Universite Libre de Bruxelles

Institut de Recherches Interdisciplinaires
IRIDIANN ot de Développements en Intelligence Artificielle

4)

AutoMoDe: A Novel Approach to the
Automatic Design of Control Software for
Robot Swarms

G. FRANCESCA, M. BRAMBILLA, A. BRUTSCHY, V.
K TRIANNI, and M. BIRATTARI /

4 ™
IRIDIA — Technical Report Series

Technical Report No.

TR/IRIDIA /2014-001

January 2014
\ Last revision: March 2014 .

IRIDIA — Technical Report Series
ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires
et de Développements en Intelligence Artificielle

UNIVERSITE LIBRE DE BRUXELLES

Av F. D. Roosevelt 50, CP 194/6

1050 Bruxelles, Belgium

Technical report number TR/IRIDIA /2014-001

Revision history:

TR/IRIDIA/2014-001.001 January 2014
TR/IRIDIA/2014-001.002 January 2014
TR/IRIDIA/2014-001.003 March 2014

The information provided is the sole responsibility of the authors and does not necessarily
reflect the opinion of the members of IRIDIA. The authors take full responsibility for
any copyright breaches that may result from publication of this paper in the IRIDIA —
Technical Report Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.

Iridia Technical Report manuscript No.
(will be inserted by the editor)

AutoMoDe: A Novel Approach to the Automatic
Design of Control Software for Robot Swarms

Gianpiero Francesca - Manuele Brambilla -
Arne Brutschy - Vito Trianni -
Mauro Birattari

Received: date / Accepted: date

Abstract We introduce AutoMoDe: a novel approach to the automatic design
of control software for robot swarms. The core idea in AutoMoDe recalls the ap-
proach commonly adopted in machine learning for dealing with the bias-variance
tradedoff: to obtain suitably general solutions with low variance, an appropriate
design bias is injected. AutoMoDe produces robot control software by selecting,
instantiating, and combining preexisting parametric modules—the injected bias.
The resulting control software is a probabilistic finite state machine in which the
topology, the transition rules and the values of the parameters are obtained au-
tomatically via an optimization process that maximizes a task-specific objective
function.

As a proof of concept, we define AutoMoDe-Vanilla, which is a specialization
of AutoMoDe for the e-puck robot. We use AutoMoDe-Vanilla to design the robot
control software for two different tasks: aggregation and foraging. The results show
that the control software produced by AutoMoDe-Vanilla i) yields good results,
ii) appears to be robust to the so called reality gap, and iii) is naturally human-
readable.

Keywords swarm robotics - automatic design

1 Introduction

In this paper, we introduce a novel approach to automatically generate control
software for robot swarms.

In swarm robotics (Sahin, 2005; Dorigo et al., 2014), a large number of robots
cooperate and accomplish a task that a single individual would be unable to ac-
complish. A robot swarm is a highly redundant system that acts in a self-organized

IRIDIA, Université Libre de Bruxelles, Belgium

E-mail: {gianpiero.francesca,mbrambil,arne.brutschy,mbiro}@ulb.ac.be -
ISTC-CNR, Rome, Italy

E-mail: vito.trianni@istc.cnr.it

2 Gianpiero Francesca et al.

way without the need of any form of centralized coordination. The collective be-
havior of the swarm is the result of the local interactions that each robot has with
its neighboring peers and with the environment.

The self-organized and distributed nature of robot swarms makes them chal-
lenging to design. The requirements are typically expressed at the swarm level
by specifying the task that the swarm, as a whole, has to perform. However, the
swarm is a collective entity and, as such, it is an immaterial concept. In particu-
lar, the swarm itself cannot be programmed, only the individual robots can. The
designer’s task is therefore indirect: he has to design the individual-level behaviors
of the robots that, through a complex set of robot-robot and robot-environment
interactions, result in the desired collective behavior of the swarm.

