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Abstract. Differential evolution (DE) research for multi-objective op-
timization can be divided into proposals that either consider DE as a
stand-alone algorithm, or see DE as an algorithmic component that can
be coupled with other algorithm components from the general evolu-
tionary multiobjective optimization (EMO) literature. Contributions of
the latter type have shown that DE components can greatly improve the
performance of existing algorithms such as NSGA-II, SPEA2, and IBEA.
However, several experimental factors have been left aside from that type
of algorithm design, compromising its generality. In this work, we revisit
the research on the effectiveness of DE for multi-objective optimization,
improving it in several ways. In particular, we conduct an iterative anal-
ysis on the algorithmic design space, considering DE and environmental
selection components as factors. Results show a great level of interac-
tion between algorithm components, indicating that their effectiveness
depends on how they are combined. Some designs present state-of-the-
art performance, confirming the effectiveness of DE for multi-objective
optimization.

Keywords: Multi-objective Optimization, Evolutionary Algorithms, Differen-
tial Evolution, Component-wise Design

1 Introduction

Differential evolution (DE) [15] plays an important role in single-objective opti-
mization and has led to the development of a number of effective optimization
algorithms for both constrained and unconstrained continuous problems [6]. In
particular, one of the most attractive features of DE is its simplicity and its abil-
ity to outperform classical genetic algorithms (GAs) [13]. As a result, a number
of research proposals have extended DE algorithms to tackle multi-objective
optimization problems (MOPs) in the Pareto sense [6,10,14]. In general, exten-
sions follow different paths on how to adapt DE to deal with Pareto optimality,
and these stand-alone algorithms have been compared to well-known GA-based
algorithms such as NSGA-II [7] or SPEA2 [20] to test their effectiveness. Inter-
estingly, two research groups independently proposed the same DE algorithm at



about the same time: DEMO [14] and GDE3 [10]. To highlight the effectiveness
of this algorithm, we remark that it ranked among the top five best-performing
algorithms at the 2009 CEC competition on multi-objective optimization [18].

In the most comprehensive study conducted so far on DE for multi-objective
optimization, Tušar and Filipič [17] have considered DEMO as a template for
instantiating DE algorithms. Concretely, DEMO uses DE for exploring the de-
cision space, but uses the environmental selection strategy of NSGA-II. The
authors then considered the possibility of using other environmental selection ap-
proaches, and compared three top-performing GA-based algorithms, NSGA-II,
SPEA2, and IBEA [19] with DE versions of these algorithms, aliased DEMONS-II,
DEMOSP2 and DEMOIB. By performing pairwise comparisons between algo-
rithms that differ only in the underlying search mechanism (GA or DE), the
DE operators were shown to obtain more accurate approximations of the Pareto
front and DEMOSP2 was found to best balance convergence and diversity [16].

We extend here this excellent earlier work by carrying out a more profound
component-wise analysis [3, 4] of the design of DE algorithms for MOPs. Our
analysis shows that a more fine-grained view of DE components can lead to new
insights. In the original analysis only the environmental selection strategy was a
component to be set in the DEMO template. However, the DE-part of DEMO
differs from traditional GAs in more than one component. In addition to the DE
variation operator, there is an online replacement strategy, i.e., newly generated
solutions are compared to existing solutions as soon as they are created, enforcing
a higher convergence pressure. In fact, the latter component was found to be the
key improvement of DEMO over earlier DE adaptations to MOPs [14]. However,
when we consider the DEMO versions that use environmental selection strategies
from IBEA and SPEA2 instead of the original DEMO algorithm that uses the
environmental selection from NSGA-II, we show that the online replacement
strategy is not always beneficial to the effectiveness of the DEMO versions. In
other words, while DEMO was an improvement over existing NSGA-II based DE
algorithms because of its online replacement strategy, the other DEMO versions
present the same (or, sometimes, worst) performance than versions of IBEA and
SPEA2 that simply use the DE variation operator.

