ph

a

be
ta

rh
o q0

as

mmas

eas

ras

acs

NA

0

1

2

3

4

5

<NA>

0

2

4

6

8

10

<NA>

0

0.2

0.4

0.6

0.8

1

<NA>

0

0.2

0.4

0.6

0.8

1

<NA>

Figure 9: Parallel coordinate plots of the parameters of the configurations in the last two itera-
tions of a run of irace.

10 Advanced topics

10.1 Tuning budget
Irace provides two options for setting the total tuning budget (maxExperiments and maxTime).
Before setting the budget for the tuning, please consider the number of parameters that need
to be tuned, available processing power and available time. The option maxExperiments limits
the number of executions of targetRunner performed by irace. The option maxTime limits the
total time of the targetRunner executions. When this latter option is used, targetRunner must
return the evaluation cost together with the execution time ("cost time").

36

When the goal is to minimize the computation time of an algorithm, and you wish to use
maxTime as the tuning budget, targetRunner must return the time also as the evaluation cost,
that is, return the time two times as "time time".

When using targetEvaluator and using maxTime as tuning budget, targetRunner just returns
the time ("time") and targetEvaluator returns the cost.

When using maxTime, irace estimates the execution time of each targetRunner execution
before the configuration. The amount of budget used for the estimation is set with the option
budgetEstimation (default is 2%). The obtained estimation is adjusted after each iteration
using the obtained results and it is used to estimate the number of experiments that can be
executed. Internally, irace uses the number of remaining experiments to adjust the number of
configurations tested in each race.

10.2 Multi-objective tuning
Currently, irace only optimizes one cost value at a time, which can be solution quality, compu-
tation time or any other objective that is returned to irace by the targetRunner. If the target
algorithm is multi-objective, it will typically return not a single cost value, but a set of objective
vectors (typically, a Pareto front). For tuning such a target algorithm with irace, there are two
alternatives. If the algorithm returns a single vector of objective values, they can be aggregate
into one single number by using, for example, a weighted sum. Otherwise, if the target algorithm
returns a set of objective vectors, a unary quality metric (e.g., the hypervolume) may be used to
evaluate the quality of the set.3

The use of aggregation or quality metrics often requires to normalize the different objectives.
If normalization bounds are known a priori for each instance, normalized values can be computed
by targetRunner. Otherwise, the bounds may be dynamically computed while running irace, by
using targetEvaluator. In this case, targetRunner will save the output of the algorithm, then
the first call to targetEvaluator will examine the output produced by all calls to targetRunner
for the same instance, update the normalization bounds and return the normalized output.
Subsequent calls to targetEvaluator for the same instance will simply return the normalized
output. A similar approach can be used to dynamically compute the reference points or sets
often required by unary quality metrics.

For more information about defining a targetEvaluator, see Section 5.3. Examples of
tuning a multi-objective target algorithm using the hypervolume can be found in the examples
at $IRACE_HOME/examples/hypervolume and $IRACE_HOME/examples/moaco.

10.3 Tuning for minimizing computation time
Irace was developed primarily for tuning algorithms that report solution cost. When using irace
for tuning algorithms that report computation time to reach a target, the execution time of a
configuration must be returned instead of the cost by the targetRunner. Even though irace
can be used for minimizing computation time, irace may itself require more time to do so in its
current version than other methods, such as ParamILS4 or SMAC5, since it does not make use of
techniques, such as “adaptive capping”, that avoid long runs of the target algorithm.

3An implementation is publicly available at http://lopez-ibanez.eu/hypervolume [2]
4http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
5http://www.cs.ubc.ca/labs/beta/Projects/SMAC/

37

We are currently extending irace with an adaptive capping mechanism and it will likely be
included in the forthcomming version 2.1.

10.4 Heterogeneous scenarios
We classify a scenario as homogeneous when the target algorithm has a consistent performance
regarding the instances; roughly speaking, good configurations tend to perform well and bad
configurations tend to perform poorly on all instances of the problem. By contrast, in hetero-
geneous scenarios, the target algorithm has an inconsistent performance on different instances,
that is, some configurations perform well for a subset of the instances, while they perform poorly
for different subset.

When facing a heterogeneous scenario, the first question should be whether the objective of
tuning is to find configurations that perform reasonably well over all instances, even if they are
not the best ones in any of them. If this is not the case, then it would be better to partition
instances into more similar subsets and execute irace separately on each subset. This will lead to
a portfolio of algorithm configurations, one for each subset, and algorithm selection techniques
can be used to select the best configuration from the portfolio when facing a new instance.

If finding an overall good configuration for all the instances is the objective, then we recom-
mend that instances are randomly sampled (option sampleInstances), unless one can devise the
instances in a particular order that does not bias the tuning towards any subset. For example,
let’s assume a heterogeneous scenario with two types of instances. If training instances are not
sampled and the first ten instances belong to only one class, the tuning will be biased towards
configurations that perform good for those instances. An optimal order would not ever present
consecutively two instances of the same type.

