
Property-driven Design for Robot Swarms:

A Design Method Based on Prescriptive

Modeling and Model Checking

M. Brambilla, M. Dorigo, and M. Birattari

IRIDIA – Technical Report Series

Technical Report No.

TR/IRIDIA/2014-003

January 2014

IRIDIA – Technical Report Series
ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Université Libre de Bruxelles
Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2014-003

The information provided is the sole responsibility of the authors and does not necessarily
reflect the opinion of the members of IRIDIA. The authors take full responsibility for
any copyright breaches that may result from publication of this paper in the IRIDIA –
Technical Report Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.

A

Property-driven design for robot swarms: A design method based on
prescriptive modeling and model checking

MANUELE BRAMBILLA, MARCO DORIGO, and MAURO BIRATTARI, IRIDIA, Université
Libre de Bruxelles, Brussels, Belgium

In this paper, we present property-driven design, a novel top-down design method for robot swarms based on
prescriptive modeling and model checking. Traditionally robot swarms have been developed using a code-
and-fix approach: in a bottom-up iterative process, the developer tests and improves the individual behaviors
of the robots until the desired collective behavior is obtained. The code-and-fix approach is unstructured
and the quality of the obtained swarm depends completely on the expertise and ingenuity of the developer.
Property-driven design is composed of four phases: first, the developer formally specifies the requirements of
the robot swarm by stating its desired properties; second, the developer creates a prescriptive model of the
swarm and uses model checking to verify that this prescriptive model satisfies the desired properties; third,
using the prescriptive model as a blueprint, the developer implements a simulated version of the desired
robot swarm and validates the prescriptive model developed in the previous steps; fourth, the developer
implements the desired robot swarm and validates the previous steps. We demonstrate property-driven
design using two case studies: aggregation and foraging.

Categories and Subject Descriptors: I.2.9 [Artificial Intelligence]: Robotics

General Terms: Design, Reliability, Verification

Additional Key Words and Phrases: Swarm robotics; Top-down design; Prescriptive modeling; Model checking;
Aggregation; Foraging

ACM Reference Format:
Manuele Brambilla, Marco Dorigo, and Mauro Birattari, 2014. Property-driven design for robot swarms: A
design method based on prescriptive modeling and model checking. ACM Trans. Embedd. Comput. Syst. V,
N, Article A (January YYYY), 26 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Swarm robotics is an approach to the coordination of large groups of robots that takes
inspiration from social insects, such as ants, bees and termites [Şahin 2005]. Swarm
robotics aims at developing systems that are fault tolerant, scalable and flexible [Dorigo
et al. 2014].

The research leading to the results presented in this paper has received funding from the European Re-
search Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement n.246939 and by the EU project ASCENS, 257414.
Manuele Brambilla, Marco Dorigo and Mauro Birattari acknowledge support from the F.R.S.-FNRS of
Belgium’s Wallonia-Brussels Federation, of which they are a F.R.I.A. Research Fellow, a Research Director
and a Research Associate, respectively.
Author’s addresses: M. Brambilla, M. Dorigo, M. Birattari, IRIDIA, CoDE, Université Libre de Bruxelles, 50
Av. Franklin Roosevelt CP 194/6, 1050 Brussels, Belgium; email: mbrambil@ulb.ac.be; mdorigo@ulb.ac.be;
mbiro@ulb.ac.be.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 1539-9087/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 M. Brambilla et al.

Robot swarms are self-organized systems that can be observed at two levels: the
individual, also called microscopic, level; and the collective, also called macroscopic,
level. The individual level is the behavior displayed by a single robot. The collective
level is the behavior displayed by the swarm and it is the result of the interaction of
the individual behaviors.

On the one hand, this dual nature of swarm robotics systems is key in achieving
fault tolerance, scalability and flexibility. On the other hand, it is the source of difficult
design challenges. In fact, the swarm robotics engineer must think at the collective-level,
but develop at the individual-level: developers of robot swarms are caught between
collective-level missions, such as “monitor the perimeter of a building for intruders”
or “carry these heavy objects from here to there”, and individual-level software, as
the only controllable/programmable components of a robot swarm are the individual
behaviors of the robots. Conversely, at the individual level, collective-level goals could
be meaningless: for example, for a single robot it is impossible to monitor an entire
building at the same time or transport an object if it is too heavy to be moved. Thus the
developer needs to design the behavior of the individual robots so that their interaction
will result in the collective-level behavior that is needed to accomplish the mission.

Unfortunately, the design and development of individual-level behaviors to obtain a
desired swarm-level goal is, in general, very difficult, as it is difficult to predict and thus
design the non-linear interactions of tens or hundreds individual robots that result in
a desired collective behavior. The difficulty to predict and design such interactions and
the lack of a centralized controller make traditional system engineering approaches
ineffective [Wooldridge and Jennings 1998; Banzhaf and Pillay 2007].

Some approaches to the design of robot swarms have been proposed in the last
years. However, as discussed in Section 2, these approaches present limitations and an
effective approach to the top-down design of robot swarms is still missing.

In this paper, we present property-driven design, a novel top-down design method
for robot swarms based on prescriptive modeling and model checking. The developer
creates a prescriptive model of the desired robot swarm and uses it as a blueprint for
the implementation and improvement of the final swarm. The use of model checking
allows the developer to formally verify properties directly on the model, reducing the
need for testing in simulation or with robots. In property-driven design, different
“views” of the system to realize are produced, from the most abstract (the properties
of the system) to the most concrete (the final robot swarm). This is similar to model-
driven engineering [Miller and Mukerji 2003] where software is designed through
a series of model transformations from platform-independent models to executable
platform-specific models.

Property-driven design addresses the shortcomings of the existing approaches.

— It aims at providing a method to formally specify the requirements of the desired
robot swarm;

— It reduces the risk of developing the “wrong” robot swarm, that is, a robot swarm
that does not satisfy the requirements;

— It promotes the re-use of available models and tested solutions;
— It can be used to develop platform-independent models that help in identifying the

best robotic platform to use;
— It helps to shift the focus of the development process from implementation to design.

Property-driven design is a step forward in the development of swarm engineering:
the systematic application of scientific and technical knowledge to specify requirements,
design, realize, verify, validate, operate and maintain an artificial swarm intelligence
system [Brambilla et al. 2013].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Property-driven design for robot swarms A:3

To illustrate and validate property-driven design, we apply it to two case studies:
aggregation and foraging.

In Section 2, we present the related literature on design methods and model checking
for swarm robotics. In Section 3, we present property-driven design. In Section 4, we
present the two case studies.

2. RELATED WORK
In this section we first discuss the literature on design methods and then the literature
on model checking in swarm robotics.

Design methods. The design of multi-robot systems has been addressed in many
research papers [Zambonelli et al. 2001; Bordini 2009; Goldberg and Mataric 2001].
However, the design of robot swarms poses challenges that are not present in other
multi-robot systems. Indeed, the characteristics of robot swarms, such as high number
of individuals, strong decentralization, simple behaviors, local communication and
action, are usually regarded as characteristics that make a multi-robot system “too
complex to manage effectively” [Wooldridge and Jennings 1998].

Traditional multi-robot approaches are thus of limited use when developing robot
swarms. For this reason other ad-hoc design approaches have been proposed.

Kazadi et al. [2009] developed a design approach based on Hamiltonian vector fields
called the Hamiltonian method: starting from a mathematical description of a collective
behavior, the method can be used to derive microscopic rules that minimize or maximize
a selected numerical value (e.g., the virtual potential energy of a particular state of
the swarm). The Hamiltonian method has the major drawback that it deals only with
spatially-organizing behaviors such as pattern formation.

Berman et al. [2009] proposed a top-down approach to the design of a task allocation
behavior. The authors describe the system as a Markov chain in which states represent
tasks and edges represent the possibility for a robot to move from a task to another.
Using a stochastic optimization method, it is possible to derive the probabilities that
govern how robots change task in order to minimize the time needed to converge to
the desired allocation. This approach is specific for task allocation and it has not been
extended to other collective behaviors.