Furthermore, we consider several factors that affect the conclusions in the
original analysis. First, in the original paper, the quality indicator used by IBEA
and DEMOIB was the binary hypervolume difference, whereas strong evidence
points to a better performance of IBEA when using the binary epsilon indica-
tor [2, 19]. Second, the analysis conducted in the original paper was done using
the default parameter settings traditionally adopted by the EMO community for
the benchmarks considered. However, we have recently shown that tuning the
numerical parameters of EMO algorithms can significantly improve their per-
formance [2], altering their relative performance. Finally, although the original
paper considered a representative number of benchmark functions, they all used
the same number of variables. In this work, we consider several different problem
sizes to ensure scalability issues do not compromise the generality of our results.



Algorithm 1 componentWiseDE template

1: Initialize(pop)
2: repeat
3: Variate(pop)
4: Reduce(pop)
5: until termination criteria met
Output: pop

Algorithm 2 DE variation
Input: pop

1: repeat
2: trial ← DE operator(target)
3: OnlineReplace(pop, target, trial)
4: until #offspring produced

Algorithm 3 GA variation
Input: pop

1: pool ← Select(pop)
2: popnew ← GA operators(pool)
3: pop ← pop ∪ popnew

The remainder of this paper is organized as follows. Section 2 presents our
component-wise approach to differential evolution, and how we instantiate both
DE-based and GA-based algorithms using a flexible template. Section 3 presents
the intermediate algorithmic designs we use in this work to understand the con-
tribution of the individual DE components we consider. The experimental setup
used for this assessment is given in Section 4. We split the discussion of the re-
sults in two parts. In Section 5, we compare algorithms grouped by environmen-
tal selection strategy. In Section 6, we compare all algorithms among themselves
and to a well-known efficient EMO algorithm, SMS-EMOA [1]. We do so to put
the results in perspective, since we have recently shown that SMS-EMOA per-
forms consistently well for the experimental setup considered here [2]. Finally,
we conclude and discuss future work in Section 7.

2 Differential evolution from a component-wise view

Several articles in the literature propose how to adapt DE algorithms to multi-
objective optimization. However, the differences among most of these algorithms
are quite small. From a very high-level perspective, multi-objective DE algo-
rithms can be represented using the template defined by Algorithms 1 and 2.
The general template displayed in Algorithm 1 could actually represent any
of the most used evolutionary computation approaches (GA, DE or evolution
strategies). Starting from an initial population (line 1), variation operators and
environmental selection are applied to a population to promote evolution, until
a given stopping criterion is reached.

In DE algorithms, the variation procedure is carried out as displayed in Al-
gorithm 2. The DE operator produces a trial vector from an existing target
vector of the population. Although the single-objective optimization literature
presents many different strategies for this operation, the multi-objective DE al-
gorithms proposed so far use the DE/rand/1/bin approach [15]. The most signif-
icant difference between the existing DE proposals is encapsulated in procedure



OnlineReplace (line 3). In earlier algorithms, the trial vector xtrial only replaced
the target vector xtarget if xtrial dominated xtarget. In this case, no environmen-
tal replacement is necessary, since the population size is always constant. Later,
algorithms considered the option of adding the trial vector to the population in
case both trial and target vectors were nondominated. In this case, the popula-
tion size might double at each iteration, and hence environmental replacement
strategies are employed after the variation is concluded, to reduce the popula-
tion to its original size. While this prevents algorithms from early stagnation,
it may as well slow down their convergence. We refer to these two replacement
versions as online replacement strategies, since trial solutions may replace target
solutions during the variation stage, before the actual population management
represented by procedure Reduce happens. However, some multi-objective DE
algorithms do not consider online replacement at all. In this case, solutions are
created by the DE operator, but are only compared to the population altogether,
when procedure Reduce is executed. These three different options for online so-
lution replacement are listed in the bottom part of Table 1.

The three different DEMO versions considered by Tušar and Filipič [17] can
be easily instantiated using this template as follows (all three versions use DE
variation and (non)dominance online solution replacement):

DEMONS-II uses environmental selection strategy proposed for NSGA-II, i.e.,
nondominated sorting with tie-breaking according to crowdedness.