In addition, it may be useful to increase the number of instances executed before doing a
statistical test in order to see more instance types before discarding configurations. The option
elitistNewInstances in elitist irace (option elitist) can be used to increase the number of
new instances executed in each iteration, e.g., --elitist-new-instances 5 (default value is
1). For the non-elitist irace, the option firstTest may be used for the same purpose, e.g.,
--first-test 10 (default value is 5).

While executing irace, the homogeneity of the scenario can be observed by examining the
values of Spearman’s rank correlation coefficient and Kendall’s concordance coefficient in the
text output of irace. See Section 9.1 for more information.

10.5 Choosing the statistical test
The statistical test used in irace identifies statistically bad performing configurations that can be
discarded from the race in order to save budget. Different statistical tests use different criteria
to compare the quality of the configurations, which has an effect on the tuning results.

Irace provides two types of statistical tests (option testType). Each test has different char-
acteristics that are beneficial for different goals:

• Friedman test (F-test): This test uses the ranking of the configurations to analyze the dif-
ferences between their performance. This makes the test suitable for scenarios where the
numerical results and their scale are not significant to assess the quality of the configura-
tions. For example, if the results for different instances have high numerical differences and
evaluating the performance of the configurations using the mean could be deceiving. We
recommend to use the F-test (default) when tuning for solution quality and whenever the
best performing algorithm should be among the best in as many instances as possible.

38

• Student’s t-test (t-test): This test uses the mean performance of the configurations to
analyze the differences between the configurations. This makes the test suitable for scenarios
where the differences between values obtained for different instances are relevant to assess
good configurations. We recommend using t-test, in particular, when the target algorithm is
minimizing computation time and, in general, whenever the best configurations should obtain
the best average solution cost.

The confidence level of the tests may be adjusted by using the option confidence. Increasing
the value of confidence leads to a more strict statistical test. Keep in mind that a stricter test
will require more budget to identify which configurations perform worse. A less strict test discards
configurations faster by requiring less evidence against them and, therefore, it is more likely to
discard good configurations.

10.6 Complex parameters
Some parameters may have complex dependencies. Ideally, parameters should be defined in the
way that is more likely to help the search performed by irace. For example, when tuning a branch
and bound algorithm, one may have the following parameters:

• branching (b) that takes values in {0,1,2,3}, where 0 indicates no branching will be used
and the rest are different types of branching.

• stabilization (s) that takes values in {0,1,2,3,4,5,6,7,8,9,10}, of which for b=0 only
{0,1,2,3,4,5} are relevant.

In this case, it is not possible to describe the parameter space by defining only two parameters
for irace. An extra parameter must be introduced as follows:

name label type range condition
b "-b " c (0,1,2,3)
s1 "-s " c (0,1,2,3,4,5) | b == "0"
s2 "-s " c (0,1,2,3,4,5,6,7,8,9,10) | b != "0"

Parameters whose values depend on the value of other parameters may also require using extra
parameters or changing the parameters and processing them in targetRunner. For example,
given the following parameters:

• Population size (p) takes the integer values [1, 100].

• Selection size (s) takes the same values but no more than the population size, that is [1,p].

In this case, it is possible to describe the parameters p and s using surrogate parameters for
irace that represent a ratio of the original interval as follows:

name label type range
p1 "-p " r (0.0,1.0)
s1 "-s " r (0.0,1.0)

and the values must be further processed in targetRunner. For example, if the surrogate pa-
rameter p1 has value 0.5, mapping it to the original interval of [1, 100], we obtain a value of
p = 51. More than one value of the surrogate parameter (e.g., 0.501 and 0.502) result in the
same final value. Parameter s has an interval that depends on the final value of parameter p,
if the surrogate parameter s1 has value 0.3, it must be mapped to the interval [1, 51], giving a
value of s = 16.

The processing within targetRunner can also split and join parameters. For example, assume
the following parameters:

39

name label type range
m "-m " i (1,250)
e "-e " r (0.0,2.0)

These parameters could be used to define a value m ·10e for another parameter (--strength).
targetRunner can take take of parsing -m and -e, computing the value and passing the parameter
--strength together with its value to the target algorithm.

10.7 Unreliable target algorithms
There are some situations in which the target algorithm may fail to execute correctly. By default,
irace stops as soon as a call to targetRunner or targetEvaluator fails, which helps to detect
bugs in the target algorithm. Sometimes the failure cannot be fixed because it is due to system
problems, network issues, memory limits, bugs for which no fix is available, or fixing them is
impossible because there is no access to the source code.

In those cases, if the failure is caused by random errors or transient system problems, one
may wish to ignore the error and try again the same call in the hope that it succeeds. The option
targetRunnerRetries indicates the number of times a targetRunner execution is repeated if it
fails. Use this option only if you know additional repetitions could be successful.

If the target algorithm consistently fails for a particular set of configurations, these configu-
rations may be declared as forbidden (forbiddenFile) so that irace avoids them. On the other
hand, the configurations that cause the problem are unknown, the targetRunner script should
detect the failure and return a penalty cost (a very large cost value) so that irace discards the
failing configuration as soon as possible. The penalty must be set according to range of the cost
measure and the goals of the tuning. For example, a configuration that crashes on a particular
instance, e.g.,, by running out of memory, might still be considered acceptable if it gives very
good results on other instances.