Hamann and Wörn [2008] proposed a method inspired by statistical physics. The
authors use Langevin equations to describe the individual behaviors of the robots
and, through analytical means, they derive a Fokker-Planck equation describing the
collective behavior of the system. A similar approach was adopted also by Berman et al.
[2011], who used a set of advection-diffusion-reaction partial differential equations to
derive the individual behaviors of a swarm performing task allocation. Both methods
are based on advanced mathematical techniques and on the ability for the developer
to model the robot interactions. Moreover, such methods rely on ordinary or partial
differential equations, which provide reliable results only if it is assumed that the
swarm size tends to infinite. In swarm robotics this is very often not the case, since
typically robot swarms are composed of no more than a hundred robots and often of
just a few tens of robots [Brambilla et al. 2013].

Model checking in swarm robotics. Property-driven design is based on model checking
[McMillan 1993], a technique to prove properties of a system in a formal way.

Dixon et al. [2012] were the first to apply model checking to swarm robotics. The
authors used a microscopic model, in the form of the and-composition of individual-
level models, and linear temporal logic to define properties of individual robots and
of the swarm. This approach is not scalable, as the number of states of the model
increases exponentially with the number of robots. Furthermore, linear temporal logic,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 M. Brambilla et al.

1 2 3 4

Properties Properties

Model

Properties

Model

Simulation

Properties

Model

Simulation

Robots

Most abstract
layer

Most concrete
layer

Fig. 1. The four phases of property-driven design.

which deals only with binary values (true/false) is a suboptimal choice to analyze robot
swarms, which are systems characterized by stochastic properties.

Recently, Konur et al. [2012] adopted a different approach. The authors used model
checking on a macroscopic model of a robot swarm performing foraging. They specified
the desired properties of the system using probabilistic computation tree logic (PCTL),
a temporal logic that includes probabilistic aspects (see Appendix I for a description of
PCTL). This approach is able to overcome the limits of linear temporal logical. Moreover
the use of a macroscopic model, instead of a microscopic one, allows this approach to
deal with systems composed of tens of robots. We used a similar approach in a previous
work [Brambilla et al. 2012] in which model checking and PCTL were used to verify
properties of a robot swarm performing aggregation.

In a work on the use of Bio-PEPA in swarm robotics [Massink et al. 2013], we were the
first to use statistical model checking (presented in Appendix I) to analyze a collective
decision-making behavior. Statistical model checking overcomes the scalability issues
of complete model checking allowing us to analyze models of large swarms.

3. PROPERTY DRIVEN DESIGN
Property-driven design is composed of four-phases: i) the requirements of the robot
swarm are first formally described in the form of desired properties; ii) subsequently, a
prescriptive model of the robot swarm is created; iii) this prescriptive model is used as
a blueprint to implement and improve a simulated version of the desired robot swarm;
iv) the final robot swarm is implemented.

A schema showing the different phases of property-driven design is presented in
Figure 1.

In each of the phases of property-driven design, a new layer is added to the system.
Layers differ in their level of abstraction: the properties layer is the most abstract, in
which only the goal characteristics of the robot swarm are stated; the robots layer is
the most concrete, in which the actual software for the real robots is developed and
deployed. The addition of a new layer brings the system closer to its final state.

Each phase of property-driven design is characterized by a development/validation
cycle: the focus of the developer is on the newly introduced layer, but all previously
developed layers are still active, that is, they are still improved and expanded, should
this be needed in order do guarantee the consistency of all layers. The newly introduced

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Property-driven design for robot swarms A:5

layer provides the developer with further information on the system. This information
is used to improve the system being developed, to validate its prescriptive model, and
to verify its properties. For example, the development of the system in simulation
provides the developer with new data that can be used to improve and validate the
prescriptive model and further verify that the desired properties hold.

Phase one: Properties – In this phase, the developer formally specifies the require-
ments of the robot swarm in the form of desired properties. These properties are the
distinguishing features of the robot swarm that the developer wants to realize. They
can be task specific, such as the system eventually completes task X, or they can express
more generic properties, such as the system keeps working as long as there are at least
N robots or the system will never be in state Y for more than t time-steps. The clearer
and more complete these properties are in this phase, the more the developed robot
swarm will meet expectations. Clearly stated requirements help reducing the risk of
developing “the wrong robot swarm.” For simplicity, we assume that requirements do
not change during the development of the robot swarm.

Phase two: Model – In this phase, the developer creates a prescriptive model of the
robot swarm. Usually, the prescriptive model describes how robots change state over
time, where a state is an abstract simplified description of the actions of a robot (see
also Appendix I). The prescriptive model should be sufficiently detailed to capture the
behavior of the robots and their interaction, but should not be too detailed, in order to
avoid unnecessary complication.

Once a first draft of the prescriptive model is produced, the desired properties stated
in phase one are verified using model checking. As in test-driven development [Beck
2003], at first it is possible that the prescriptive model does not satisfy all the desired
properties. In an iterative process, the developer expands and improves the prescriptive
model, until the properties are satisfied. The outcome of this process is a prescriptive
model of the collective behavior of the robot swarm that satisfies the stated properties.

Phase three: Simulation – In this phase, the developer uses the prescriptive model
as a blueprint to implement and improve the robot swarm using a physics-based com-
puter simulation (henceforth simply simulation). By blueprint we mean that the pre-
scriptive model is used to identify the most relevant aspects of the robot swarm to
realize. This allows the developer to focus on these aspects and neglect other minor
details. For example, if a prescriptive model shows that, by entering state i, an indi-
vidual robot affects the performance of the whole swarm more than by entering state
j, the developer can focus on the first and temporarily ignore the second. Moreover,
concentrating on the prescriptive model at design time allows the developer to direct
his efforts towards high-level decisions rather than on the implementation.

It is possible that the implementation choices or other unforeseen aspects of the
system yield in a simulated system that does not behaves as predicted by the prescrip-
tive model. In this case the developer must go back to the previous phases, modify the
prescriptive model to consider the results obtained from the simulation, and verify
whether the required properties still hold true.

Phase four: Robots – In the last phase, the developer realizes the final robot swarm.
Similarly to the transition between the prescriptive model and the simulation, if the
implementation on robots reveals that some assumptions made during the previous
phases do not hold, it might be necessary to modify the simulated version or the
prescriptive model, in order to keep all levels consistent.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 M. Brambilla et al.

4. CASE STUDIES
In this section, we illustrate property-driven design using two very common case
studies from the swarm robotics literature [Brambilla et al. 2013]: aggregation and
foraging.

In both case studies, we perform model checking using PRISM, a state-of-the-art
suite for model checking [Kwiatkowska et al. 2004]. PRISM is free and is released as
open source software under the GNU General Public License (GPL).1

4.1. Aggregation
In the first case study, we tackle aggregation: robots have to cluster in an area of the
environment. The robots have neither knowledge of the position of the other robots nor
a map of the environment. We choose aggregation as a case study for various reasons:
i) aggregation is a simple case study and this allows us to focus on the development pro-
cess; ii) aggregation is a common case study in swarm robotics [Brambilla et al. 2013];
iii) aggregation possesses many of the salient traits of swarm robotics; it is completely
distributed, it is based on simple robot-to-robot interactions, and it is characterized by
stochasticity and spatial aspects.

The aggregation case study that we discuss in this paper is similar to the one
presented by Jeanson et al. [2005]. We consider a dodecagonal environment with two
black spots of equal size called area A and area B. We call area C the remaining white
area. Each of the black spots is large enough to host all the robots. See Figure 5 for a
picture of the environment. We consider three swarm sizes: 10, 20 and 50. We use three
different arenas for the three different group sizes, respectively of 4.91m2, 19.63m2 and
50.26m2.

In the following, we will apply the 4-phase process explained in Section 3.

Phase one: Properties – The main property that the robot swarm must satisfy is
“eventually all the robots form an aggregate”. The robots should aggregate as fast as
possible either on area A or area B. We set a time limit of 1000 seconds. Using PRISM
syntax, we can define the following property:

P>=k [F<=1000 (a=N_t)|(b=N_t)] (1)

In less formal terms, we want to know whether, in the first thousand seconds (F<=1000),
the number of robots in area A or in area B is equal to the total number of robots in the
swarm ((a=N_t)|(b=N_t)), with a probability greater or equal to k (P>=k). The value
of k depends on the size of the swarm: k = 0.80 for Nt = 10; k = 0.40 for Nt = 20; and
k = 0.01 for Nt = 50;

Another property is that the aggregate, once formed, is stable for at least 10 seconds,
that is, robots do not change state once the aggregate is formed. We want this to happen
more than two thirds of the time an aggregate is formed:

(a=N_t)|(b=N_t) => P>=0.67 [G>=10 (a=N_t)|(b=N_t)] (2)

In natural language, Property 2 can be expressed in this way: from the aggregate state
((a=N_t)|(b=N_t)) is it true with probability of at least 0.67 (=> P>=0.67) that the robot
swarm stays for at least 10 seconds (G>=10) in the aggregate state?