DEMOSP2 uses the environmental selection strategy proposed for SPEA2,
i.e., sorting according to dominance strength and tie-breaking according to
nearest neighbor density estimation.

DEMOIB uses the environmental selection strategy proposed for IBEA, i.e.,
sorting according to the binary ε-indicator (Iε).

In an analogous fashion, the original GA-based algorithms NSGA-II, SPEA2
and IBEA can be instantiated using the same template. To do so, instead of
a DE-based variation, we use a traditional GA variation approach, outlined by
Algorithm 3. The mating selection (line 1) is done according to the fitness of
the individuals, which is computed using the same strategies adopted for the
environmental replacement in the respective GA-based algorithms. Besides the
previously discussed algorithms, the component-wise template presented here
could also be used to instantiate other algorithms. We will discuss this in more
detail in the next section.

3 Investigating intermediate designs

As explained in the previous section, the three original DEMO versions [17] com-
prise more than a single atomic DE-related algorithmic component. Concretely,
it is a combination of the DE variation operator and an online replacement strat-
egy. Although the DEMO versions of NSGA-II, SPEA2, and IBEA have indeed
shown performance improvements over the original algorithms, it remains un-
clear how each of these individual components contribute to these performance



Table 1. Algorithmic options of a component-wise multi-objective DE template.

Component Domain Description

Variate

{
DE variation,

GA variation
Underlying variation options

Reduce





NSGA-II,

SPEA2,

IBEA

Environmental selection approaches

OnlineReplace





dominance,

(non)dominance

none

Online solution replacement criterion
(this component only takes effect when
DE variation is used)

gains. To properly assess the effectiveness of these components, we propose a
set of intermediate algorithmic designs: DENS-II , DESP2 , and DEIB which
are identical to the DEMO variants except that they do not use online solu-
tion replacement. Moreover, the only difference between these DE versions and
the original versions of NSGA-II, SPEA2 and IBEA is the use of the DE vari-
ation operator. For instance, considering the case of NSGA-II, DENS-II, and
DEMONS-II, the first uses traditional GA selection and variation, while the lat-
ter two use DE variation. However, while DEMONS-II may replace solutions as
soon as they are created, DENS-II replaces solutions only at the environmental
selection stage (procedure Reduce of Algorithm 1).

In the next section, we present the experimental setup in which we use these
intermediate designs to properly investigate the effectiveness of the DE operators
used by the different DEMO versions.

4 Experimental setup

The benchmark sets we consider here include all unconstrained DTLZ [8] and
WFG [9] functions (DTLZ1–7 and WFG1–9). Since both benchmark sets of-
fer scalability as to the number of variables and objectives, we explore this
feature to increase the representativeness of our investigation. We consider ver-
sions of these problems with three and five objectives. Concerning the num-
ber of variables n, we consider problems with n ∈ {20, 21, . . . , 60}. Further-
more, to ensure that numerical parameters do not affect our performance as-
sessment of the DE components, we initially tune all algorithms, but we use
disjoint sets for tuning and testing to prevent overfitting. More precisely, we use
problems with sizes ntesting = {30, 40, 50} for testing, and problems with sizes
n ∈ {20, 21, . . . , 60} \ ntesting for tuning. For both testing and tuning, experi-
ments are run on a single core of Intel Xeon E5410 CPUs, running at 2.33GHz
with 6MB of cache size under Cluster Rocks Linux version 6.0/CentOS 6.3. The
remaining details about tuning and testing are given below.



Table 2. Parameter space for tuning all MOEAs for continuous optimization.

