
Software Infrastructure for E-puck

(and TAM)

L. Garattoni, G. Francesca, A. Brutschy,
C. Pinciroli, and M. Birattari

IRIDIA – Technical Report Series

Technical Report No.

TR/IRIDIA/2015-004

July 2015
Last revision: October 2016



IRIDIA – Technical Report Series
ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Université Libre de Bruxelles
Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2015-004

Revision history:

TR/IRIDIA/2015-004.001 July 2015
TR/IRIDIA/2015-004.002 February 2016
TR/IRIDIA/2015-004.003 October 2016
TR/IRIDIA/2015-004.004 October 2016

The information provided is the sole responsibility of the authors and does not necessarily
reflect the opinion of the members of IRIDIA. The authors take full responsibility for
any copyright breaches that may result from publication of this paper in the IRIDIA –
Technical Report Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.



Software Infrastructure for E-puck (and TAM)

Lorenzo Garattoni, Gianpiero Francesca, Arne Brutschy,
Carlo Pinciroli, and Mauro Birattari

1 Introduction
We present and describe an infrastructure that provides researchers an inte-
grated environment for swarm robotics experiments. The infrastructure includes
both a simulation framework in which researchers can create and develop their
experiments and the physical devices on which those experiments are finally
deployed.

When designing a swarm robotics system, the main problem that researchers
must face is the definition of individual rules that will result in the expected col-
lective behavior. As deriving the rules that should guide the single robots from
the collective requirements is difficult and time-consuming, researchers gener-
ally use simulation tools to carry out this task. The design of the appropriate
control software for robots is performed in a simulated environment through
a trial-and-error process (or through automatic design techniques). One of the
most widespread swarm robotics simulators is ARGoS [5]. ARGoS offers a mod-
ular architecture that is easy to extend and a really efficient simulation, even
with large groups of robots.

Once the user is satisfied by the results obtained in the simulated environ-
ment, the goal is finally to deploy the solution on the physical robots with
little effort. ARGoS provides the tools to upload and execute the same control
software directly on the robots.

In this report, we describe an infrastructure composed by the e-puck robot [4]
and a device for task abstraction called TAM [2]. The two platforms have
been designed, customized, programmed, and integrated in the simulation of
ARGoS such that researcher are provided a fully integrated environment for the
development of swarm robotics experiments.

2 E-puck
The e-puck [4] is a small wheeled robot developed as an open tool for education
and research purposes. Its main advantage over the competitors is the relatively
low cost and thus a broad community of users. The base version of the e-puck
features a limited set of sensors and actuators. Around the circular body of
the robot 8 infra-red transceivers are positioned to perceive the presence of
obstacles or the intensity of the environmental light. Other sensors are a color
camera at the front of the robot, a microphone and a 3-axis accelerometer. The
actuators of the base e-puck are the motors of the two wheels, which can be
set to produce a speed between 0 and 18 cm/s, a ring of 8 red LEDs and a

1



Figure 1: E-puck extended with range and bearing, Linux extension board and
omni-directional camera

speaker. Additionally, the e-puck features a bright LED at the front. Given the
very limited capabilities of the basic model, the e-pucks used at IRIDIA have
been equipped with some extension boards. In particular, each e-puck features
a ground sensor, which allows the robots to perceive the gray-scale color of the
ground on which they navigate, a range and bearing device that enables local
communications between robots (see Section 3), an omni-directional camera
that provides a 360 degree view of the surroundings, and an embedded computer
running Linux that enhances the computational power. The Linux extension
board1 features an ARM2 processor and adds all the potentials of a computer
running Linux, among which the possibility of using a USB dongle to connect to
a Wifi network and the opportunity to add an additional board that integrates 3
RGB LEDs. Figure 1 shows the final configuration of the e-puck. The complete
software model of the e-puck for ARGoS can be downloaded from https://
github.com/lgarattoni/argos3-epuck.git.