Phase two: Model – To develop the prescriptive model for the aggregation case
study, we consider the three areas in which the environment is divided. We define three
states: Sa, Sb and Sc. A robot in area A or B is in state Sa or Sb, respectively. Robots

1http://www.prismmodelchecker.org

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Property-driven design for robot swarms A:7

a

c

bP
ac

P
ca

Paa

P b
c

P c
b

Pbb

Pcc

Fig. 2. The prescriptive model for aggregation. Each state is used to count the number of robots in the
corresponding area.

outside area A or B are in state Sc. We develop a discrete-time macroscopic prescriptive
model. In a macroscopic model each state is associated with a counter to track the
number of robots currently in that state (see Appendix I). In this model, we have three
counters, a, b and c, where a+b+c=N_t, associated to the respective states. See Figure 2
for the model of the system.

In this initial stage of the definition of the prescriptive model, we assume that the
system can be effectively described by a non-spatial model, that is, a model in which
the trajectories of the robots are ignored and a robot can move instantaneously from
area C to area A or B, and vice versa. Moreover, for the moment, we also ignore the
effects of interferences between robots [Lerman et al. 2005]. In case these assumptions
prove to be not realistic and the results obtained with the prescriptive model do not
match those obtained in simulation or with the final robot swarm, we will modify them
in the following phases, as explained in Section 3.

The first design attempt is the following: a robot performs random walk and, when
it finds a black area, it stops. A robot stopped on a black area has a fixed probability to
leave.

Since the prescriptive model is non-spatial and ignores interference, we consider
only the geometric properties of the areas to compute pca, that is, the instantaneous
probability that a robot transitions from Sc to Sa. A robot in area C can either go to area
A, go to area B or stay in area C. This means that a robot in area C has a probability of
going from area C to area A equal to pca = AA

Aarena
, of going from area C to area B equal

to pcb = AB

Aarena
, and of staying in area C equal to pcc = AC

Aarena
= 1 − (pca + pcb). Note

that pca = pcb, since the two areas have the same size.
The remaining probabilities depend on the behavior of the robots. The aggregate can

be obtained in area A or area B, thus we set the probabilities of leaving these two areas
to be equal: pac = pbc. A robot in area A can only go to area C or stay in area A, thus
paa = 1− pac. The same holds for area B. From the above, it follows that paa = pbb. The
only independent probability remaining is pac. Through model checking, we can find
the value of pac that maximizes the probability involved in the definition of Property 1.

Using model checking, we can find the best values for parameter pac and whether
the required properties are satisfied. Using PRISM we can also compute the exact
probabilities involved in the definition of the properties. Table I shows that this first
attempt at tackling the aggregation case study is unsuccessful. The behavior obtains
poor results and the system does not cope well with increasing group sizes.

An analysis of the prescriptive model can help us in improving the developed behavior.
From the obtained results we observed that a fixed pac does not promote the formation
of a single aggregate. A better solution is to let a robot decide whether to leave according

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 M. Brambilla et al.

Table I. Model checking results for the first solution with a fixed pac. Column pac
shows the best value of pac. Columns Pr 1 and Pr 2 show whether Property 1 and 2
are satisfied and the exact values of the probabilities involved in their definition.

Nt AA Aarena pca pac Pr 1 Pr 2

10 0.38m2 4.91m2 0.08 0.05 X (0.75) X (0.46)

20 0.78m2 19.63m2 0.06 0.04 X (0.15) X (0.07)

50 3.14m2 50.26m2 0.06 0.04 X (8.8× 10−5) X (3.7× 10−5)

Table II. Model checking results for the second solution where pac = 1 −
pmin−ac∗(Ns+1). Column pmin−ac shows the best value of pmin−ac . Column
Pr 1 and Pr 2 are defined as in Table I.

Nt AA Aarena pca pmin−ac Pr 1 Pr 2

10 0.38m2 4.91m2 0.08 [0.19, 0.24] X (0.95) X (0.92)

20 0.78m2 19.63m2 0.06 0.12 X (0.79) X (0.87)

50 3.14m2 50.26m2 0.06 0.10 X (0.25) X (0.71)

to the number of sensed robots around it: with only few robots nearby, the probability
to leave the aggregate pac is high and vice versa. We set pac = 1 − pmin−ac ∗ (Ns + 1),
where pmin−ac is the minimum staying probability we want for a robot and Ns is the
number of other robots sensed. We add 1 to the number of robots sensed, as we include
also the robot that is choosing its next action. Subsequently, using model checking,
we find the best value of pmin−ac for the different group sizes. As reported in Table II,
results are significantly better both for Property 1 and Property 2.

With the current prescriptive model we are also able to define specifications of the
hardware capabilities of the robots: a ground sensor, to differentiate between the two
black areas A and B and the white area C; a sensor to detect nearby robots; and wheels
to move. An example of such a robot is the e-puck [Mondada et al. 2009], which can
be extended with a range and bearing board that allows it to perceive the presence of
neighboring robots [Gutiérrez et al. 2009].

Phase three: Simulation – In this aggregation case study, the prescriptive model
captures well the microscopic behavior of the single robots, thus it is quite straightfor-
ward to implement the robot swarm in simulation. However, several implementation
details are not explicitly present in the prescriptive model, such as how the robots
perform random walk, and have now to be programmed explicitly.

We implement the robot swarm using the ARGoS simulator [Pinciroli et al. 2012].
Figure 3 presents a screenshot of the simulated robot swarm.

We perform three different sets of experiments, one for each group size. To validate
the prescriptive model we measure the average time necessary to form a complete
aggregate on 100 runs with different values of pmin−ac. The robots are deployed in a
random position at the beginning of each experiment. Each experiment is halted when
a complete aggregate is formed or after 10,000 seconds.

As reported in Figure 4, for all the three group sizes, the best results are obtained
with the value pmin−ac predicted using the prescriptive model. However, the results
related to Property 1 obtained with the simulated version of the robot swarm are
usually worse than those predicted by the prescriptive model, in particular with 20
and 50 robots. With 10 robots and pmin−ac = 0.22 the simulated robot swarm was able
to form a complete aggregate before 10,000 seconds 100 times out of 100, in line with
the predictions of the prescriptive model. However, with 20 robots and pmin−ac = 0.12,
an aggregate was formed in less than 1,000 seconds only 53 times out of 100, whereas
in the prescriptive model this happened with probability 0.79. With 50 robots and

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Property-driven design for robot swarms A:9

Fig. 3. A screenshot of the simulated version of the robot swarm with 20 robots.

Table III. A comparison between model checking and simulation. The table presents the probability
involved in the definition of Property 1 (model checking) compared to the experimental results
over 100 runs (simulation).

Nt Model checking (old pca values) Model checking (new pca values) Simulation

10 0.95 with pca = 0.08 0.95 with pca = 0.08 100/100

20 0.79 with pca = 0.06 0.53 with pca = 0.05 53/100

50 0.25 with pca = 0.06 0.01 with pca = 0.04 2/100

pmin−ac = 0.10 the difference is even more evident: only 2 runs out of 100 resulted in
an aggregation time of under 1,000 seconds whereas the prescriptive model predicted
a probability of 0.25.

As explained in Section 3, since the results obtained from the prescriptive model do
not match those obtained with simulations, we need to modify the model in order to
make them consistent. Our conjecture is that the discrepancy in performance between
the prescriptive model and the simulated robot swarm is due to the fact that, as the
number of robots grows, interference between robots reduces pca. This is because the
robots spend time avoiding collisions and because the robots stopping in the black
areas prevent other robots from accessing them. These aspects are not considered
explicitly in the model. Reducing pca in the model allows us to obtain results that are
closer to those obtained in simulation. For 10 robots there is no need to modify pca, as
the results already match. For 20 robots and pca = 0.05, we observe that Property 1
is satisfied: robots form an aggregate in less than 1,000 seconds with probability 0.53.
This matches the results obtained in simulation. For 50 robots we set pca = 0.04, which
gives a probability of 0.01. Table III presents a comparison between the number of
successful aggregates obtained before 1,000 seconds obtained in simulation and those
obtained with model checking with the old and pca new values.