GA variation DE variation

Parameter µ = |pop| λ = |popnew| tsize pc, pm ηc, ηm CR F

Domain {10, 20, . . . , 100} 1 or λr · µ {2, 4, 8} [0, 1] {1, 2, . . . , 50} [0, 1] [0.1, 2]
λr ∈ [0.1, 2]

4.1 Tuning setup

The automatic parameter configuration tool we use in this work is irace [11].
Although it was originally proposed for configuring single-objective optimiza-
tion algorithms, it can be adapted for multi-objective optimization by using the
hypervolume indicator [12]. Concretely, for each problem considered by irace,
candidate configurations are run for a maximum number of function evaluations
(10 000, following [2]). The approximation fronts they produce are then normal-
ized to the range [1, 2] to prevent issues due to dissimilar domains. Finally, we
compute the hypervolume for each front using ri = 2.1, i = 1, . . . ,M as reference
point, where M is the number of objectives considered.

The parameter space we consider for tuning all algorithms is given in Table 2.
Parameter µ applies to both DE-based and GA-based algorithms. The following
six parameters (λ, tsize, pc, pm, ηc, ηm) only apply to GA-based algorithms. In
particular, we highlight that all GA-based algorithms use SBX crossover and
polynomial mutation, as commonly done in the literature [1, 8, 9]. Parameter
tsize controls the size of the deterministic tournament used for mating selection.
The probability of applying the crossover operator to a given pair of individu-
als is controlled by parameter pc. Analogously, the probability of applying the
mutation operator to a given individual is controlled by parameter pm. In ad-
dition, we consider two different mutation schemes: (i) bitwise, which sets the
mutation probability per variable pv = 1/n; and (ii) fixed, where pv becomes
a parameter ∈ [0.01, 1]. Finally, ηc and ηm are the distribution indices for the
SBX crossover and polynomial mutation, respectively. The remaining two pa-
rameters (CR and F ) in Table 2 concern DE variation. They control the number
of variables affected by the operator (parameter CR) and the strength of the
changes (parameter F ).

There are two additional parameters that concern only SPEA2 and IBEA.
The original version of SPEA2 contains an additional parameter k for its k-
th nearest neighborhood density estimation strategy in the mating selection.
Here, besides the default value, which is computed according to the population
size and we denote with kmethod = default, we also give irace the possibility of
configuring k directly, with k ∈ {1, 2, . . . , 9}. For IBEA, as previously discussed,
several different binary quality indicators can be used. Here we allow irace to
select between the two most commonly adopted [19], the binary hypervolume
indicator (I−H) and the binary ε-indicator (Iε). Additionally, irace is given the
flexibility to set different quality indicators for mating and for environmental
selection if that leads the algorithm to better performance. Algorithms are tuned



for each benchmark set (DTLZ or WFG) and for each number of objectives (3
or 5); that is, for each algorithm X, we obtain four tuned variants: XD3, XD5,
XW3 and XW5. For brevity, the tuned settings for all algorithms considered in
this work are provided as supplementary material [5].

4.2 Testing setup

For comparing the tuned algorithms, we run each algorithm 25 times and eval-
uate them based on the relative hypervolume of the approximation fronts they
produce w.r.t. the Pareto optimal fronts. Since the latter are typically infinite, we
generate, for each problem instance, a Pareto front with 10 000 Pareto-optimal
solutions following the methodology described in the papers where the bench-
marks were proposed [8, 9]. Given an approximation front A generated by an
algorithm when applied to a problem instance and the Pareto front P of the
same problem instance, the relative hypervolume of A equals IH(A)/IH(P ). A
relative hypervolume of 1.0 means the algorithm was able to perfectly approxi-
mate the Pareto front for the problem considered.

The comparison is done visually by means of boxplots, and analytically
through rank sums. Since we generate a large set of results, we only discuss
the most representative ones here. In particular, many of the DTLZ problems
have been found to be easy for EMO algorithms, creating a ceiling effect in the
results. For this reason, we focus the discussion on the WFG benchmark and
provide the analysis on the DTLZ benchmark as supplementary material [5].
Additionaly, due to the large amount of results we produce, we present here the
results for n = 40. Similar results were found for n ∈ {30, 50}, and are also
provided as supplementary material.

5 Experimental analysis grouped by environmental
selection strategy

To investigate how each algorithm component individually affects the perfor-
mance of the different DEMO versions, we first conduct an analysis where algo-
rithms are grouped by the environmental selection strategy they employ.