2.1 E-puck firmware architecture
The addition of extension devices required a re-design of the software running
on the e-pucks. Because of the hardware configuration, the sensors and actua-
tors included in the basic model of the e-puck are controlled by a PIC micro-
controller (dsPIC 30F6014A), which is programmed in the C language, while
the additional sensors and actuators can be controlled directly from the Linux
embedded computer. The ARM processor of the Linux board can access the
ground and sensor and the range and bearing via I2C serial bus, while the
omni-directional camera is accessed as a USB device. The PIC and the ARM
processor are connected through a UART serial bus.

The goal of the re-design was to create a completely integrated infrastructure
with ARGoS. Thanks to this infrastructure, researchers can develop control
software for e-pucks in a simulated environment and then execute the same

1http://www.gctronic.com/doc/index.php/Overo_Extension
2http://www.arm.com/

2



code without modifications on the physical robots. For this reason the software
running on the Linux embedded computer was written in C++, which is the
language used to program the core of ARGoS as well as the control software for
robots. Another requirement in the design of the e-puck software architecture
was that, just like in ARGoS, the control of the robot must be performed in a
loop composed of three phases executed in sequence: sense, control, and act.
In the sense phase the sensors’ readings are gathered and made available for
the control phase, when a step of the control logic defined by the researcher is
executed. The result of the control phase is a set of new values for the robot
actuators, which are finally maneuvered in the act phase.

Given the above requirements, the resulting software architecture is shown
in Figure 2. Its implementation can be found in the real-robot package of the
e-puck model for ARGoS [1].

The software architecture is divided in two main components: the low-level
loop written in C and executed on the PIC of the e-puck, and the main loop
(real e-puck main) written in C++ that encapsulates the user-defined control
software and is executed on the ARM processor of the Linux board. The two
software components communicate with each other through a UART serial link.
A complete cycle of control is composed of these steps:

1. The Linux board reads the sensors directly accessible (omni-directional
camera, range and bearing sensor, ground sensor).

2. The PIC reads the value of every sensor directly connected (8 proximity
sensors/light sensors, microphone, accelerometer).

3. The PIC sends the read sensor values to the Linux board through the
serial link.

4. Once the values of every sensor is available, the control passes to the
control step defined by the user. Depending on input values and the logic
defined in the control step, new values for the actuators are set.

5. The Linux board communicates back to the PIC the new values for ma-
neuvering the actuators of the basic e-puck (wheels, 8 red LEDs, speaker).

6. The PIC maneuvers the robot according to the new values.

7. The Linux board uses the new values to maneuver the actuators directly
connected (range and bearing actuator, RGB LEDs).

These steps are repeated in the main loop every 100ms, which is the default
time step duration in ARGoS. The main loop also gives the start and the end
commands to the PIC by sending specific messages through the serial bus. By
keeping track of the state of the communication, the main loop can also handle
and recover possible malfunctions.

2.2 E-puck in ARGoS
As mentioned previously, the goal of this work was to create an infrastruc-
ture that allows researcher to design and develop their robotic experiment in
a simulated environment and then smoothly port the code developed on the

3



Read added sensors

Receive sensor values

Control step

Send actuator values

Maneuver added actuators 

Read e-puck sensors

Send sensor values

Receive actuator values

Maneuver e-puck actuators 

Main loop (Linux board) E-puck loop (PIC)Serial comm

Range and bearing actuator

Ground sensors

RGB LEDs

Range and bearing sensor

Omni-directional camera

Wheels

Accelerometer

LEDs

Proximity/light sensors

Microphone

Speaker

2
3

1

4 5

67

Figure 2: Steps of a cycle of control of the e-puck software architecture

real platforms without modification. To achieve this goal, the hardware and
software details described in the previous section have been made completely
transparent to the user, who must simply use an abstract control interface to
access sensors and actuators. The same control interface is implemented by
both the simulated and the real robot packages.