To test Property 2, we perform 100 runs of the simulated experiments for 10,000
seconds with the three group sizes. In the experiments, we measure whether the robot
swarm satisfies Property 2, that is, whether a complete aggregate, once formed, lasts
more than 10 seconds. In all the cases in which a complete aggregate was formed before
10,000 seconds, Property 2 was satisfied.

Videos of the simulated experiments are available in the supplementary mate-
rial [Brambilla et al. 2014].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 M. Brambilla et al.

●

●

●●

●
●
●

●●

●
●
●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●

Aggregation time with 10 Robots

P_min−ac

T
im

e
[s

]

0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30

10
00

50
00

10
00

0

●
●

●
●●

●

●

●●

●

●●●●

●

●

●

●

●

●●●

●

●
●●●●●
●

Aggregation time with 20 Robots

P_min−ac

T
im

e
[s

]

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

10
00

50
00

10
00

0

●

●

●

●

●
●
●
●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

Aggregation time with 50 Robots

P_min−ac

T
im

e
[s

]

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

10
00

50
00

10
00

0

Fig. 4. The results obtained with the ARGoS simulator. The graphs show the time at which the experiment
is stopped. This time is less then 10,000 seconds in case the aggregate is formed, or equal to 10,000 seconds
in case the aggregate is not formed. Results are presented for different pmin−ac over 100 runs for 10, 20 and
50 robots.

Phase four: Robots – We perform 10 experiments with a group of 10 e-pucks in
an arena identical to the simulated one. A screenshot of an experiment can be seen
in Figure 5. Figure 6 shows a comparison between the time necessary for achieving
aggregation obtained with the robots and in simulation. A video of a run is available in
the supplementary material [Brambilla et al. 2014].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Property-driven design for robot swarms A:11

Fig. 5. A picture of an experiment performed with 10 e-puck robots.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical Distribution Function

Time to achieve aggregation [s]

F
n(

x)

●

●

●

●

●

●

●

●

●

●

0 200 400 600 800 1000

Real Robots
Simulation

Fig. 6. A graph showing the empirical cumulative distribution Fn(x) of the time necessary to achieve
aggregation obtained with robots (10 runs) and in simulation (100 runs). In both cases Nt = 10 and
pmin−ac = 0.22.

In 10 runs out of 10, both Property 1 and Property 2 were satisfied. The results
obtained with the robots are in line with those obtained in simulation.

The obtained robot swarms is able to aggregate satisfying the required properties.
For this reason, there is no need to further update the prescriptive model and we can
declare the process completed.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 M. Brambilla et al.

4.2. Foraging
In the second case study, we tackle foraging. In the simplest form of foraging, robots
harvest objects and store them in the nest. The objects can be scattered in random
positions or located in specific areas in the environment called sources. Foraging can
be seen as an abstraction of more complex and realistic applications, such as search
and rescue, land mine removal, waste cleaning and automated warehouse operation.

The number of objects retrieved typically depends on the number of robots: a single
robot can perform foraging alone, but additional robots could be added to increase
the performance of the swarm as robots working in parallel are able to retrieve more
objects per time unit than a single robots. However, when the density of the robots in
the environment increases, the performance of each single robot may be reduced due
to interference [Lerman and Galstyan 2002; Pini et al. 2009].

In this case study, we assume that the robotic platform is given: the task must be
tackled using e-pucks [Mondada et al. 2009]. The e-puck does not have the manipula-
tion capabilities to interact with physical objects, so we consider an abstract version
of foraging: instead of interacting with objects, e-pucks interact with TAM devices
[Brutschy et al. 2010]. The TAM is a device similar to a booth, in which a robot can
enter. It has a system of light barriers to sense the presence of a robot, and an LED
that can be used to communicate information about its internal state. In this case
study, TAMs are used to simulate the manipulation of objects: an e-puck can enter in a
TAM, wait a fixed time and leave to simulate harvesting or storing an object.

The arena comprises 20 TAMs: 5 TAMs on the north wall act as the nest, each of
these TAMs is a storing location; 15 TAMs on the other walls act as sources, locations
where objects can appear. At any given time, in the arena there are O objects available,
that is, a new object appears as soon as one is harvested by a robot. We perform
experiments in which O equals {2, 4, 6, 8, 10}. The number of available storing locations
depends on the number of robots currently storing an object: it can vary from 5, when
no robot is using a storing location, to 0 if all are in use.

The state of a TAM is encoded using colors: green when the TAM is available for
storage; blue when the TAM has an object available for harvesting; red when the TAM
is busy, that is, a TAM in which a robot is currently harvesting or storing an object;
off/black when the TAM is unavailable.

The environment is enclosed in 2m× 2m square (see Figure 7 and Figure 12). Note
that there is no globally perceivable clue in the environment that informs the robots on
the position of the nest, differently from many other foraging studies (See Brambilla
et al. [2013] for a review including work on foraging).

To allow robots to see the TAMs, we use e-pucks equipped with an omnidirectional
camera.2 Using the omnidirectional camera, robots can see the LEDs of the TAMs
within a range of 0.5m.

In the following, we will apply the 4-phase process presented in Section 3. In the
foraging case study, we use the continuous time version of the Markov chain model, to
model more easily the durations of some actions, such as harvesting and storing an
object.

Phase one: Properties – In foraging, the main requirement is that the swarm
retrieves at least a certain number of objects within a fixed time:

R"obj_ret">=k [C<=600] (3)

where R"obj_ret">=k indicates that we are interested that the expected value of the
reward "obj_ret" is greater or equal than k, and C<=600 indicates that we are inter-

2See http://www.gctronic.com for more details.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Property-driven design for robot swarms A:13

Fig. 7. A screenshot of the simulated version of foraging using 20 robots. Green lighted TAMs signal storage
locations, blue lighted TAMs signal objects to be taken, dark TAMs are not available.

Table IV. The value of k necessary to satisfy Property 3 for
different values of Nt, the number of robots composing the
swarm, and values of O, the number of objects available in the
environment at any given time.

Nt O k

20 2 45

20 4 55

20 6 65

20 8 75

20 10 85

Nt O k

10 6 40

20 6 65

50 6 90

100 6 75

ested in the cumulative value over 600 seconds. The number k of objects that we wish
to retrieve depends on Nt, the number of robots composing the swarm, and on O, the
number of objects available in the environment at any given time; see Table IV.

Another requirement is on the worst case performance, that is, we want to ensure
that the robot swarm is able to retrieve at least a minimum number of objects in
600 seconds. Model checking allows us to formally verify this condition since we can
compute not only the expected value, but also its cumulative distribution (or, conversely,
the density function). Formally, the second requirement is defined as:

P>0.90 [F<=600 (obj_ret>40)] (4)

In natural language, Property 4 can be expressed as: is it true with probability greater
than 0.90 (P>0.90) that at least 40 objects are retrieved (obj_ret>40) in less than 600
seconds (F<=600)? To simplify the discussion, we verify Property 4 only in the case
where Nt = 20 and O = 6.

Phase two: Model – To build the prescriptive model, we consider the different
actions that a robot must perform. We then associate a state of the Markov chain to
each of these actions.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 M. Brambilla et al.

A robot searches for objects by performing a random walk in the environment (So
state). Once an object is found, the robot tries to harvest it (H state); in case of multiple
objects in range, the robot goes towards the closest one. If the harvest action is unsuc-
cessful, because, for instance, another robot harvests the object, the robot goes back
to searching. When the object is reached, the robot waits inside the TAM for a fixed
amount of time until the object is harvested (Hw state). Once the robot has harvested an
object, it proceeds to search for the nest by performing random walk (Sn state). As soon
as an available storage location is found, the robot tries to store the carried object (ST
state); also in this case, the closest storage location is approached if multiple storing
locations are seen. If the store action is unsuccessful, the robot searches for another
storage location until the object is stored. Similar to the harvest operation, also in this
case the robot waits inside a TAM for a fixed amount of time until the object is stored
(STw state). A successful store operation increases the object counter (obj_ret). The
robot then searches for a new object to harvest.