11 List of command-line and scenario options
Most of the irace options can be specified by command line using a flag, by setting them in the
irace scenario file using the option name or by directly setting them in the scenario R object.
This section describes the irace options that can be specified by the user.

11.1 General options
scenarioFile flag: -s or --scenario default: ./scenario.txt

File that contains the scenario setup and other irace settings. All options listed in this
section can be included in this file. See $IRACE_HOME/templates/ for an example.

debugLevel flag: --debug-level default: 0
Level of information to display in the text output of irace. A value of 0 silences all debug
messages. Higher values provide more verbose debug messages. To see details about the
text output of irace, see Section 9.1.

seed flag: --seed default: NA
Seed to initiallize the random number generator. The seed must be a positive integer. If
the seed is NA, a random seed will be generated.

40

execDir flag: --exec-dir default: ./
Directory where the target algorithm executions will be performed. The default execution
directory is the current directory.

irace will not attempt to create the execution directory so it must exist before executing
it.

logFile flag: -l or --log-file default: ./irace.Rdata
File to save tuning results as an R dataset. The provided path must be either an absolute
path or relative to execDir. See Section 9.2 for details on the format of the R dataset.

11.2 Elitist irace

elitist flag: --elitist default: 1
Enable/disable elitist irace.

In the elitist version of irace, elite configurations are not discarded from the race until non-
elite configurations have been executed on the same instances as the elite configurations.

Each race begins by evaluating all configurations on a number of new instances. This
number is defined by the option elitistNewInstances. After the new instances have
been evaluated, configurations are evaluated on instances seen in the previous race. Elite
configurations already have results for most of these previous instances and, therefore, do
not need to be re-evaluated. Finally, after configurations have been evaluated on all these
instances, the race continues by evaluating additional new instances.

The statistical tests can be performed at any moment during the race according to the
setting of the options firstTest and eachTest. The elitist rule forbids discarding elite
configurations, even if the show poor performance, until the last of the previous instances
is seen in the race.

The non-elitist version of irace can discard elite configurations at any point of the race,
instances are not re-used from one race to the next, and new instances are sampled for
each race.

elitistNewInstances flag: --elitist-new-instances default: 1
Number of new instances added to each race before evaluating instances from previous
races (only for elitist irace).

If deterministic is TRUE then the number of elitistNewInstances will be reduced or set
to 0 once all instances have been evaluated.

elitistLimit flag: --elitist-limit default: 2

Maximum number of statistical tests performed without successful elimination after all
instances from the previous race have been evaluated. If the limit is reached, the current
race is stopped. Only valid for elitist irace. Use 0 to disable the limit.

41

11.3 Internal irace options
sampleInstances flag: --sample-instances default: 1

Enable/disable the sampling of the training instances. If the option sampleInstances is
disabled, the instances are used in the order provided in the trainInstancesFile or in
the order they are read from the trainInstancesDir whentrainInstancesFile is not
provided. For more information about training instances see Section 5.4.

nbIterations flag: --iterations default: 0
Number of iterations to be executed. By default (with 0), irace calculates the number of
iterations as N iter = b2+log2N

paramc, where Nparam is the number of non fixed parameters
to be tuned). We recommend to use the default value.

nbExperimentsPerIteration flag: --experiments-per-iteration default: 0
Number of experiments to execute per iteration. By default, irace calculates the number
of experiments per iteration based as follows:

Bj =
(B −Bused)

(N iter − j + 1)
(1)

where Bj is the budget for iteration j, B is the total tuning budget (maxExperiments),
Bused is the used budget and N iter is maximum between the planned number of iterations
(nbIterations) and the current iteration (j). We recommend to use the default value.

nbConfigurations flag: --num-configurations default: 0
The number of configurations that should be sampled and evaluated at each iteration. By
default, irace calculates the number of configurations per iteration as follows:

Nj =

⌊
Bj

(µ+min(5, j))

⌋
(2)

where Nj is the number of configurations that will be used in iteration j, Bj is the budget
for iteration j and µ is the option mu. We recommend to use the default value.

mu flag: --mu default: 5
This value is used to determine the number of configurations to be sampled and evaluated
at each iteration.

minNbSurvival flag: --min-survival default: 0
The minimum number of configurations needed to continue the execution of a race.

softRestart flag: --soft-restart default: 1
Enable/disable the soft-restart strategy that avoids premature convergence of the proba-
bilistic model. When a sampled configuration is similar to its parent configuration, the
probabilistic model of these configurations is soft restarted. The similarity of categorical
and ordered parameters is given by the hamming distance, and the option softRestartThreshold
defines the similarity of numerical parameters.

softRestartThreshold flag: --soft-restart-threshold default: NA
Soft restart threshold value for numerical parameters. If NA, it is computed as 10−digits,
where digits corresponds to the irace option explained in this section.