Real-robot package
In the real e-puck package the control interface is implemented to hide the low
level details of the hardware and make them transparent to the user. Each
sensor and actuator has its own implementation. In particular, sensors can be
divided in two categories: the ones directly accessible from the Linux board
and the ones accessible only through the PIC. In the former case, sensors are
directly read and the data can be post-processed before being made available
to the user control software (e.g. the images acquired from the omni-directional
camera are processed to extract areas of neighboring pixels in the same range
of color spectrum, these areas are aggregated in structures called blobs, and
the blobs are provided to the user with information about relative position,
size and color). For the latter type of sensors the data is acquired by the PIC
and then insert in a data structure (real epuck base) that is sent back to the
main loop through the serial bus. Once the communication is completed, the
implementation of each sensor can read its own data from the received structure.
Figure 3 shows the e-puck software architecture integrate in ARGoS.

The real e-puck package requires to be compiled for the specific hardware
architecture before being transferred on the robot from a personal computer.
Information and a step-by-step installation guide can be found in the documen-
tation folder of the e-puck model for ARGoS [1].

Simulation package
In the simulation package the control interface is implemented to read and
modify the simulated 3D space created by ARGoS. The simulated 3D space is
composed by a set of data structures that contains the complete state of the
simulation (position and orientation of robots and obstacles, for instance). The

4



Figure 3: The architecture of the real e-puck package integrated in ARGoS

Figure 4: The architecture of the e-puck simulation package

state of the different functional components of the robots, i.e. the state of the
range and bearing device (RAB), is also stored in this set of data structures. AR-
GoS keeps the simulated 3D space organized in items called entities. Different
components’ states are stored in different specialized entities (e.g. RAB-equipped
entity).

Sensors and actuators are plug-ins that access the state of the simulated 3D
space. Sensors have read-only access to the space, while actuators can modify
it. Sensors and actuators are designed to only access the necessary specialized
entities. A diagram of the e-puck simulation package in ARGoS is reported in
Figure 4.

The simulation of sensors and actuators can be tuned by means of several
parameters that the user can specify in the ARGoS configuration file of an ex-
periment. Sensors and actuators can be used in an ideal version or in more
realistic versions — by adding noise or assigning realistic values to other pa-
rameters that modify the behavior of the specific sensor/actuator. For a list
of all the parameters available in ARGoS to modify the behavior of a specific
device, the user can query the simulator by executing the following command:

$ argos3 -q sensor/actuator_name

Besides the implementation of real-robot and simulation packages, the e-puck

5



model for ARGoS contains a testing folder in which the user can find simple
example controllers that can be compiled and execute both for simulation and
physical robots.

Calibration
One of the most delicate aspect to consider when passing from simulation to
the physical robots is the difference between sensors. Every detector is different
from the others, sensor readings can be more or less noisy depending on environ-
ment conditions and other factors that are impossible to model in a simulated
world. For these reasons, users can perform a preliminary step called calibra-
tion before executing their control software on the physical robots. The goals of
the calibration phase are (i) reducing the effect of differences between sensors;
(ii) normalizing the raw values given by the sensors in such a way that they are
consistent to the ones used in simulation; and (iii) adjusting the ranges of nor-
malization depending on the environmental conditions chosen for the particular
experiment.

The e-puck model for ARGoS provides a calibration controller in the testing
folder. When given the name of the sensor to calibrate and executed, the con-
troller prints all the instructions that the user must follow in order to proceed
with the calibration. The list of sensors that can be calibrated can be found in
the calibration_epuck.xml configuration file for the calibration controller, in
the testing folder. An example of execution for the calibration of the proximity
sensors is as follows:

$ ./ calibration -c calibration_epuck.xml -i proximity

The execution produces a xml calibration file that contains the range of each
proximity sensors over which the raw values will be normalized. When using
a sensor in their experiments, users must specify whether they want to use its
calibrated version (by specifying the calibration file produced by the calibration
controller) or the raw version. This is done in the xml configuration file of the
experiment.