Robots always try to avoid collisions with obstacles and other robots. Practically, this
produces two behaviors: when a robot is trying to enter a TAM (state H or state ST),
it follows a vector that is the sum of a vector pointing to the desired destination and
a vector pointing away from the closest obstacle. When a robot is performing random
walk without a specific destination instead (state So or state Sn), if it encounters an
obstacle or another robot, it starts turning on the spot for a random number of steps
and then it begins again to move straight. This random number of steps follows a
geometrical distribution. We model these different reactions in two different ways: in
the first case, the action of the robot is not significantly disturbed, as the robot performs
only a slight change of trajectory towards its goal. For this reason, this first kind of
collision avoidance affects only the time to complete the action, but does not change
the behavior of the robot. In the second case, instead, the robot completely changes its
direction to avoid a collision, resulting in a significant change in its behavior and its
chance to find objects or the nest. For this reason, the second kind of collision avoidance
is modeled by adding two states: state Ao in case the robot is avoiding a collision when
searching for an object, and state An in case the robot is avoiding a collision when
searching for the nest.

See Figure 8 for a complete view of the prescriptive model.
We now have the structure of the behavior that the robots should follow. We need to

assign values to the transition rates. We compute the transition rates considering the
behavior of a single robot. For the macroscopic model, the rates are then multiplied by
the current number of robots in the related state, as illustrated in Figure 8.

All the rates involved in the definition of the model depend on the geometrical
characteristics of the environment and/or on the behavior of the robots. Unfortunately,
differently from the previous case study, we cannot completely define them a priori
since it is impossible to identify the correct value of the parameters involved in their
definition without experimental data. Note that the goal of this phase is not to create
a model that is as precise as possible, but one that can be used by us to develop and
improve the desired robot swarm. Since we do not have experimental data, the model
we are creating is largely arbitrary. Other valid choices could have been made. We
make some working hypotheses about the system that can be subject to refinements or
changes in the subsequent phases, should they prove not to be sufficiently accurate or
correct. In particular, parameters will be fitted once experimental data are available,
that is, in phase three.

In the following, we present how each rate is defined. We define λSo→H, the rate at
which a robot finds an object, as proportional to the density of available objects in the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Property-driven design for robot swarms A:15

Ao So

H Hw

STw ST

Sn An

NAoλAo→So

NSoλSo→Ao

N So
λ So
→H

N H
λ H→

So

NHλH→Hw

N
Hw λ

Hw→
Sn

NSTλST→STw

N
STwλ

STw→
So

Obj ret N ST
λ S
T→

Sn
N Sn
λ S
n→

ST

NSnλSn→An

NAnλAn→Sn

Fig. 8. The continuous time Markov chain used to model foraging. H is the harvest state; Hw is the wait to
harvest state; So is the search object state; Ao is the avoid (while searching for an object) state; ST is the store
state; STw is the wait to store state; Sn is the Search nest state; An is the Avoid (while searching for the nest)
state; Transitions are labeled with their respective rates multiplied by the number of robots currently in
that state: λi→j is the rate at which an individual robot moves from state i to state j; Ni is the number
of robots currently in state i. To compute the expected number of objects retrieved, we keep track of the
number of times the transition from STw to So, labeled Obj ret, happens.

environment:

λSo→H = α
O

A
,

where O is the number of objects available at any given time, A is the area of the
environment and α is a parameter.

We define λSo→Ao, the rate at which a robot searching for an object finds another
robot and then performs obstacle avoidance, as proportional to the density of robots in
the environment:

λSo→Ao = β
Nr

A
,

where Nr is the total number of robots in the environment, and β is a parameter.
Rates λSn→ST and λSn→An are defined similarly, considering the number of storage

locations instead of the number of objects:

λSn→ST = γ
D

A
,

λSn→An = δ
Nr

A
,

where D is the number of storage locations and γ and δ are two parameters.
Rates λAo→So and λAn→Sn depend on the time necessary for a robot to perform obstacle

avoidance. As said before, if a robot encounters an obstacle or another robot while
searching for objects or for the nest, it performs collision avoidance by turning on
the spot for a random number of steps distributed geometrically and then it starts
again searching for objects or the nest. The rate at which a robot moves from collision
avoidance back to search is thus:

λAo→So = λAn→Sn = poa,

where poa is the parameter of the geometrical distribution.
We define λH→Hw and λST→STw, the rates at which a robot going towards an object-TAM

or a storage-TAM manages to enter it, as the reciprocal of the time necessary to get in

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 M. Brambilla et al.

the TAM, counted from the instant in which the robot sees it:

λH→Hw = λST→STw =
(r
s

)−1
,

where r is the range at which a robot sees a TAM and s is the forward speed of a robot.
A robot trying to enter a TAM is not always successful, other robots may “steal”

its object by occupying the storage location before it can do it. This means that not
all robots going towards a TAM enter it. Some are interrupted by other robots and
thus are forced to search for another available TAM. This is modeled by the transition
H→ So and ST→ Sn. We define λH→So and λST→Sn, the related rates, as proportional to
the density of robots in the environment:

λH→So = ε
Nr

A
,

λST→Sn = η
Nr

A
,

where ε and η are parameters. We expect ε and η to have different values, as storage
locations are all next to each other, generating more interference, while objects to
harvest in general are evenly distributed along the walls of the environment.

The last rates we need to define are λHw→Sn and λSTw→So, the rates at which robots in
the TAM complete their operations and exit. These rates are the reciprocal of the time
spent by a robot in a TAM:

λHw→Sn = λSTw→So = (tTAM)
−1
,

where tTAM is the time spent by a robot in a TAM.

Since we do not have empirical data to estimate the parameters, at this point we
cannot use model checking to compute the expected number of objects retrieved, or
whether the desired properties are satisfied. However, even without empirical data, we
can use the model to improve the behavior of the robots. For example, by analyzing
the model, we can observe that increasing the rate at which the robots find objects
or storage locations—that is, increasing λSo→H and λSn→ST—results in an increase of
objects retrieved.

In order to increase these rates, we cannot modify the number of objects available at
any given time or the number of storage locations, since they are given. We could act on
the parameters, but it is not clear how to change the behavior of the robots to increase
these parameters. Even though we cannot change the dimensions of the environment,
we can change the size of the area effectively covered by the robots. In other terms, we
can change the behavior of the robots so that they do not cover the whole environment
when searching for objects or storage locations. In particular, we could let robots avoid
places where they know they will not find anything useful.

In the behavior defined before, robots searching for objects and for the nest go straight
until they find an obstacle such as a wall or another robot. This means that robots
that are carrying an object while searching for the nest may go close to other available
objects, interfering with robots not carrying objects. Similarly, robots searching for
objects often go close to the storing locations, interfering with the other robots. A
possible solution is that robots searching for objects avoid storing locations as soon as
they see them and, similarly, robots searching for the nest avoid objects as soon as they
see them. This improved behavior is depicted in Figure 9.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Property-driven design for robot swarms A:17

Fig. 9. The modification of the behavior used to reduce interference and reduce the area searched by the
robot. A robot (depicted as a green circle with a yellow arrow on top) carrying an object performs collision
avoidance (full arrow) as soon as it sees an other object, instead of reaching to the wall (dotted arrow). The
light blue circular sections represent the areas in which a robot sees an object. The same applies to robot
searching for the nest, even though it is not displayed in the figure.

This improvement in the behavior can be modeled by decreasing the value of A. The
rates are updated in the following way:

λSo→H = α
O

Ao
,

where Ao is the area explored by the robots searching for objects and avoiding storage
locations, with Ao < A;

λSn→ST = γ
D

An
,

where An is the area explored by the robots searching for storage locations and avoiding
objects, with An < A; All other rates are left unchanged since the density of the robots
involved in their definition does not change. For example, consider λSo→Ao. The area
involved in the definition of this rate is reduced, as explained above. However, also the
number of robots operating in that area is reduced. In other words, even though the
area considered is reduced, the density of robots does not change.