42

11.4 Target algorithm parameters
parameterFile flag: -p or --param-file default: ./parameters.txt

File that contains the description of the parameters of the target algorithm. See Section 5.1.

digits flag: --digits default: 4
Maximum number of decimal places that are significant for numerical (real) parameters.

forbiddenFile flag: --forbidden-file default:
File containing a list of logical expressions that cannot be true for any evaluated configu-
ration. If empty or NULL, no forbidden configurations are considered. See Section 5.6 for
more information.

11.5 Target algorithm execution
targetRunner flag: --target-runner default: ./target-runner

This option defines a script or an R function that evaluates a configuration of the target
algorithm on a particular instance. See Section 5.2 for details.

targetRunnerRetries flag: --target-runner-retries default: 0
Number of times to retry a call to targetRunner if the call failed.

targetRunnerData default: NULL
Optional data passed to targetRunner. This is ignored by the default targetRunner
function, but it may be used by custom targetRunner functions to pass persistent data
around.

targetRunnerParallel default: NULL
Optional R function to provide custom parallelization of targetRunner. See Section 6 for
more information.

targetEvaluator flag: --target-evaluator default: ""
Optional script or R function that returns a numerical value for an experiment after all
configurations have been executed on a given instance using targetRunner. See Section 5.3
for details.

deterministic flag: --deterministic default: 0
Enable/disable deterministic target algorithm mode. If the target algorithm is determin-
istic, configurations will be evaluated only once per instance. See Section 5.4 for more
information.

If the number of instances provided is less than the value specified for the option
firstTest, no statistical test will be performed.

parallel flag: --parallel default: 0
Number of calls of the targetRunner to execute in parallel. A value of 0 means no paral-
lelization. For more information on parallelization, see Section 6.

loadBalancing flag: --load-balancing default: 1
Enable/disable load-balancing when executing experiments in parallel. Load-balancing
makes better use of computing resources, but increases communication overhead. If this
overhead is large, disabling load-balancing may be faster. See Section 6.

43

mpi flag: --mpi default: 0
Enable/disable use of Rmpi to execute the targetRunner in parallel using MPI protocol.
When mpi is enabled, the option parallel is the number of slave nodes. See Section 6.

sgeCluster flag: --sge-cluster default: 0
Enable/disable SGE cluster mode, which uses qstat to wait for cluster jobs to finish
(targetRunner must invoke qsub). See Section 6.

11.6 Initial configurations
configurationsFile flag: --configurations-file default:

File containing a list of initial configurations. If empty or NULL, irace will not use initial
configurations. See Section 5.5.

The provided configurations must not violate the constraints described in parameterFile
and forbiddenFile.

11.7 Training instances
trainInstancesDir flag: --train-instances-dir default: ./Instances

Directory where tuning instances are located; either absolute path or relative to current
directory. See Section 5.4.

trainInstancesFile flag: --train-instances-file default:
File containing a list of instances and optionally additional parameters for them. See
Section 5.4.

If trainInstancesDir is specified, the path contained in trainInstancesFile must be
relative to the directory. When using an absolute path or for defining instances that are
not files, set trainInstancesDir="".

11.8 Tuning budget
maxExperiments flag: --max-experiments default: 0

The maximum number of runs (invocations of targetRunner) that will be performed. It
determines the maximum budget of experiments for the tuning. See Section 10.1.

maxTime flag: --max-time default: 0
The maximum total time in seconds for the runs of targetRunner that will be performed.
The mean execution time of each run is estimated in order to calculate the maximum
number of experiments (see option budgetEstimation). When maxTime is positive, then
targetRunner must return the execution time as its second output. See Section 10.1.

budgetEstimation flag: --budget-estimation default: 0.02
The percentage of the budget used for estimating the mean execution time. Only used
when maxTime > 0. See Section 10.1.

44

11.9 Statistical test
testType flag: --test-type default: F-test

Specifies the statistical test type:

F-test (Friedman test)

t-test (pairwise t-tests with no correction)

t-test-bonferroni (t-test with Bonferroni’s correction for multiple comparisons)

t-test-holm (t-test with Holm’s correction for multiple comparisons).

We recommend to not use corrections for multiple comparisons because the test typically
becomes too strict and the search stagnates. See Section 10.5 for details about choosing
the statistical test most appropriate for your scenario.

firstTest flag: --first-test default: 5
Specifies how many instances are evaluated before the first elimination test.

The value of firstTest must be a multiple of eachTest.

eachTest flag: --each-test default: 1
Specifies how many instances are evaluated between elimination tests.

confidence flag: --confidence default: 0.95
Confidence level for the elimination test.

11.10 Recovery
recoveryFile flag: --recovery-file default: ""

Previously saved irace log file that should be used to recover the execution of irace; ei-
ther absolute path or relative to the current directory. If empty or NULL, recovery is not
performed. For more details about recovery, see Section 11.10.