3 Range and bearing
Among the devices of the e-puck, one of the most powerful is certainly the range
and bearing (RAB) [3]. The range and bearing enables local communication
between the robots. The device is equipped with 12 infra-red emitters and
12 infra-red receivers through which it can send and receive messages. Upon
reception of a message, the range and bearing is able to measure the relative
distance (range) and direction (bearing) of the robot emitter.

3.1 Range and bearing firmware
To create the carrier of the emission module, the range and bearing firmware
starts a pulse-width modulation (PWM) timer with a period of 1.09µs. The
timer generates an interrupt every 100µs. The interrupt handler takes the
buffered data and sends it to the hardware gates for its transmission. A Manch-
ester code is implemented to allow any data sent at a certain distance to be
received with the same intensity by the receiver. The transmission module can

6



be configured in order to send the same or different data from different emitters
(single emitters can be disabled as well). Once a transmission request is sent by
a master to the device, the communication module decomposes the data for the
different emitters with a preamble (6 bits), the payload (16 bits in the original
version) and a CRC (4 bits).

The reception module continuously listens if a message arrives. When it
detects the preamble of a frame in one of the receivers, the module receives the
payload and CRC. If the CRC check passes, the frame is stored in a buffer.
If peak detectors of different sensors receive the same signal at the same time,
the information is used to calculate the relative direction and distance to the
emitter. These two values are also stored in a buffer available to the master.

The interface between the master and the device is given by registers that
the master can write in order to send commands, parameters or data to the
board, or read to receive responses or data back from the board.

The original firmware only supports messages with a fixed payload size of
16 bits. In many applications this may represent an important constraint, as
16 bits may be too many or too few. To meet the requirements of various
experimental conditions, and to prevent the need of implementing costly com-
munication protocols, the range and bearing firmware has been upgraded to
support extended and parametric payload sizes. The available payload sizes are
now 8, 16, 24 and 32 bits. The modification involved the extension of the data
structures responsible of storing the data to send and receive, and a run-time
allocation of this structures and management of the indexes over the structures,
depending on the payload size sent by the master to the board. An additional
register was added to the interface to let the master set the chosen payload size.
Four other registers were added to read or write the two additional bytes of
payload.

3.2 Range and bearing in ARGoS
The integration of the e-puck range and bearing in ARGoS follows the same
principles described in Section 2.2. Because of its importance and its many
different functions, it is anyway worth describing both the implementation for
the physical robots and the simulation.

Real-robot package
The implementation of the range and bearing device for the real e-puck has
the goal of creating an interface between the user-defined control logic and the
firmware of the device described in the previous section. As the range and
bearing is both an emitter and receiver of messages, both an actuator and a
sensor have been implemented.

To realize a bidirectional communication, the user must add the range and
bearing in both actuators and sensors subtrees of the xml configuration file of
his/her experiment. Among the parameters that can be assigned to the range
and bearing in the xml configuration file, the data_size sets the payload size
that the device will use, expressed in bytes. The value of this parameter must
match for the actuator and the sensor and is sent to the range and bearing
firmware at initialization time by writing the designated register. Once the
initialization is over and the Linux board and the range and bearing are aligned
to the same payload size, the real function of sensor and actuator can begin.

7



To decrease the probability of message loss, the sensor starts a thread whose
task is to regularly poll the range and bearing device asking for new messages
received. Messages are added to a buffer that is read by the main loop once every
control step (along with the distance and the direction of emission). Indeed, the
main loop is busy handling the communication with the e-puck PIC for the
most part of the 100ms cycle of control. Limiting the reception of messages
to the remaining part of the control cycle would compromise the performance
by increasing the number of lost messages. The raw value of range given by
the device represents a measure of signal strength between 0 and 4096. In the
sensor, a conversion is performed to return a more meaningful value, i.e. a
value of distance is centimeters. The conversion function, which was derived
from experimental data, is reported below:

distance = gain ∗ eα+(β∗strength) (1)