More complex improvements, such as task allocation mechanisms, could be imple-
ment to further increase the performance of the system, should the obtained perfor-
mance not be sufficient. However, for the sake of brevity and clarity we limit our design
process to the simple improvement presented above.

Phase three: Simulation – In this phase, we implement the foraging robot swarm
using the ARGoS simulator [Pinciroli et al. 2012].

The prescriptive model developed in phase two provides us with a detailed blueprint
to implement the robot swarm: the behavior of the individual robot can be implemented
using a finite state machine that resembles the Markov chain defined in phase two.
Nonetheless, some implementation details, such as how robots stop inside a TAM, have
been ignored in the prescriptive model, in order to focus on the more important details
at design time and have to be programmed explicitly at this moment.

We measured the number of objects retrieved over 600 seconds on 100 runs. We first
performed experiments using the initial behavior and then using the improved one, as

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 M. Brambilla et al.

Table V. The numerical parameters used in the foraging prescriptive
model. The values are obtained from the experimental data obtained
in phase three.

Value
O {2, 4, 6, 8, 10}
Nr {10, 20, 50, 100}
D 5
l 2m
A 4m2

α 4× 10−2

β 1× 10−2

γ 3.9× 10−2

δ 9× 10−3

Value
poa 0.20
r 0.5m
s 0.1m s−1

ε 6.5× 10−2

η 1.01× 10−1

tTAM 3 s
Ao 3m2

An 3.7m2

2 4 6 8 10
Available objects

20

40

60

80

100

120

R
et

rie
ve

d
ob

je
ct

s

Original behavior
Improved behavior
Model checking

Fig. 10. A comparison between the results obtained using 20 robots with the original behavior and with the
improved one for different values of O, which is the number of objects available at any time. Box plots show
results obtained over 100 experimental runs using the ARGoS simulator, while diamonds show the expected
results obtained with PRISM.

explained in the previous phase. Table V shows the parameter used for model checking
derived from the experimental data.

We can now compute the expected number of objects retrieved in 600 seconds using
model checking on the developed model and compare these values with the results
obtained from the simulated experiments.

Figure 10 shows the results obtained in simulation together with the expected results
predicted by the prescriptive model. These results have been obtained using 20 robots
with different values of O, the number of objects available at any time. Figure 11 shows
the results obtained with O = 6 and a different number of robots. Table VI shows
whether Property 3 is satisfied.

From Figure 10 it is possible to observe that indeed the behavior improvement
introduced in phase two significantly increases the number of objects retrieved. The
improved behavior is always significantly better than its counterpart—Wilcoxon test
with p < 0.01.

The correspondence between the results obtained from the prescriptive model and
the ones obtained from the simulations is quite good, even though not perfect. For our
goals and purposes, the model captures qualitatively the behavior of the robot swarm,
thus it is not necessary to further refine it.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Property-driven design for robot swarms A:19

10 20 50 100
Number of robots

20

40

60

80

100

120

R
et

rie
ve

d
ob

je
ct

s

Original behavior
Improved behavior
Model checking

Fig. 11. The number of object retrieved with different swarm sizes and O = 6. Box plots show results
obtained over 100 experimental runs using the ARGoS simulator, while diamonds show the expected results
obtained with PRISM.

Table VI. A table presenting whether the simulated systems are able to satisfy Property 3. k is the threshold on
the expected number of objects retrieved. Property 3 is satisfied if the values obtained in simulations are greater
or equal than k. The results are presented both for the original and the improved behavior, showing whether they
satisfy Property 3 and the value of the median.

Nt O k Original Improved

20 2 45 X (43) X (48)

20 4 55 X (58) X (63)

20 6 65 X (64) X (71)

20 8 75 X (70) X (78)

20 10 85 X (75) X (85)

Nt O k Original Improved

10 6 40 X (41) X (43)

20 6 65 X (64) X (71)

50 6 90 X (87) X (101)

100 6 75 X (76) X (97)

We also verify Property 4 using model checking and compare it with the results
obtained from the simulations. Model checking tells us that Property 4 is not satisfied
in the prescriptive model of the original behavior with 20 robots and O = 2. This
matches the experimental results, where 15 runs over 100 resulted in less than 40
objects retrieved. Instead, with the improved behavior, property 4 is satisfied. This
matches the experimental results, where only 2 runs over 100 resulted in less than 40
objects retrieved.

All experimental data can be found in the supplementary material [Brambilla et al.
2014].

Phase four: Robots – We performed 10 experiments with a group of 20 e-pucks
in an arena identical to the simulated one. A picture of an experiment can be seen in
Figure 12. Videos of the performed experiments can be found in the supplementary
material [Brambilla et al. 2014]. Figure 13 shows that the results obtained with real
robots and simulated robots are very similar. Property 4 is satisfied. There is no need
to update the model and thus we can declare the process completed.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 M. Brambilla et al.

Fig. 12. A picture of an experiment performed with 20 e-puck robots and O = 6.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical Distribution Function

Number of objects retrieved

F
n(

x)

●

●

●

●

●

●

●

60 65 70 75 80 85

Real Robots
Simulation

Fig. 13. A graph showing the empirical cumulative distribution Fn(x) of the number of object retrieved
using robots (10 runs) and in simulation (100 runs). In both cases Nt = 20 O = 6.

4.3. Discussion
The two case studies presented in the paper show that using property-driven design
we were able to develop two robot swarms that tackle successfully aggregation and
foraging: all the required properties are satisfied.

As shown, with property-driven design it is possible to analyze and develop behaviors
characterized both by numerical and non-numerical parameters. For example, in the
aggregation case we analyzed the effects of changing the probability to leave a black

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Property-driven design for robot swarms A:21

area, whereas in the foraging case we analyzed the effects of changing the exploration
behavior.

One of the main advantages of property-driven design is that it allows the developer
to focus on the design of the system rather than on its implementation: by focusing
the designing efforts on the abstract model of the system, the developer can concen-
trate on the important aspects of the system to create because “whereas a simulation
should include as much detail as possible, a good model should include as little as
possible” [Smith 1978]. As an example, in the foraging case study we leveraged the pre-
scriptive model developed in phase two of property-driven design to identify possible
improvements of the partially realized system: we were able to identify the impor-
tant aspects of the system being designed, which allowed us to avoid wasting time on
improving other non-relevant aspects.

Another advantage of property-driven design is the reduced risk of developing a
robot swarm that does not satisfy the requirements. Up to now, there was no clear way
to specify the requirements of a robot swarm. In property-driven design, requirements
are specified in a formal way at the beginning of the development process in terms
of desired properties. Moreover, thanks to model checking it is possible to evaluate
whether the robot swarm fulfills such properties at each step of the design and develop-
ment process. This advantage of property-driven design has been highlighted by both
case studies.

Finally, property-driven design addresses also the problem of the low re-usability
of solutions in swarm robotics. Usually behaviors for robot swarms are developed in
a disposable way. This is due to the fact that there is no clear distinction between the
design and the implementation. Thus, if a different hardware platform is available, or
a slightly different task is tackled, it is necessary to start from scratch. With property-
driven design instead, the prescriptive model developed in phase two can be partially
or completely reused: i) the model is hardware independent, so that it can be adapted
to the available robots, or even guide the process of deciding the best robot to use;
and ii) the model can be extended to deal with new properties and verify if they are
satisfied even without testing the system in simulation or with robots. The reusability
of the prescriptive model reduces the risk that designers “reinvent the wheel” each
time they develop a robot swarm. For example, the model of foraging developed in
the presented case study could be easily adapted for robots with more sofisticated
manipulation capabilities. In the future, it is also possible to imagine a set of publicly
available models for swarm robotics applications that can be reused and modified by
other developers.

The development process of the case studies presented in the paper highlights also
some issues with property-driven design.

The main issue is that ultimately the step from the prescriptive model to its imple-
mentation remains in the hands of the developer. Nonetheless, the prescriptive model
can be used as a blueprint for the implementation process, providing the developer
with a valuable tool to obtain robot swarms with provable properties.

Another issue is the strong reliance on modeling. Modeling robot swarms is a dif-
ficult task on its own: robot-to-robot interactions, spatial and temporal features and
interference are difficult to completely describe using models. Luckily, modeling robot
swarms has been the focus of a large number of studies (see two reviews of the litera-
ture by Brambilla et al. [2013] and Lerman et al. [2005]) providing a solid theoretical
foundation to property-driven design.