11.11 Testing
testNbElites flag: --test-num-elites default: 1

Number of elite configurations returned by irace that will be tested if test instances are
provided. For more information about the testing, see Section 7.

testIterationElites flag: --test-iteration-elites default: 0
Enable/disable testing the elite configurations found at each iteration.

testInstancesDir flag: --test-instance-dir default:
Directory where testing instances are located, either absolute or relative to the current
directory.

testInstancesFile flag: --test-instance-file default:
File containing a list of test instances and, optionally, additional parameters for them.

45

12 FAQ

12.1 Is irace minimizing or maximizing the output of my algorithm?
By default, irace considers that the value returned by targetRunner (or by targetEvaluator,
if used) should be minimized. In case of a maximization problem, one can simply multiply
the value by -1 before returning it to irace. This is done, for example, when maximizing the
hypervolume (see the last lines in $IRACE_HOME/examples/hypervolume/target-evaluator).

12.2 Is it possible to configure a MATLAB algorithm with irace?
Definitely. There are two main ways to achieve this:

1. Edit the targetRunner script to call MATLAB in a non-interactive way. See the MATLAB
documentation, or the following links.6 You would need to pass the parameter received by
targetRunner to your MATLAB script: http://www.mathworks.nl/support/solutions/
en/data/1-1BS5S/?solution=1-1BS5S. There is a minimal example in:

$IRACE_HOME/examples/matlab/.

2. Call MATLAB code directly from R using the R.matlab package (https://cran.r-project.
org/package=R.matlab). This is a better option if you are experienced in R. Define targetRunner
as an R function instead of a path to a script. The function should call your MATLAB code
with appropriate parameters.

12.3 My program works perfectly on its own, but not when running
under irace. Is irace broken?

Every time this was reported, it was a difficult-to-reproduce bug in the program, not in irace.
We recommend that in targetRunner, you use valgrind to run your program. That is, if your
program is called like:

$EXE ${FIXED_PARAMS} -i $INSTANCE ${CONFIG_PARAMS} \
1> ${STDOUT} 2> ${STDERR}

then replace that line with:

valgrind --error-exitcode=1 $EXE ${FIXED_PARAMS} \
-i $INSTANCE ${CONFIG_PARAMS} 1> ${STDOUT} 2> ${STDERR}

If there are bugs in your program, they will appear in $STDERR, thus do not delete those files.

12.4 My program may be buggy and run into an infinite loop. Is it
possible to set a maximum timeout?

We are not aware of any way to achieve this using R. However, in GNU/Linux, it is easy to
implement by using the timeout command in targetRunner when invoking your program.

6http://stackoverflow.com/questions/1518072/suppress-start-message-of-matlab
http://stackoverflow.com/questions/4611195/how-to-call-matlab-from-command-line-and-print-to-
stdout-before-exiting

46

12.5 When using the mpi option, irace is aborted with an error message
indicating that a function is not defined. How to fix this?

Rmpi does not work the same way when called from within a package and when called from a
script or interactively. When irace creates the slave nodes, the slaves will load a copy of irace
automatically. If the slave nodes are on different machines, they must have irace installed. If
irace if not installed system-wide, R needs to be able to find irace on the slave nodes. This is
usually done by setting R_LIBS, .libPaths() or by loading irace using library() or require()
with the argument “lib.loc”. The settings on the master are not applied to the slave nodes
automatically, thus the slave nodes may need their own settings. After spawning the slaves, it is
too late to modify those settings, thus modifying the shell variable R_LIBS seems the only valid
way to tell the slaves where to find irace.

If the path is set correctly and the problem persists, please check these instructions:

1. Test that irace and Rmpi work. Run irace on a single machine (submit node), without calling
qsub, mpirun or a similar wrapper around irace or R.

2. Test loading irace on the slave nodes. However, jobs submitted by qsub/mpirun may load
R packages using a different mechanism from the way it happens if you log directly into the
node (e.g., with ssh). Thus, you need to write a little R program such as:

library(Rmpi)
mpi.spawn.Rslaves(nslaves = 10)
x <- mpi.applyLB(1:10, function(x) {

library(irace)
return(path.package("irace")) })

print(x)

Submit this program to the cluster (using qsub/mpirun) like you would submit irace.

3. In the script bin/parallel-irace-mpi, the function irace_main() creates an MPI job for
our cluster. You may need to speak with the admin of your cluster and ask them how to best
submit a job for MPI. There may be some particular settings that you need. Rmpi normally
creates log files; but irace suppresses those files unless debugLevel > 0.

Please contact us (Section 13) if you have further problems.

12.6 Error: 4 arguments passed to .Internal(nchar) which requires 3
This is a bug in R 3.2.0 on Windows. The solution is to update your version of R.

13 Resources and contact information
More information about the package can be found on the irace webpage:

http://iridia.ulb.ac.be/irace/

For questions and suggestions please contact the development team through the irace package
Google group:

https://groups.google.com/d/forum/irace-package

or by sending an email to:

irace-package@googlegroups.com

47

14 Acknowledgements
We would like to thank all the people that directly or indirectly have colaborated in the devel-
opment and improvement of irace.