Where α = 9.06422, β = −0.00565 and gain = 0.08674.
Similar considerations can be done regarding the actuator. Once the control

logic defines a message to send, the message should be available to the other
robots for the longer time-span possible, until a new message is set. Therefore,
the actuator should keep invoking the range and bearing for the whole duration
of the control cycle (one request to the range and bearing corresponds to a
single emission of the message). This is achieved with a separated thread, which
requests the emission of the message set by the control logic once every 20ms
(different periods were tested, with shorter periods causing an overload on the
I2C bus). The actuator code is also responsible of keeping track of the state
and the data assigned to the different emitters. The control logic might perform
multiple data-emitter assignments during a control step, sometimes conflicting
with each other. The actuator uses only the resulting final state of the emitters
and, depending on this state, optimizes the number of operations on the I2C
bus to control the range and bearing device. For instance, setting the same
payload to each individual emitter would produce 12 write operations on the
bus. By recognizing that the same data has been set for all emitters, the actuator
produces instead a single operation on the bus that requests the emission of a
payload from all emitters.

Simulation package
The simulated range and bearing allows e-pucks to perform situated communi-
cation in the simulated environment created by ARGoS. As explained in Sec-
tion 2.2, the implementation of sensors and actuators provides an interface be-
tween the user-defined control logic and the simulated 3D space of ARGoS.
Exactly like on the real robots, the simulated range and bearing comprises both
a sensor and an actuator. The implementation of the range and bearing is
associated to the range-and-bearing medium. In ARGoS, media are entities re-
sponsible of dispatching messages or other information from one equipped entity
to one or multiple others. To be able to use the range and bearing, it is hence
required to add a range-and-bearing medium to the <media> section of the xml
configuration file of the experiment.

Regarding the range-and-bearing actuator, besides the aforementioned data
size, it is possible to tune the range of transmission by assigning the desired
value, in meters, to the range parameter in the xml file.

8



0 500 1000 1500 2000 2500 3000 3500 4000
Signal strength

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

D
e
n
si

ty

80

60

45

30

15

10

5

2
0

(a)

80 60 45 30 15 10 5 2 0
Actual Distance [cm]

0

20

40

60

80

S
e
n
se

d
 D

is
ta

n
ce

 [
cm

]

(b)

Figure 5: In 5a the log-normal distributions for 9 fixed distances. In 5b, boxplot
distributions of sensed distance against actual distance when real-range noise is
active

The behavior of the sensor is instead more complex and configurable. If the
user does not specify any additional parameter, the behavior of the sensor will
be ideal: it will receive any message sent by robots in its range at a given time-
step and it will be able to measure precisely the value of distance and bearing of
each message. To simulate more accurately the behavior of the physical range
and bearing device, several parameters are available. The number of messages
that can be received in a single control cycle can be limited to the value of
the max_packets parameter. Gaussian noise can be added to the values of
range and bearing, with a standard deviation specified by the noise_std_dev
parameter. The loss of packets can be simulated, by setting the loss probability
to loss_probability. Finally, given the very noisy nature of distance measure
when using physical robots, it is possible to specify whether to reproduce this
noise in simulation by activating real_range_noise.

When real_range_noise is activated, the measures performed on physi-
cal robots are used to produce noise on the value of distance. The procedure
adopted was as follows:

1. The distribution of signal strength values was calculated for several fixed
distances on physical robots. The distribution of these values was approx-
imated by a log-normal distribution for each distance. In the sensor, a
look-up table contains the µ and σ parameters for the log-normal distri-
bution corresponding to each distance. Figure 5a shows the log-normal
distributions for the 9 distances.

2. The parameters µ and σ are calculated by interpolating the actual distance
measured in ARGoS with the physical-robot data stored in the look-up
table.

3. The simulated value of signal strength is calculated by drawing a number
from the log-normal distribution obtained from the previous point.