At the moment, there is no general approach to the design of robot swarms,
even though some preliminary proposals have been made (Hamann and Worn,
2008; Kazadi et al., 2009; Berman et al., 2011; Brambilla et al., 2012). Cur-
rently, most robot swarms are designed by hand using a trial-and-error process:
an individual-level behavior is iteratively improved and tested until the desired
collective behavior is obtained. This approach is closer to craftsmanship than to
engineering: the quality of the result strongly depends on the experience and in-
tuition of the designer. Moreover, this trial-and-error process is time consuming,
costly, and lacks repeatability and consistency.

An alternative way to develop robot swarms is to rely on automatic design.
To date, the main automatic design approach that has been adopted in swarm
robotics is evolutionary robotics (Nolfi and Floreano, 2000). In this approach, an
evolutionary algorithm is used to obtain the parameters of a neural network that
maps the sensor readings of the individual robot into values fed to its actuators. A
large literature shows that evolutionary robotics is able to produce robot swarms
that can perform a number of tasks—for a review, see Brambilla et al. (2013).

Nonetheless, evolutionary robotics presents some known limitations, and an en-
gineering methodology for the design of robot swarms via evolution is still lacking
(Trianni and Nolfi, 2011). Most importantly, in the context of swarm robotics, the
evolutionary approach has not demonstrated the capability of scaling in complex-
ity and providing solutions for realistic applications. Among the causes, we reckon
the difficulty in overcoming the reality gap, that is, having a seamless transition
from simulation—the main tool for evolutionary design—to the real world.

In this paper, we conjecture that the observed limitations of evolutionary
robotics result from an uncontrolled representational power of the control architec-
ture that is typically adopted in evolutionary robotics. Indeed, one of the tenets of
evolutionary robotics is to minimize the assumptions and the bias injected by the
designer (Harvey et al., 1997; Nolfi and Floreano, 2000; Bongard, 2013). The idea
is to rely on an evolutionary process to fine-tune the dynamics of the interaction
between the robot and the environment. To this aim, a common assumption in the
literature is the need of a control architecture that features a high representational
power—for example, a neural network.

Unfortunately, a high representational power may be counter-productive in
the peculiar working conditions faced in swarm robotics, which are highly dy-
namic and uncertain due to the numerous robot-robot interactions. We claim that
such working conditions offer limited regularities to be discovered and exploited by
the evolutionary process. As a consequence, it is likely that evolution will produce
control software that exploits “idiosyncratic features” (Floreano and Keller, 2010)

AutoMoDe 3

of the simulation, that is, the differences between simulation and reality, which
unavoidably occur. This control software will generalize poorly and will be unable
to overcome the reality gap. Because the a priori identification of the differences
between simulation and reality is in general difficult, an automatic design approach
must be as robust as possible to their presence. With the goal of obtaining a ro-
bust automatic design approach, we cast the generalization problem in terms of
the bias-variance tradeoff formalized in the machine learning literature (Geman
et al., 1992). In Section 3, we discuss the implications of the bias-variance tradeoff
on the automatic design of robot swarms, and we conjecture that the generaliza-
tion problem can be tackled through a suitable injection of bias in the control
architecture adopted by the automatic design process.

Driven by our conjecture, we develop a novel automatic design approach for
robot swarms, called AutoMoDe (automatic modular design). AutoMoDe gener-
ates an individual-level behavior in the form of a probabilistic finite state machine
by searching for the best combination of preexisting parametric modules. In other
words, AutoMoDe develops control software by selecting, via an optimization al-
gorithm, the topology of the probabilistic finite state machine, the modules to be
included, and the value of their parameters. The set of modules and the rules to
compose a probabilistic finite state machine represent the bias injected in the au-
tomatic design process. As a result of the injection of bias, we conjecture that the
variance of the behaviors designed by AutoMoDe will be consequently reduced.

As a proof of concept, we present AutoMoDe-Vanilla, which is a specializa-
tion of AutoMoDe for the e-puck robot (Mondada et al., 2009a,b). More precisely,
AutoMoDe-Vanilla is specialized for a given reference model of the e-puck. This
reference model formally describes the characteristics of the robot and the func-
tionalities that are made available to the control software.

We evaluate AutoMoDe-Vanilla using two tasks commonly studied in the
swarm robotics literature: aggregation and foraging. The results obtained show
that AutoMoDe-Vanilla automatically designs control software that allows the
swarm to successfully accomplish the two tasks. Moreover, the control software
designed by AutoMoDe-Vanilla is naturally understandable for a human.