• Prasanna Balaprakash

• Zhi (Eric) Yuan

• Franco Mascia

• Alberto Franzin

• Anthony Antoun

References
[1] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle. F-race and iterated F-race: An

overview. In T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, editors, Ex-
perimental Methods for the Analysis of Optimization Algorithms, pages 311–336. Springer,
Berlin, Germany, 2010.

[2] C. M. Fonseca, L. Paquete, and M. López-Ibáñez. An improved dimension-sweep algorithm for
the hypervolume indicator. In Proceedings of the 2006 Congress on Evolutionary Computation
(CEC 2006), pages 1157–1163. IEEE Press, Piscataway, NJ, July 2006.

[3] M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, and M. Birattari. The irace package, iterated
race for automatic algorithm configuration. Technical Report TR/IRIDIA/2011-004, IRIDIA,
Université Libre de Bruxelles, Belgium, 2011.

[4] M. Schneider and H. H. Hoos. Quantifying homogeneity of instance sets for algorithm con-
figuration. In Y. Hamadi and M. Schoenauer, editors, Learning and Intelligent Optimization,
6th International Conference, LION 6, volume 7219 of Lecture Notes in Computer Science,
pages 190–204. Springer, Heidelberg, Germany, 2012.

48

Appendix A R installation
This section gives a quick R installation guide that will work in most cases. The official instruc-
tions are available at https://cran.r-project.org/doc/manuals/r-release/R-admin.html

A.1 GNU/Linux
You should install R from your package manager. On a Debian/Ubuntu system it will be some-
thing like:

sudo apt-get install r-base

Once R is installed, you can launch R from the Terminal and from the R prompt install the
irace package (see Section 3.2).

A.2 OS X
You can install R directly from a CRAN mirror.7 Alternatively, if you use homebrew, you can
just brew the R formula from the science tap (unfortunately it does not come already bottled so
you need to have Xcode8 installed to compile it):

brew tap homebrew/science
brew install r

Once R is installed, you can launch R from the Terminal (or from your Applications), and
from the R prompt install the irace package (see Section 3.2).

A.3 Windows
You can install R from a CRAN mirror.9 We recommend that you install R on a filesystem path
without spaces, special characters or long names, such as C:\R. Once R is installed, you can
launch the R console and install the irace package from it (see Section 3.2).

Appendix B targetRunner script check list
If the targetRunner script fails to return the output expected by irace, it can be sometimes
difficult to diagnose where the problem lies. The more descriptive errors provided by your script,
the easier it will be to debug it. If you are using temporary files to redirect the output of your
algorithm, check that these are created properly. We recommend to follow the structure of the
example file (target-runner) provided in $IRACE_HOME/templates. The following examples are
based on a file with those characteristics.

In case of failure of targetRunner, irace will print an error on its output describing which
execution of targetRunner was not successful. Follow this list to detect where the problem is:

1. Make sure that your targetRunner script or program is at the specified location. If you see
this error:

Error: == irace == target runner '~/tuning/target-runner' does not exist

7https://cran.r-project.org/bin/macosx/
8Xcode download webpage: https://developer.apple.com/xcode/download/
9http://cran.r-project.org/bin/windows/

49

it means that irace cannot find the target-runner file. Check that the file is at the path
specified by the error.

2. Make sure that your targetRunner script is an executable file and the user running irace has
permission to execute it. The following errors:

Error: == irace == target runner '~/tuning/target-runner' is a directory,
not a file

or

Error: == irace == target runner '~/tuning/target-runner' is not executable

mean that your targetRunner is not an executable file. In the first case, the script is a folder
and therefore there must be a problem with the name of the script. In the second case, you
must make the file executable, which in GNU/Linux can be done by:

chmod +x ~/tuning/target-runner

3. If your targetRunner script calls another program, make sure it is at the location described
in the script (variable EXE in the examples and templates). A typical output for such an error
is:

Error: == irace == running command ''~/tuning/target-runner' 1 8 676651103
~/tuning/Instances/1000-16.tsp --ras --localsearch 2 --alpha 4.03 --beta 1.89
--rho 0.02 --ants 37 --nnls 48 --dlb 0 --rasranks 15 2>\&1' had status 1
== irace == The call to target.runner.default was:
~/tuning/target-runner 1 8 676651103 ~/tuning/Instances/1000-16.tsp --ras
--localsearch 2 --alpha 4.03 --beta 1.89 --rho 0.02 --ants 37 --nnls 48
--dlb 0 --rasranks 15
== irace == The output was:
Tue May 3 19:00:37 UTC 2016: error: ~/bin/acotsp: not found or not executable
(pwd: ~/tuning/acotsp-arena)

You may test your script by copying the command line shown in the error and executing
target-runner directly on the execution directory (execDir). In this case, the command
line is:

~/tuning/target-runner 1 8 676651103 ~/tuning/Instances/1000-16.tsp --ras \
--localsearch 2 --alpha 4.03 --beta 1.89 --rho 0.02 --ants 37 --nnls 48 \
--dlb 0 --rasranks 15

This executes the targetRunner script as irace does. The output of this script must be only
one number.