4. The value of signal strength is converted in distance with Equation 1.
The boxplots in Figure 5b show the distribution of final sensed distance
in function of the actual distance between the robots in the simulation.

9



From he data gathered in several physical-robot experiments, a good config-
uration for the simulated range and bearing sensor to reproduce the behavior
of the real sensor is the following:

<epuck_range_and_bearing
implementation="medium" medium="rab"
loss_probability="0.3" check_occlusions="true"
real_range_noise="true" max_packets="5"
noise_std_dev=".01"/>

Calibration
The calibration of the range and bearing device can be done with the same
calibration controller provided in the testing folder of the e-puck model for
ARGoS. For the time being, only the value of distance read by the sensor can
be calibrated. The calibration requires two robots placed at a distance of 20 cm
between each other, running the same calibration controller. The robots make
an average of the signal strength received over 100 messages. Thanks to this
value, they calculate the correct gain parameter for the function reported in
Equation 1 when distance = 20. The gain obtained will be used to convert
(through Equation 1) the values of signal strength detected by the range and
bearing sensor during robot experiments.

4 TAM
The infrastructure realized for simulated and physical-robot experiments com-
prises another device, the task abstraction module (TAM) [2]. The TAM rep-
resents single-robot, stationary tasks to be performed by an e-puck. The goal
of the TAM is to abstract from details specific to task execution that are not
the focus of an experiment. The TAM allows researchers to omit details on task
execution and focus on the relevant properties of the tasks such as their logical
interrelationships. Complex multi-robot tasks can be abstracted by groups of
TAMs. First, a complex task is modeled as the set of its constituent single-
robot subtasks and their interrelationships. Second, each single-robot subtask
is abstracted by a single TAM and the behavior of the TAMs is coordinated
such that it reflects the interrelationships identified by the model.

In the remainder of this section we describe the physical implementation of
the TAM, the control framework and finally the integration with ARGoS.

4.1 TAM architecture
A TAM has the shape of a booth, into which an e-puck can enter. The length
of every dimension of the TAM is 12 cm. The TAM is equipped with two light
barriers, three RGB LEDs, and a IR transceiver for communication.

The TAM announces the task it abstracts by using its colored LEDs. An
e-puck can perceive the LEDs of a TAM using its omni-directional camera. If
the e-puck decides to perform the task represented by the TAM, it moves into
the TAM by following the colored LEDs. The TAM can detect the presence
of the robot by using its light barriers. Upon detection of the robot, the TAM
reacts according to a user-defined logic; for example, by changing the color of

10



(a) Conceptual drawing of the TAM (b) A TAM and an e-puck robot

Figure 6: The conceptual drawing and physical realization of the TAM

its LEDs or by communicating with the robot. Communication between the
TAM and the e-puck is realized using the IR transceiver and the e-puck library
IRcom3. This communication enables experiments in which the behavior of the
TAMs depends on the specific robots working on their tasks. Figure 6 shows a
conceptual drawing of the TAM, and a real TAM with an e-puck robot.

The TAM features an XBee mesh networking module, which allows re-
searchers to synchronize the behavior of multiple TAMs, enabling the repre-
sentation of complex relationships between tasks and cooperative behaviors
between robots. The XBee module can be configured to work on 4 different
wireless channels, which allows up to four parallel experiments.

The TAM is open source under the Creative Commons Attribution-Share-
Alike 3.0 Unported License.

The firmware of the TAM is based on Arduino, an open-source platform using
an Atmel AVR micro-controller as central processor. The advantages of Arduino
are the wide availability, large community, and relative ease of development
compared to other embedded development platforms.

The goal in the design of the TAM’s control framework was to create a
centralized framework to control groups of TAMs. In this way, the TAM can be
remotely controlled by a central computer, it can be used by the computer to
gather experimental data, and it operates without being physically connected
to the computer.