5.1 NSGA-II, DENS-II, and DEMONS-II

The boxplots of the relative hypervolume achieved by the algorithms that use the
environmental selection strategy proposed for NSGA-II are given in Figures 1
and 2. For the 3-objective problems (Figure 1), we observe very heterogeneous
results. For some problems such as WFG7 and WFG8 there is almost no dif-
ference between the algorithms, indicating that the DE components are unable
to improve the performance of the original NSGA-II. However, for problems
such as WFG1, WFG2, WFG4, and WFG6, the performance of NSGA-II can be
improved, sometimes by a large margin, such as for WFG1 and WFG2. When
we consider the effectiveness of the DE components, we see that sometimes



Table 3. Sum of ranks depicting the overall performance of algorithms grouped by
environmental selection strategy. Algorithms in boldface present rank sums not signif-
icantly higher than the lowest ranked for a significance level of 95%.

3 objectives 5 objectives

DEMONS-II
W3 DENS-II

W3 NSGA-IIW3 DENS-II
W5 DEMONS-II

W5 NSGA-IIW5

(1259.5) (1321) (1469.5) (1257) (1393) (1400)

DEMOSP2
W3 SPEA2W3 DESP2

W3 DEMOSP2
W5 DESP2

W5 SPEA2W5

(1281) (1299.5) (1469.5) (1259) (1346.5) (1444.5)

DEIB
W3 DEMOIB

W3 IBEAW3 DEMOIB
W5 DEIB

W5 IBEAW5

(1212) (1246.5) (1591.5) (1215.5) (1225.5) (1609)
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Fig. 1. Boxplots of the relative hypervolume achieved by algorithms that use the envi-
ronmental selection strategy of NSGA-II (WFG problems, 40 variables, 3 objectives).

using both components (as in DEMONS-II) is beneficial (e.g., WFG1, WFG5,
and WF8), but for other problems it is better to use the DE variation with-
out the online replacement strategy as in DENS-II (e.g., WFG2, WFG6, and
WFG9). Particularly for WFG9, using both components simultaneously wors-
ens the performance of NSGA-II. When we aggregate results for all runs and
sizes of 3-objective WFG problems in a rank sum analysis (Table 3), we see
that both DE-based algorithms improve over NSGA-II, but no significant dif-
ference can be found among DEMONS-II and DENS-II using Friedman’s test at
95% confidence level.

The performance shown by NSGA-II, DENS-II, and DEMONS-II on the 5-
objective WFG problems (see Fig. 2) is quite different. This time, using both DE
components (DEMONS-II) is only beneficial for problems WFG1, WFG4, WFG5,
and WFG8. In the other problems, the online replacement leads to results worse
even than the ones achieved by the original NSGA-II. However, when we consider
only the DE variation (DENS-II), we see that the performance of NSGA-II is
improved for most functions, except for WFG2 and WFG5. When we aggregate
results for all 5-objective problems, we see that DENS-II indeed ranks first, with
significantly lower rank sums than the remaining algorithms (Table 3).
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Fig. 2. Boxplots of the relative hypervolume achieved by algorithms that use the envi-
ronmental selection strategy of NSGA-II (WFG problems, 40 variables, 5 objectives).
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Fig. 3. Boxplots of the relative hypervolume achieved by algorithms that use the en-
vironmental selection strategy of SPEA2 (WFG problems, 40 variables, 3 objectives).