4. Check that your targetRunner script is actually returning one number as output. If you see
an error as the following, this is your problem:

Error: == irace == The output of '~/tuning/target-runner
1 25 365157769 ~/tuning/Instances/1000-31.tsp --ras
--localsearch 1 --alpha 0.26 --beta 6.95 --rho 0.69
--ants 56 --nnls 10 --dlb 0 --rasranks 7' is not numeric!
== irace == The output was:
Solution: 24479793

50

For testing your script, copy the command-line of target-runner and execute it directly on
the execution directory (execDir):

~/tuning/target-runner 1 25 365157769 ~/tuning/Instances/1000-31.tsp --ras \
--localsearch 1 --alpha 0.26 --beta 6.95 --rho 0.69 --ants 56 \
--nnls 10 --dlb 0 --rasranks 7

This executes the targetRunner script as irace does. The output of this script must be only
one number. In this example, the output of the script is “Solution: 24479793”, which is
not a number. The code that targetRunner uses to parse the output of the algorithm must
be checked.

5. Check that your targetRunner script is creating the output files for your algorithm. If you
see an error as:

== irace == The output was: Tue May 3 19:41:40 UTC 2016:
error: c1-9.stdout: No such file or directory

The output file of the execution of your algorithm has not been created (check permissions)
or has been deleted before the result can be read.

6. Other errors can produce the following output:

== irace == The output was: Tue May 3 19:49:06 UTC 2016:
error: c1-23.stdout: Output is not a number

This might be because your targetRunner script is not executing your algorithm correctly.
To further investigate this issue, comment out the line that eliminates the temporary files
that saves the output of your algorithm. Similar to this one

rm -f "${STDOUT}" "${STDERR}"

Execute directly the targetRunner command-line that is provided in the error message, look
in your execution directory for the files that are created. Check the .stderr file for errors
and the .stdout file to see the output that your algorithm produces.

Appendix C Glossary
Parameter tuning: Process of searching good settings for the parameters of an algorithm under

a particular tuning scenario (instances, execution time, etc.).

Scenario: Settings that define an instance of the tuning problem. These settings include the
algorithm to be tuned (target), budget for the execution of the target algorithm (execution
time, evaluations, iterations, etc.), set of problem instances and all the information that is
required to perform the tuning.

Target algorithm: Algorithm whose parameters will be tuned.

Target parameter: Parameter of the target algorithm that will be tuned.

irace option: Configurable option of irace.

Elite configurations: Best configurations found so far by irace. New configurations for the
next iteration of irace are sampled from the probabilistic models associated to the elite
configurations. All elite configurations are also included in the next iteration.

51

Appendix D NEWS
NEWS

2.1

* Fix CRAN errors in tests.

2.0

* Minimum R version is 2.15.

* Elitist irace by default, it can be disabled with parameter --elitist 0.
(Leslie Pérez Cáceres, Manuel López-Ibáñez)

* The parameter --test-type gains two additional values:

t-test-bonferroni (t-test with Bonferroni's correction for multiple
comparisons),

t-test-holm (t-test with Holm's correction for multiple comparisons)

(Manuel López-Ibáñez)

* MPI does not create log files with --debug-level 0.
(Manuel López-Ibáñez)

* For simplicity, the parallel-irace-* scripts do not use an auxiliary
`tune-main` script. For customizing them, make a copy and edit them
directly.
(Manuel López-Ibáñez)

* New parameters:

--target-runner-retries : Retry target-runner this many times in case
of error.

(Manuel López-Ibáñez)

* We print diversity measures after evaluating on each instance:
(Leslie Pérez Cáceres)

- Kendall's W (also known as Kendall's coefficient of concordance) If 1,
all candidates have ranked in the same order in all instances. If 0, the
ranking of each candidate on each instance is essentially random.

W = Friedman / (m * (k-1))

- Spearman's rho: average (Spearman) correlation coefficient computed on the
ranks of all pairs of raters. If there are no repeated data values, a
perfect Spearman correlation of +1 or -1 occurs when each of the variables
is a perfect monotone function of the other.

* Many internal and external interfaces have changed. For example, now we
consistently use 'scenario' to denote the settings passed to irace and
'configuration' instead of 'candidate' to denote the parameter settings
passed to the target algorithm. Other changes are:

parameters$boundary -> parameters$domain
hookRun -> targetRunner
hookEvaluate -> targetEvaluator
tune-conf -> scenario.txt
instanceDir -> trainInstancesDir
instanceFile -> trainInstancesFile

52

testInstanceDir -> testInstancesDir
testInstanceFile -> testInstancesFile

* Minimal example of configuring a MATLAB program
(thanks to Esteban Diaz Leiva)

* Paths to files or directories given in the scenario file are relative to the
scenario file (except for --log-file, which is an output file and it is
relative to --exec-dir). Paths given in the command-line are relative to the
current working directory. Given

$ cat scenario/scenario.txt
targetRunner <- "./target-runner"
$ irace -s scenario/scenario.txt

irace will search for "./scenario/target-runner", but given

$ irace -s scenario/scenario.txt --target-runner ./target-runner

irace will search for "./target-runner". (Manuel López-Ibáñez)