The rest of the paper is organized as follows: In Section 2 we discuss the related
work. In Section 3 we discuss the bias-variance tradeoff in the automatic design
of robot swarms. In Section 4, we introduce AutoMoDe and AutoMoDe-Vanilla.
In Section 5, we describe the experimental protocol and the setup we used to
evaluate AutoMoDe-Vanilla. In Section 6 we present the results we obtained and
in Section 7 we discuss them. Finally, in Section 8 we draw some conclusions and
we highlight directions for future work.

2 Related work

In this section, we provide a brief overview of the main design approaches for
swarm robotics, namely the behavior-based approach and evolutionary robotics.
Both have been developed and largely applied in the single-robot domain, and
subsequently adopted in swarm robotics. In this context, they have shown some
advantageous features and some limitations, which are discussed below. For an
extensive review of the swarm robotics literature, we refer the reader to Brambilla
et al. (2013).

4 Gianpiero Francesca et al.

The behavior-based approach. In the behavior-based approach, the de-
signer develops the robot control software manually via trial and error. The control
software is organized in a modular architecture that is largely inspired by Brooks’
subsumption architecture (Brooks, 1986). The application of the behavior-based
approach to swarm robotics is straightforward, and has been the most common
choice to date (Brambilla et al., 2013). However, the behavior-based approach
does not address the core design problem that one faces in swarm robotics: it does
not provide any guideline to define what the individual robot should do so that
the given swarm-level specifications are met. Some ideas to address this core de-
sign problem have been proposed (Hamann and Worn, 2008; Kazadi et al., 2009;
Berman et al., 2011; Brambilla et al., 2012) but they often rely on strong assump-
tions and their generality is limited, as they typically refer to specific tasks.
Reinforcement learning coupled with the behavior-based approach has been suc-
cessfully applied in the single-robot domain to arbitrate low-level behaviors—see
for instance Maes (1991). In the multi-robot domain, reinforcement learning was
also applied with some success (Parker, 1996; Matarié¢, 1997a,b, and see Panait and
Luke (2005) for a review). Nonetheless, the application of reinforcement learning
to swarm robotics presents several major challenges, among which the difficulty to
reward the individual contribution to the global behaviour (i.e., the credit assign-
ment problem), the large size of the state space, and the dynamic and uncertain
working conditions—for a discussion, see Brambilla et al. (2013).

Evolutionary robotics. Evolutionary robotics is an automatic design ap-
proach that applies artificial evolution to the development of robot control soft-
ware (Nolfi and Floreano, 2000). A number of robot swarms have been designed
using evolutionary robotics. For example, Baldassarre et al. (2007) used evolution-
ary robotics to design a coordinated motion behaviour, and Trianni and Dorigo
(2006) extended this behaviour with hazard-avoidance capabilities. Trianni and
Nolfi (2009) developed a synchronization behavior. Hauert et al. (2008) designed
control software for a swarm of aerial robots to create a communication network.
Besides being used as a design approach, evolutionary robotics is also used to
shed light on questions of relevance in evolutionary biology. Marocco and Nolfi
(2007) studied the evolution of communication for solving a collective navigation
problem. Waibel et al. (2009) studied the performance of homogeneous and het-
erogeneous teams evolved under individual and collective selective pressure. Tuci
(2009) studied linguistic interaction between agents to form common perceptual
categories. Mitri et al. (2011) used evolutionary robotics to investigate the cor-
relation between genetic relatedness and reliability of evolved signaling strategies
in a foraging scenario. Winfield and Erbas (2011) used evolutionary robotics to
explore imitation and the emergence of a sort of artificial culture in multi-robot
systems. Finally, Wischmann et al. (2012) studied the evolutionary development
of robust and efficient communication strategies in robot swarms.