5.2 SPEA2, DESP2, and DEMOSP2

The boxplots of the relative hypervolume achieved by the algorithms that use
the environmental selection strategy proposed for SPEA2 are given in Figures 3
and 4. This time the 3-objective problems (Figure 3) show a more clear sepa-
ration between problems for which DE components lead to improvements and
problems for which they worsen the performance of the original SPEA2. For
the first group (WFG1, WFG2, and WFG6), we see that there is no pattern
as to whether the online replacement is a suitable component for improving
SPEA2. However, for the problems where DE components do not lead to perfor-
mance improvements, typically the version that uses online replacement (that
is, DEMOSP2) shows better results than the version that does not use it (that
is, DESP2). When we aggregate results for all 3-objective problems, we see that
SPEA2 and DEMOSP2 show equivalent results, while DESP2 shows significantly
higher rank sums than both.
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Fig. 4. Boxplots of the relative hypervolume achieved by algorithms that use the en-
vironmental selection strategy of SPEA2 (WFG problems, 40 variables, 5 objectives).
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Fig. 5. Boxplots of the relative hypervolume achieved by algorithms that use the en-
vironmental selection strategy of IBEA (WFG problems, 40 variables, 3 objectives).

For the 5-objective WFG problems (see Figure 4), the online replacement
component plays a more important role than in the 3-objective problems. For
most problems, the performance of DESP2 and DEMOSP2 is quite different: while
DEMOSP2 outperforms SPEA2 for most problems, DESP2 worsens the perfor-
mance of SPEA2 for nearly half of the problems considered. The main exception
is WFG2, where DESP2 has the best performance among all algorithms. When
all 5-objective problems are considered (Table 3), DEMOSP2 ranks first with
rank sums significantly lower than DESP2 and SPEA2, which respectively rank
second and third. Despite its erratic behavior, DESP2 also presents significantly
lower rank sums than SPEA2.
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Fig. 6. Boxplots of the relative hypervolume achieved by algorithms that use the en-
vironmental selection strategy of IBEA (WFG problems, 40 variables, 5 objectives).

5.3 IBEA, DEIB, and DEMOIB

The boxplots of the relative hypervolume achieved by the algorithms that use the
environmental selection strategy proposed for IBEA are given in Figures 5 and 6.
The results for the 3-objective problems achieved by these indicator-based ver-
sions are far more homogeneous than the results shown before for NSGA-II and
SPEA2 environmental selection strategies. In almost all situations, DEIB and
DEMOIB perform nearly identically. Moreover, the DE-based variants always
outperform the GA-based version, except for problems WFG3–WFG5, where
the original IBEA was already very effective. These results indicate that, for
3-objective problems, the online replacement component is not an effective com-
ponent when combined with the indicator-based environmental selection strategy
proposed by IBEA.

The results for the 5-objective problems (see Figure 6) are somehow consis-
tent with the results on the 3-objective problems. However, on the 5-objective
problems, online replacement leads to performance changes. For some problems,
such as WFG2 and WFG7, DEIB finds better results than DEMOIB. The op-
posite happens for problems WFG8 and WFG9. When we aggregate across all
problems (Table 3), we see that these two algorithms get nearly the same rank
sum, and that IBEA gets significantly worse rank sums.

5.4 Overall remarks

Overall, the DE operator leads algorithms to better results on problems WFG1,
WFG2, WFG6, and WFG9. As common characteristics, WFG1 and WFG2
present convex geometry, WFG1 and WFG9 present some form of bias, and
WFG6 and WFG9 present a complex non-separable reduction [9]. As for the
online replacement component, the only problem for which we can say that it is
beneficial is the WFG8 problem. However, since the DE operator typically wors-
ens the performance of the original algorithms for this problem, we see that the



online replacement is only weakening the effects of the DE operator. Although
these results might seem to contradict the results presented by the authors of
DEMO, we see that the environmental selection strategy from NSGA-II repre-
sents a special case here. DEMONS-II in fact improves over DENS-II and NSGA-II,
particularly for functions where NSGA-II faces difficulties [9]. However, this is
most likely explained by the poor performance of NSGA-II rather than by the
effectiveness of the online replacement strategy.

6 Comparison to SMS-EMOA

In this section we compare all algorithms with SMS-EMOA. In a recent com-
parison using the same experimental setup, SMS-EMOA was found to be very
effective for the benchmarks considered in this work [2].