* New command-line wrapper for Windows installed at
'system.file("bin/irace.bat", package="irace")'
(thanks to Anthony Antoun)

* Budget can be specified as maximum time (maxTime, --max-time) consumed by
the target algorithm. See the documentation for the details about how this
is handled.
(Leslie Pérez Cáceres, Manuel López-Ibáñez)

1.07

* The best configurations found, either at the end or at each iteration of an
irace run, can now be applied to a set of test instances different from the
training instances. See options testInstanceDir, testInstanceFile,
testNbElites, and testIterationElites. (Leslie Pérez Cáceres, Manuel López-Ibáñez)

* The R interfaces of hookRun, hookEvaluate and hookRunParallel have changed.
See help(hook.run.default) and help(hook.evaluate.default) for examples of
the new interfaces.

* Printing of race progress now reports the actual configuration and instance
IDs, and numbers are printed in a more human-readable format.
(Leslie Pérez Cáceres, Manuel López-Ibáñez)

* Reduce memory use for very large values of maxExperiments.
(Manuel López-Ibáñez, thanks to Federico Caselli for identifying the issue)

* New option --load-balancing (loadBalancing) for disabling load-balancing
when executing jobs in parallel. Load-balancing makes better use of
computing resources, but increases communication overhead. If this overhead
is large, disabling load-balancing may be faster.
(Manuel López-Ibáñez, thanks to Federico Caselli for identifying the issue)

* The option --parallel in Windows now uses load-balancing by default.
(Manuel López-Ibáñez)

* The wall-clock time after finishing each task is printed in the output.
(Manuel López-Ibáñez, thanks to Federico Caselli for providing an initial
patch)

53

1.06

* Fix bug that could introduce spurious whitespace when printing the
final configurations. (Manuel López-Ibáñez)

* Fix bug if there are more initial candidates than needed for the
first race. (Leslie Pérez Cáceres, Manuel López-Ibáñez)

* New configuration options, mainly for R users:

- hookRunParallel: Optional R function to provide custom
parallelization of hook.run.

- hookRunData: Optional data passed to hookRun. This is ignored by
the default hookRun function, but it may be used by custom hookRun R
functions to pass persistent data around.

(Manuel López-Ibáñez)

1.05

* New option --version. (Manuel López-Ibáñez)

* Terminate early if there is no sufficient budget to run irace with
the given settings. (Manuel López-Ibáñez)

* The option --parallel (without --mpi) now works under Windows.
(Manuel López-Ibáñez, thanks to Pablo Valledor Pellicer for testing
it)

* Improved error handling when running under Rmpi. Now irace will
terminate as soon as the master node detects at least one failed
slave node. This avoids irace reporting two times the same error.
Also, irace will print all the unique errors returned by all slaves
and not just the first one.
(Manuel López-Ibáñez)

* Forbidden configurations may be specified in terms of constraints
on their values. Forbidden configurations will never be evaluated by irace.
See --forbidden-file and inst/templates/forbidden.tmpl.
(Manuel López-Ibáñez)

* New option --recovery-file (recoveryFile) allows resuming a
previous irace run. (Leslie Pérez Cáceres)

* The confidence level for the elimination test is now
configurable with parameter --confidence. (Leslie Pérez Cáceres)

* Much more robust handling of relative/absolute paths. Improved support
for Windows. (Leslie Pérez Cáceres, Manuel López-Ibáñez)

* Provide better error messages for incorrect parameter
descriptions. (Manuel López-Ibáñez)
Examples:

x "" i (0, 0) # lower and upper bounds are the same
x "" r (1e-4, 5e-4) # given digits=2, ditto
x "" i (-1, -2) # lower bound must be smaller than upper bound
x "" c ("a", "a") # duplicated values

* Print elapsed time for calls to hook-run if debugLevel >=1.

54

(Manuel López-Ibáñez)

* examples/hook-run-python/hook-run: A multi-purpose hook-run written
in Python. (Franco Mascia)

* Parallel mode in an SGE cluster (--sge-cluster) is more
robust. (Manuel López-Ibáñez)

1.04

* Replace obsolete package multicore by package parallel
(requires R >= 2.14.0)

* Use load-balancing (mc.preschedule = FALSE) in mclapply.

1.03

* Use reg.finalizer to finish Rmpi properly without clobbering
.Last().

* Remove uses of deprecated as.real().

* Nicer error handling in readParameters.

* Add hypervolume (multi-objective) example.

* Fix several bugs in the computation of similar candidates.

1.02

* More concise output.

* The parameters expName and expDescription are now useless and they
were removed.

* Faster computation of similar candidates (Jeremie Dubois-Lacoste
and Leslie Pérez Cáceres).

* Fix bug when saving instances in tunerResults$experiments.

* irace.cmdline ("--help") does not try to quit R anymore.

1.01

* Fix bug caused by file.exists (and possibly other functions)
not handling directory names with a trailing backslash or slash on
Windows.

* Fix bug using per-instance parameters (Leslie Pérez Cáceres).

* Fix bug when reading initial candidates from a file.

55