The suitability of evolutionary robotics as an automatic design approach in swarm
robotics is discussed in Section 3. Before concluding this brief review, it is worth
mentioning that several attempts to marry behavior-based and evolutionary ap-
proaches have been made in the single-robot domain (e.g., Urzelai et al., 1998).
Recently, Duarte and co-workers used a neural network to arbitrate either hand-
coded low-level behaviors (Duarte et al., 2012a) or other neural networks (Duarte
et al., 2012b). Riano and McGinnity (2012), in the context of robot manipulators,
used artificial evolution to obtain a probabilistic finite state machine composed

AutoMoDe 5

of predefined low-level behaviors. A notable example of the evolution of behavior-
based control software in swarm robotics is an original approach based on grammar
evolution (Ferrante et al., 2013). With this approach, a foraging behavior has been
designed, but experiments were limited to simulation: no validation on robots has
been provided to date.

3 The bias-variance tradeoff in the automatic design of robot swarms

A widely recognized problem in evolutionary robotics is the so-called reality gap
problem: the control software developed in simulation does not produce the same
behavior and performance when instantiated in the physical system. Several tech-
niques have been proposed to mitigate this problem. For example, Miglino et al.
(1995) increased the realism of simulation using samples of the responses of sen-
sors and actuators of the robot; Jakobi (1997) suggested the inclusion of noise in
the simulation of sensors and actuators and in the conditions experienced by the
robots during the design process; more recently, Bongard et al. (2006) and Koos
et al. (2013) alternated simulation with tests on the physical system to correct
the simulator nuisances. The reality gap problem is a specific instance of a wider
problem related to the generalization abilities of evolutionary robotics—and of any
automatic design approach—that is, the overfitting of the solution to the particu-
lar conditions encountered during the design process. By continuously refining the
control software in a subset of the possible operating conditions, solutions are ob-
tained that match the specificities or idiosyncrasies of these conditions (Floreano
et al., 2008).

Our contention is that the inability to generalize to unexperienced working
conditions in the automatic design of robot swarms should be considered in the
light of the bias-variance tradeoff, which is a well known concept developed in the
domain of machine learning (Geman et al., 1992). With respect to the training of
neural networks, it has been formally shown that a low bias—i.e., the potential
capability of reproducing any input-output mapping—entails a high variance, that
is, a hypersensitivity to contingent elements in the training set, which eventually
results in overfitting and in the inability to generalize to an independent test set. In
evolutionary robotics, the standard approach to the overfitting problem amounts
to the attentive definition of the conditions experienced by the robots during the
design process. This usually corresponds to the introduction of variability in order
to remove the regularities that can cause overfitting (Floreano et al., 2008). In the
single robot domain, Pinville et al. (2011) proposed to promote generalization by
taking inspiration from the three data sets approach adopted in supervised learn-
ing. Overall, if variability is introduced in the working conditions experienced by
the robot at design time, a low bias does not hinder generalization. In this context,
one can adopt a control architecture that features a high representational power
and therefore manage the robot-environment interaction in a very fine-grained
way. This allows obtaining solutions that could not be obtained otherwise—for a
discussion in the single-robot domain, see Nolfi (2002). It is interesting to note
that the idea of injecting variability at design time has been adopted also in the
training of neural networks within the domain of supervised learning: indeed, it
has been formally shown that the addition of noise to training data is equivalent
to a form of regularization (Bishop, 1995).

6 Gianpiero Francesca et al.

Unfortunately, this idea does not scale well with the number and complexity
of operating conditions (Floreano et al., 2008). In particular, this idea does not
appear to be appropriate in swarm robotics because the number of states in which
a robot swarm can be found increases exponentially with the number of its robots,
and augments the conditions against which the control software must prove flexible
and robust. In this context, it is not trivial to define opportunely-varied operating
conditions so as to guarantee that the robot swarm can experience similar states
sufficiently often. Additionally, the highly dynamic working conditions faced in
swarm robotics offer limited regularities to be found by the evolutionary process.
Also, any small modification in the control software may lead to strong changes
in the robot-robot interactions, hindering a progressive refinement of the global
behavior. This does not mean that evolutionary robotics is deemed to failure, as
the several successful experiences demonstrate (Trianni and Nolfi, 2011; Brambilla
et al., 2013). Instead, it means that the design problem is worsened, and the
variance of the obtained solutions increased.