5. CONCLUSIONS
Property-driven design is a top-down design method based on prescriptive modeling
and model checking: the desired robot swarm is first described using a set of properties;

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 M. Brambilla et al.

subsequently a prescriptive model of the robot swarm is created; the prescriptive model
is used as a blueprint for the implementation of the robot swarm first in simulation
and then with robots.

Property-driven design is conceived to be part of swarm engineering: the systematic
application of scientific and technical knowledge to specify requirements, design, real-
ize, verify, validate, operate and maintain a swarm intelligence system. Up to now, the
design and development of a robot swarm is performed using a code-and-fix approach
based completely on the ingenuity and experience of the developer who does not have
any scientific or technical support in his activity. Property-driven design aims at pro-
viding such scientific and technical support, with many advantages compared to the
traditional unstructured approach.

In this paper, we demonstrated, by tackling two different case studies, that property-
driven design is an effective method for the design and development of robot swarms.
In the future we plan to apply property-driven design to different and more complex
tasks, possibly using different modeling approaches. Also, we aim at integrating this
design method with automatic design approaches, such as evolutionary robotics or
automatic modular design [Francesca et al. 2014], in order to obtain automatically
robot swarms that satisfy some desired properties. This could provide a solution to the
open problem of deriving the individual behaviors from a swarm-level model.

APPENDIX
Property-driven design is based on prescriptive modeling and model checking. Model checking
requires two components: a model of the system to check and a set of properties that the system
must satisfy. Among the several possible languages and tools, we chose Markov chains and
probabilistic temporal logics. Markov chains and probabilistic temporal logics have been proved
to be well suited for model checking in swarm robotics [Konur et al. 2012; Brambilla et al. 2012]
due to their simplicity and expressive power.

In this section, we give a short introduction on Markov chains, probabilistic temporal logics
and model checking.

I. The model: Markov chains
A common way to model swarm robotics systems is through the use of Markov chains [Lerman
et al. 2005]. Markov chains are used to model the behavior of the robots: states might represent
an action that a robot performs, such as random walk or grasp object, or might represent an
area in which a robot is located, for example, in the nest. Transitions link two states and are
activated through transition conditions such as obstacle seen and object grasped.

Markov chains can be used to model a swarm robotics system in two ways: as a microscopic
Markov model, that is, a model that considers each individual robot, and as a macroscopic
Markov model, that is, a model that consider the swarm as a whole.

A microscopic Markov model describes the behavior of the individual robots and their interac-
tions. In a microscopic Markov model, the collective behavior of the swarm is the and-composition
of the individual Markov chains.

A macroscopic Markov model describes the swarm as a whole, without considering the in-
dividual robots composing it. In general, as explained by Lerman et al. [2005], a macroscopic
Markov model is composed of an augmented Markov chain: the Markov chain describing the
behavior of a generic individual of the swarm is augmented by associating a counter to each state.
Counters are used to keep track of the number of robots that are in the associated state in any
given moment. This is different from rate equations in which only the proportion of the robots
is tracked. Examples of macroscopic Markov models can be found in Section 4, in particular in
Figure 2 and Figure 8.

When compared to macroscopic Markov models, microscopic Markov models give a finer
description of the robots and their interactions. However, in a microscopic Markov model the
number of states grows exponential with the number of robots, making microscopic Markov
models computationally intractable in the majority of cases. Since microscopic Markov models

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Property-driven design for robot swarms A:23

A B

A

A

A

A

B

B

BBB

B

Fig. 14. A simple Markov chain (on the left) and part of its computation tree (on the right).

are difficult to analyze, the great majority of models in swarm robotics are macroscopic [Brambilla
et al. 2013; Lerman et al. 2005].

Time in Markov chains can be modeled in two different ways: discrete and continuous. In
discrete time Markov chains (DTMC), time assumes only values in Z+, whereas in continuous
time Markov chains (CTMC), time can assume any value in R+. Practically, one of the main
difference between DTMC and CTMC is in what transition parameters represent. In DTMC,
transition parameters represent the probability p of moving from a state to another; for this rea-
son, transition parameters for DTMC must be in the interval [0, 1]. In CTMC, instead, transitions
parameters represents the rate λ at which the event of moving from a state to another happens,
that is, the time taken to move from a state to another follows an exponential distribution of
parameter λ ∈ (0, inf).

The choice on how to model time depends on the system to describe: in case time is not the
main aspect and can be easily discretized, DTMC are more convenient; on the contrary, when it
is important to keep precisely track of times, DTMC should be preferred. Note that, in general,
it is possible to model the same system using a DTMC or a CTMC without loosing expressive
power [Serfozo 1979].

II. The properties: probabilistic temporal logics
The most common way to formally express properties for model checking is through the use of
logic predicates. Among the many formal logic systems, we consider probabilistic computation
tree logic (PCTL)3. PCTL is well suited for swarm robotics systems as it can capture both time-
related and stochastic aspects.

PCTL [Hansson and Jonsson 1994] is based on the concept of computation tree, a potentially
infinite rooted tree in which the root is the initial state of a corresponding Markov chain, and
each node is a possible state of the system. Edges link a state with its next possible states.
Each path on the tree represents a possible execution of the system. Since a sequence of nodes
represents the time evolution of a system, the transition from a node to a following one is usually
called a time-step. In discrete time Markov chains, this time-step is fixed, while in continuous
time Markov chains, this time-step is exponentially distributed with parameter depending on
the current state. An example of a simple Markov chain and its computation tree is displayed in
Figure 14.

A computation tree can be used to express temporal properties, such as eventually the system
will reach state X or if the system starts from state α then it will never reach state β. Such
properties can be expressed using computation tree logic (CTL).

PCTL extends CTL by introducing probabilities. It is thus possible to express properties such
as α will eventually become true with probability 0.45 or there is a 0.7 probability that α will
hold true for 10 seconds. In this paper, we do not use the formal syntax of PCTL. We instead use
the syntax of PRISM: the tool used for model checking. A formal introduction to the syntax of
PCTL can be found in the work by Ciesinski and Größer [2004].

3Note that PCTL can be used only with discrete time Markov chains. For continuous time Markov chains, it
is necessary to use continuous stochastich logic (CSL). For our goals and purposes however, the two logics are
equivalent. Thus, for the sake of simplicity, we refer to PCTL also when dealing with CTMCs, even though
this is formally incorrect.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 M. Brambilla et al.

Probabilistic and temporal operators make PCTL a very flexible and powerful logic, which can
be used to express many interesting properties of particular interest for swarm robotics systems.

III. Model checking: complete and statistical model checking
Having defined a model and a set of properties, we now have all the elements to perform model
checking.

Model checking can be used in safe-critical applications in which simulations and experiments
might not be enough to guarantee the correctness of a system. In fact, simulations and exper-
iments can only test a subset of all possible execution scenarios of a system. Model checking,
instead, formally verifies that a property holds true for all possible executions of a system.

Model checking has a number of advantages compared to more traditional ways to analyze
models of swarm robotics systems, such as fluid flow analysis [Zarzhitsky et al. 2005].

Not only model checking allows the user to verify that a model satisfy a specific probabilistic
property (as, for example, P≥0.75[φ]? TRUE), but also to obtain quantitative results, that is, to
compute with which probability the model satisfies it (P?[φ]? 0.86). This characteristic is very
useful to find the best parameters of a model that maximize the probability to satisfy a specific
property. Moreover, it is possible to augment a Markov chain using rewards, real valued quanti-
ties that can be assigned to states or transitions. Using model checking it is possible to compute
not only the steady state value of these rewards, but also their probability distribution. This
would be impossible with analysis based on rate equations, as they only provide the expected
value of the observed variable. Model checking can also be used to produce counter examples:
traces of execution of a system in which a property is not satisfied. Additionally, the use of PCTL
allows the developer to express properties that are difficult or even impossible to express using
algebraic mathematics.

A limit of model checking is that, in general, it is computationally unfeasible to analyze models
composed of a high number of states. State-of-the-art model checkers cannot handle models larger
than 1010 states [Kwiatkowska et al. 2004]. A way to overcome this problem is statistical model
checking. Statistical model checking, also known as approximate model checking, is a novel
approach to model checking [Nimal 2010]. Compared to traditional model checking, statistical
model checking does not explore completely the state space of a model. Instead, it samples a
large but limited number of executions of the model and uses statistic estimators to compute the
result.