For the 3-objective problems (Figure 7) we see that, in general, the DE-based
algorithms are never clearly worse than SMS-EMOA, except for the WFG6 prob-
lem. Particularly for WFG1 and WFG2, the differential evolution operator leads
to a significant performance improvement. However, the online replacement is
not effective for these two problems regardless of the environmental selection
strategy employed, and often worsens the performance of the algorithms. When
we aggregate across all 3-objective problems considered (Table 4), we see that
DEIB and DEMOIB achieve significantly lower rank sums than all other al-
gorithms. DEMOSP2 and SPEA2 rank second, along with SMS-EMOA. These
results confirm that DE algorithmic components can indeed lead to significant
performance improvements, but that the interactions between them and the en-
vironmental selection are also significant.

The comparison between all algorithms for 5-objective problems is given
in Figure 8. This time the environmental selection strategy becomes very im-
portant for the effectiveness of the algorithms. As expected, dominance-based
approaches (NSGA-II and SPEA2) are not as effective for many-objective sce-
narios, and hence even the DE versions of these algorithms are not able to
perform as well as the indicator-based algorithms. However, the performance
improvements provided by the DE variation to IBEA is such that both DEIB

and DEMOIB become the top-performing algorithms, even though IBEA itself
did not perform as competitively as SMS-EMOA. These results indicate that, if
coupled with proper many-objective search mechanisms, DE algorithmic com-
ponents can possibly improve state-of-the-art algorithms, such as SMS-EMOA.

7 Conclusions

This paper has examined how the individual components of DE interact with the
components of various EMO algorithms. In particular, we studied the underlying
variation operator (GA or DE), the environmental selection strategy (NSGA-II,
SPEA2, or IBEA), and the use of an online replacement strategy. For the DTLZ
benchmark, results presented a ceiling effect, and hence we focused our analysis
on the WFG benchmark. For both three or five objectives, results showed that
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Fig. 7. Relative hypervolume boxplots: 3-objective WFG problems with 40 variables.
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Fig. 8. Relative hypervolume boxplots: 5-objective WFG problems with 40 variables.

the DE-operator improves the algorithms in most problems and that there is a
strong interaction between this component and environmental selection. How-
ever, for the online replacement component, results almost always indicated that
this component is not effective, except when combined with NSGA-II environ-
mental selection.



Table 4. Sum of ranks depicting the overall performance of all algorithms. ∆R is the
critical rank sum difference for Friedman’s test with 95% confidence. Algorithms in
boldface present rank sums not significantly higher than the lowest ranked.

3 objectives (∆R = 271) 5 objectives (∆R = 265)

DEIB
W3 (2532) DEIB

W5 (2493)
DEMOIB

W3 (2535) DEMOIB
W5 (2506)

DEMOSP2
W3 (3738.5) SMS-EMOAW5 (2891.5)

SPEA2W3 (3764.5) IBEAW5 (3930)
SMS-EMOAW3 (3798) DEMOSP2

W3 (3932.5)
IBEAW3 (3924) DENS-II

W5 (4089)
DEMONS-II

W3 (3972.5) DESP2
W5 (4123.5)

DENS-II
W3 (4094.5) SPEA2W5 (4271.5)

DESP2
W3 (4325.5) DEMONS-II

W5 (4426.5)
NSGA-IIW3 (4440.5) NSGA-IIW5 (4461)

These results represent a significant contribution of our investigation. Before
our work, it was believed that the online replacement component was critical to
the effectiveness of multi-objective DE algorithms [14]. Furthermore, this result
reinforces the value of the component-wise design approach [2], which advocates
that components should be jointly investigated to account for interactions. In
fact, the component-wise design of effective DE-based algorithms is an impor-
tant next step for this research. Here, we have shown that, when coupled with
the environmental selection strategy from IBEA and used with numerical pa-
rameters properly tuned, a very effective algorithm can be devised. Concretely,
this DEMOIB algorithm has consistently outperformed SMS-EMOA, an algo-
rithm that was recently shown to be very effective on the benchmarks considered
here. It is then natural to envision the possibility of designing even more effec-
tive algorithms if a large set of components is considered, as in the automatic
component-wise design methodology [2, 12].
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