The control framework of the TAM is composed of two parts: the firmware
based on Arduino running on each TAM, and the coordinator, running on the
central computer. The latter is the software component that handles the wire-
less communication with all the TAMs connected, keeps the status of every
TAM updated, and manages the relationships between the behavior of different
TAMs. The firmware notifies all events and changes in sensory readings to the
coordinator, and executes all commands that it receives in return. Commands
and notifications are relayed using the wireless mesh network modules of the
TAMs. The coordinator handles this exchange of commands/notifications and
makes it transparent to the user, who can focus on the definition of the logic
that controls the behavior of the TAMs.

3http://gna.org/projects/e-puck/

11



The software that composes the coordinator is programmed in Java4 to en-
sure the maximum simplicity and portability. To set up an experiment, the
user is required to define two Java classes: a controller and an experiment. The
former is the software that the coordinator uses to control a single TAM. One
instance of controller must be attached to each individual TAM. Similarly to
a robot control cycle, the coordinator executes in a loop the controller step
function, which at every execution takes the state of the TAM as input and
produces commands for the same TAM depending on the user-defined logic. In
the experiment, the user must attach a controller to each TAM and handle the
logical interrelationships between TAMs.

All the material about the TAM, including schematics, firmware, coordi-
nator, examples, and documentation can be be downloaded from https://
iridia-dev.ulb.ac.be/projects/iridia-tam/git.

4.2 TAM in ARGoS
The software infrastructure would not be complete without the integration of
the TAM in ARGoS. Because the coordinator and the control software are pro-
grammed in Java, there are some differences between the implementation of
the TAM and the implementation of the robots in ARGoS. First, there is no
real-robot implementation of the TAM directly in ARGoS, as the TAM’s main
loop of control is handled by coordinator, experiments and controllers, which
are programmed in Java as described in the previous section. Second, to ensure
the direct portability of the same control software from simulation to physical
TAM, the simulation package provides a C++ wrapper for the Java code used
on the physical device.

Simulation package
The goal of the simulated package is to wrap the Java software architecture of
the real TAM in C++ entities that can be added to the ARGoS simulated 3D
space. In this way, the user can create and test an experiment in simulation
by implementing control software for e-pucks in C++ and control software for
TAMs in Java. The burden of integrating everything in the same simulated
world is handled by ARGoS. Once the user is satisfied with the results, the
control software for both robots and TAMs can be executed on the real devices
without modifications. The architecture of the TAM simulated package and its
interactions with the physical TAM software architecture are shown in Figure 7.

Two Java classes TAM implement the same TAM interface, one used for the
real TAM and the other one for the integration in ARGoS. When invoked by the
controller, the TAM class used for the real TAM, on the left in Figure 7, relays
commands to the coordinator or reads the state reported by the coordinator
from the physical TAM. The implementation of TAM for ARGoS, on the other
hand, simply keeps the internal state of the TAM and returns it or modifies it
depending on the requests of the controller. The most important class for the
integration with ARGoS, i.e. the one the realizes the wrapper for the Java code
in C++, is TAMs Controllable Entity. This class is responsible of creating the
experiment, instantiating a TAM object and a controller for each TAM added
by the user to the experiment and binding each instance of controller to the right

4https://java.com/en/download/

12



1..*

1

1 1..*

1..*

1

TAM Interface

TAM TAM

Controller

Experiment

Coordinator

Physical TAM

TAMs Controllable
Entity

TAM Entity

1

1..*

ARGoS
C++

Real TAM
Java

Figure 7: TAM software architecture. On the left side the Java classes for the
real TAM. On the right side the C++ classes in ARGoS. The bold connections
are the ones that realize the C++ wrapper in ARGoS

TAM. The interactions between the C++ code of TAMs controllable entity and
the Java code of the TAM software infrastructure are realized through the JNI
library5. The TAMs Controllable Entity is also responsible of managing the
timing of the experiment by calling in a loop the step functions of experiment
and controllers. Finally, after each iteration, the TAMs Controllable Entity
takes the state of each TAM instance (which has just been modified by the step
function of its controller) and updates the state of each corresponding TAM
entity accordingly. The state of the TAM entities is used to materialize the
TAMs in the 3D simulated space of ARGoS. The effects of events that change
the state of a TAM entity in the simulation (a robot entering the TAM, for
instance) are immediately reported to the corresponding TAM object’s state,
which will be used by the next step function call.