Using statistical model checking it is thus possible to perform model checking also on very
large models, such as microscopic models of swarm robotics systems. In Massink et al. [2013],
we have applied statistical model checking to a model of a swarm robotics system and showed
that the obtained results were consistent with those obtained using other approaches, such as
physics-based simulation, Monte Carlo simulation and ordinary differential equations.

ACKNOWLEDGMENTS

The authors would like to thank Arne Brutschy for his support with the TAM.

REFERENCES

W. Banzhaf and N. Pillay. 2007. Why complex systems engineering needs biological
development. Complexity 13, 2 (2007), 12–21.

K. Beck. 2003. Test-driven Development: By Example. Addison-Wesley, Boston, MA.
S. Berman, A. Halasz, M.A. Hsieh, and V. Kumar. 2009. Optimized stochastic policies

for task allocation in swarms of robots. IEEE Transactions on Robotics 25, 4 (2009),
927–937.

S. Berman, V. Kumar, and R. Nagpal. 2011. Design of control policies for spatially
inhomogeneous robot swarms with application to commercial pollination. In IEEE
International Conference on Robotics and Automation (ICRA). IEEE press, 378–385.

R.H. Bordini. 2009. Multi-Agent Programming: Languages, Tools and Applications.
Vol. 2. Springer-Verlag, New York, NY.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Property-driven design for robot swarms A:25

M. Brambilla, M. Dorigo, and M. Birattari. 2014. Property-driven design for robot
swarms: Supplementary material. (2014). Supplementary material available at
https://dl.dropboxusercontent.com/u/33171834/property-driven_supp_mat.zip. The material is
distributed via Dropbox to ensure anonimity of consultation. It will be posted online
on the IRIDIA supplementary pages, should the paper be accepted.

M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. 2013. Swarm robotics: A review
from the swarm engineering perspective. Swarm Intelligence 7, 1 (2013), 1–41.

M. Brambilla, C. Pinciroli, M. Birattari, and M. Dorigo. 2012. Property-driven design
for swarm robotics. In Proceedings of the AAMAS 2012. IFAAMAS, 139–146.

A. Brutschy, G. Pini, N. Baiboun, A. Decugnière, and M. Birattari. 2010. The
IRIDIA-TAM: A device for task abstraction for the e-puck robot. Technical Report
TR/IRIDIA/2010-015. IRIDIA, ULB.

F. Ciesinski and M. Größer. 2004. On probabilistic computation tree logic. In Validation
of Stochastic Systems. Lecture Notes in Computer Science, Vol. 2925. Springer, Berlin,
Heidelberg, 333–355.

C. Dixon, A. Winfield, and M. Fisher. 2012. Towards temporal verification of swarm
robotic systems. Robotics and Autonomous Systems 60, 11 (2012), 1429–1441.

M. Dorigo, M. Birattari, and M. Brambilla. 2014. Swarm robotics. Scholarpedia 9, 1
(2014), 1463.

G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari. 2014. AutoMoDe:
A novel approach to the automatic design of control software for robot swarms. Tech-
nical Report TR/IRIDIA/2014-001. IRIDIA, Université Libre de Bruxelles, Brussels,
Belgium.

D. Goldberg and M. J. Mataric. 2001. Design and evaluation of robust behavior-based
controllers for distributed multi-Robot collection tasks. In Robot Teams: From Diver-
sity to Polymorphism. A K Peters Ltd, 315–344.

A. Gutiérrez, A. Campo, M. Dorigo, J. Donate, F. Monasterio-Huelin, and L. Magdalena.
2009. Open e-puck range & bearing miniaturized board for local communication
in swarm robotics. In IEEE International Conference on Robotics and Automation
(ICRA). IEEE Press, Piscataway, NJ, 3111–3116.

H. Hamann and H. Wörn. 2008. A framework of space–time continuous models for
algorithm design in swarm robotics. Swarm Intelligence 2, 2 (2008), 209–239.

H. Hansson and B. Jonsson. 1994. A logic for reasoning about time and reliability.
Formal Aspects of Computing 6, 5 (1994), 512–535.

R. Jeanson, C. Rivault, J.-L. Deneubourg, S. Blanco, R. Fournier, C. Jost, and G. Ther-
aulaz. 2005. Self-organized aggregation in cockroaches. Animal Behaviour 69, 1
(2005), 169–180.

S. Kazadi, J. R. Lee, and J. Lee. 2009. Model independence in swarm robotics. Inter-
national Journal of Intelligent Computing and Cybernetics, Special Issue on Swarm
Robotics 2, 4 (2009), 672–694.

S. Konur, C. Dixon, and M. Fisher. 2012. Analysing robot swarm behaviour via proba-
bilistic model checking. Robotics and Autonomous Systems 60, 2 (2012), 199–213.

M. Kwiatkowska, G. Norman, and D. Parker. 2004. Probabilistic symbolic model
checking with PRISM: A hybrid approach. International Journal on Software Tools
for Technology Transfer 6, 2 (2004), 128–142.

K. Lerman and A. Galstyan. 2002. Mathematical model of foraging in a group of robots:
Effect of interference. Autonomous Robots 13, 2 (2002), 127–141.

K. Lerman, A. Martinoli, and A. Galstyan. 2005. A review of probabilistic macroscopic
models for swarm robotic systems. In Swarm robotics. Lecture Notes in Computer
Science, Vol. 3342. Springer, Berlin, Heidelberg, 143–152.

M. Massink, M. Brambilla, D. Latella, M. Dorigo, and M. Birattari. 2013. On the use
of Bio-PEPA for modelling and analysing collective behaviours in swarm robotics.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 M. Brambilla et al.

Swarm Intelligence 7, 2–3 (2013), 201–228.
K. L. McMillan. 1993. Symbolic Model Checking. Springer, Berlin, Heidelberg.
J. Miller and J. Mukerji. 2003. MDA guide version 1.0.1. http://www.omg.org. (2003).
F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat, J.-C.

Zufferey, D. Floreano, and A. Martinoli. 2009. The e-puck, a robot designed for
education in engineering. In Proceedings of the 9th Conference on Autonomous Robot
Systems and Competitions, Vol. 1. IPCB, 59–65.

V. Nimal. 2010. Statistical Approaches for Probabilistic Model Checking. MSc Mini-
project Dissertation. Oxford University Computing Laboratory.

C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla, N. Mathews, E.
Ferrante, G. Di Caro, F. Ducatelle, M. Birattari, L. M. Gambardella, and M. Dorigo.
2012. ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems.
Swarm Intelligence 6, 4 (2012), 271–295.

G. Pini, A. Brutschy, M. Birattari, and M. Dorigo. 2009. Interference reduction through
task partitioning in a robotic swarm. In Sixth International Conference on Informat-
ics in Control, Automation and Robotics (ICINCO). INSTICC Press, 52–59.

E. Şahin. 2005. Swarm robotics: from sources of inspiration to domains of application.
In Swarm Robotics. Lecture notes in computer science, Vol. 3342. Springer, Berlin,
Heidelberg, 10–20.

R. F. Serfozo. 1979. An equivalence between continuous and discrete time Markov
decision processes. Operations Research 27, 3 (1979), 616–620.

J. M. Smith. 1978. Models in Ecology. Cambridge University Press, Cambridge, MA.
M. Wooldridge and N. R. Jennings. 1998. Pitfalls of agent-oriented development. In

Proceedings of the second international conference on Autonomous agents. ACM Press,
385–391.

F. Zambonelli, N. Jennings, and M. Wooldridge. 2001. Organisational abstractions for
the analysis and design of multi-agent systems. In Agent-Oriented Software Engi-
neering. Lecture Notes in Computer Science, Vol. 1957. Springer, Berlin, Heidelberg,
407–422.

D. Zarzhitsky, D. Spears, D. Thayer, and W. Spears. 2005. Agent-based chemical plume
tracing using fluid dynamics. In Formal Approaches to Agent-Based Systems. Lecture
Notes in Computer Science, Vol. 3228. Springer, Berlin, Heidelberg, 146–160.

Received XXX; revised XXX; accepted XXX

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