The mainstream approach adopted in supervised learning to deal with the
bias-variance tradeoff amounts to limiting the variance by injecting an appro-
priate bias (Dietterich and Kong, 1995). In practice, this means restricting the
representational power while trying, at the same time, to preserve the ability of
representing the system at hand. Indeed, simple approximators characterized by
a low representational power often perform better than competitors that display
a much higher representational power (Geman et al., 1992).

We believe that the injection of bias is a suitable strategy to be explored in
swarm robotics. As discussed above, automatic design approaches might be unable
to properly exploit the high representational power offered by a control architec-
ture that enables a fine-grained control of the robot-environment interaction. By
reducing the representational power, and therefore working at a coarser level of
granularity, it is possible to reduce the overfitting problem and obtain effective so-
lutions. In robotics, this amounts to generating solutions that overcome the realty
gap and that can be effectively used in real-world applications.

In this paper, we propose an automatic design approach in which the control
software has a much reduced representational power with respect to those so far
adopted in evolutionary robotics, but proves able to produce behaviors that are
of interest in swarm robotics.

4 AutoMoDe

AutoMoDe (automatic modular design) is an approach to automatically generate
modular control software in the form of a probabilistic finite state machine. We
chose probabilistic finite state machines as a control architecture because they are
commonly used in the manual design of robot swarms due to their modularity
and readability. Probabilistic finite state machines are composed of states and
transitions. In AutoMoDe, states are chosen among a set of preexisting constituent
behaviors and transitions are defined on the basis of a set of preexisting conditions.
In the following, we will collectively refer to constituent behaviors and conditions
as modules. AutoMoDe automatically searches for the best combination of modules
to perform a given task.

AutoMoDe 7

Each constituent behavior is an activity that the robot can perform. Con-
stituent behaviors have a set of parameters that regulate their internal functioning.
Parameters allow AutoMoDe to fine-tune constituent behaviors and fit different
situations. Different instances of the same constituent behavior can be obtained
by assigning different values to the parameters and can coexist in the same prob-
abilistic finite state machine.

Conditions are used to trigger transitions from a constituent behavior to an-
other one in response to a particular event. Similarly to constituent behaviors,
conditions can be fine-tuned through a set of parameters and can be instantiated
multiple times in the same probabilistic finite state machine.

The output of AutoMoDe is thus a combination of specific instances of modules
where the parameters and the topology of the connections are optimized for the
task at hand. AutoMoDe explores a search space that is represented by all the
possible probabilistic finite state machines that can be obtained by instantiating
and combining the given modules. Within AutoMoDe, the exploration of the search
space can be performed using a wide range of optimization algorithms.

In AutoMoDe, the fact that the control software is obtained by selecting, as-
sembling, and fine-tuning some given modules introduces a bias and reduces the
representational power: the control software produced is a priori constrained to
belong to the space of the finite state machines that can be composed out of the
given modules. This limits the possibility to fine-tune the dynamics of the robot-
robot and robot-environment interaction. As we will show with the experimental
results presented in Section 6, if the set of modules is appropriately defined, the
bias that is introduced reduces the variance and increases the generalization ca-
pabilities of the obtained control software, without hampering its effectiveness.

The specialization of AutoMoDe

AutoMoDe is a general framework that needs to be specialized: i) AutoMoDe
has to be adapted to the given robotic platform, and ii) the optimization process
has to be defined. In the following, we will refer to the person that performs the
specialization of AutoMoDe for a specific platform as the expert.

The expert specializes AutoMoDe for a specific platform on the basis of a ref-
erence model, an abstraction of the robotic platform that specifies in formal terms
its characteristics and capabilities. The reference model defines the way in which
we think of the robots and the way in which we intend the interaction of a robot
with the environment and with other robots. In particular, the reference model
defines an interface between the hardware layer and the logic layer represented by
the control software. As an example, the reference model of a platform featuring
an ambient light sensor could include the capability to distinguish between night
and day. This capability could take the form of a Boolean variable that is updated
by the hardware every, say, 100 ms and that can be read by the control software.