From the user’s perspective, all these details are hidden. The user can focus
on the implementation of the control logic for the TAMs by defining experiments
and controllers. To add a TAM in the simulation, the user must insert it in the
ARGoS xml configuration file, inside the <arena> section, as shown below:

<tams java_class_path="path/to/coordinator/bin"
experiment_class="path/to/experiment"
rab_medium="ircom_medium_name"
led_medium="led_medium_name">

<tam id="TAM01" movable="false">
<body position="0,0,0"

orientation="0,0,0" />
</tam >

</tams >

5https://docs.oracle.com/javase/6/docs/technotes/guides/jni/

13



In the coordinator folder of the TAMmaterial at https://iridia-dev.ulb.
ac.be/projects/iridia-tam/git, the user can find an Eclipse project with
all the Java code of the real TAM and examples of experiments and controllers.
The argos3 folder contains instead the code for the integration in ARGoS. The
examples must be launched using the xml configuration files that can be found
in the testing folder of the e-puck model for ARGoS [1].

5 Conclusion
In this report we have presented an infrastructure composed by e-puck robots
and task abstraction modules. Besides the physical implementation of the de-
vices, we integrated them in the ARGoS simulator and we designed the infras-
tructure such that the software developed in simulation can be directly ported
on the real devices.

The infrastructure is still under development. Possible future work includes
a better coexistence of the TAM in ARGoS with the possibility of programming
it in C++ and the integration in the infrastructure of other useful tools for
experiments, such as a tracking system [6]. A tracking system allows researchers
to record and control the state of an experiment throughout its execution and
to easily gather statistics. Additionally, a tracking system enables virtualization
of aspects of the reality or parts of the robot itself. For example, researchers
could virtualize sensors and actuators that are not mounted on the robots.

References
[1] E-puck model for ARGoS. https://iridia-dev.ulb.ac.be/projects/

argos3-epuck/git.

[2] A. Brutschy, L. Garattoni, M. Brambilla, G. Francesca, G. Pini, M. Dorigo,
and M. Birattari. The tam: abstracting complex tasks in swarm robotics
research. Swarm Intelligence, 9(1):1–22, 2015.

[3] A. Gutierrez, A. Campo, M. Dorigo, J. Donate, F. Monasterio-Huelin, and
L. Magdalena. Open e-puck range & bearing miniaturized board for local
communication in swarm robotics. In Robotics and Automation, 2009. ICRA
’09. IEEE International Conference on, pages 3111–3116, May 2009.

[4] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,
S. Magnenat, J. Zufferey, D. Floreano, and A. Martinoli. The e-puck, a
robot designed for education in engineering. In P. Gonçalves, P. Torres, and
C. Alves, editors, Proceedings of the 9th conference on autonomous robot sys-
tems and competitions, volume 1, pages 59–65. IPCB, Castelo Branco, Por-
tugal, 2009.

[5] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla,
N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari, L. M.
Gambardella, and M. Dorigo. ARGoS: a modular, parallel, multi-engine
simulator for multi-robot systems. Swarm Intelligence, 6(4):271–295, 2012.

14



[6] A. Stranieri, A. Turgut, M. Salvaro, L. Garattoni, G. Francesca, A. Reina,
M. Dorigo, and M. Birattari. Iridia’s arena tracking system. Technical Re-
port TR/IRIDIA/2013-013, IRIDIA, Université Libre de Bruxelles, Brussels,
Belgium, 2013.

15