The reference model implicitly defines the class T of tasks that can be per-
formed using a swarm composed of instances of the given robotic platform. For
example, a task that requires separating blue objects from green objects cannot
be performed by robots that are unable to distinguish green from blue. On the
basis of the reference model, the expert must produce the set of modules that will
be used by the specialization of AutoMoDe that is intended to produce control
software for the corresponding platform. The set of modules implicitly defines the

8 Gianpiero Francesca et al.

class T’ of tasks that can be performed by a swarm of the given platform whose
control software is obtained by assembling them.

In the ideal case, the set of modules perfectly and exhaustively exploits all
the capabilities provided by the reference model and T/ = T. In practice, it has
to be expected that the set of modules produced by the expert fails to suitably
exploit some of the capabilities provided by the reference model, with the result
that T’ will be a proper subset of T. In this process of specialization, the experience
of the expert plays an important role. Indeed, the expert defines the constituent
behaviors and the conditions by taking inspiration from those that have been
previously presented in the literature and is guided by her personal understanding
of what tasks are relevant in swarm robotics.

It has to be noticed that the specialization of AutoMoDe for a given reference
model is task independent and has to be done only once: the same set of modules
will be then used to design the control software for any task that one will sub-
sequently wish to tackle with the given platform. It will be clearly unrealistic to
expect that a specialization of AutoMoDe for a reference model is able to perform
a task t ¢ T, where T is the class of tasks implicitly defined by the given reference
model. On the other hand, given the current understanding of swarm robotics,
whether any task ¢t € T can be performed via the set of modules produced by the
expert—that is, whether T’ = T—is an empirical question.

Concerning the definition of the optimization process, a number of elements
have to be selected including: the optimization algorithm to span the space of
possible control software; a way to initialize the optimization algorithm; possible
constraints on the finite state machine to be produced—e.g., the maximum num-
ber of states and of outgoing transitions for each state; and a way to assess the
performance of a candidate control software. We foresee that, to assess the per-
formance of control software candidates, the optimization process will typically
rely on computer-based simulations. The specialization of AutoMoDe for a spe-
cific robotic platform involves therefore the selection of an appropriate simulator
of the robotic platform at hand.

4.1 Proof of concept: AutoMoDe-Vanilla

AutoMoDe-Vanilla is a proof-of-concept specialization of AutoMoDe. Our goal
in this paper is not to define the ultimate automatic design method, but to show
that the core ideas of AutoMoDe are valid. For this reason, AutoMoDe-Vanilla
is unsophisticated in many respects such as the way in which probabilistic finite
state machines are represented and optimized. We will explore more sophisticated
instances of AutoMoDe in future research.

4.1.1 Robot platform and reference model

AutoMoDe-Vanilla is specialized for a swarm of e-puck robots extended with the
Overo Gumstick, the ground sensor, and the range-and-bearing board—see Fig-
ure 1 for a picture of the platform. The e-puck robot is a small wheeled robot
designed for research and education (Mondada et al., 2009a,b). It is equipped
with 8 IR transceivers that can be used as light and proximity sensors. The IR

AutoMoDe 9

Fig. 1: The e-puck robot.

Table 1: Reference model—proz; is the reading of the i-th proximity sensor and
/q; is the angle at which the i-th proximity sensor is positioned with respect to
the head of the robot; light; is the reading of the i-th light sensor and Zg; is the
angle at which the i-th light sensor is positioned with respect to the head of the
robot; gnd, is the reading of the i-th ground sensor; n is the number of robots
in the neighborhood; r,, and Zb,, are respectively the range and bearing of the
m-th neighbor; v; and v, are respectively the speed of the left and right wheel,
and v is the maximum speed of the robot. Sensors and actuators are updated with
a period of 100 ms.

Sensors/Actuators | Variables

Proximity prox,; € [0,1], Zq;, with ¢ € {1,2,...,8}
Light light; € [0,1], Zq;, with i € {1,2,...,8}
Ground gnd; € {0,0.5,1}, with ¢ € {1, 2,3}

Range and bearing | n € N and rm, Zbm, with m € {1,2,...,n}
Wheels vy, vr € [—0, 0], with o = 0.16 m/s

Period of the control cycle: 100 ms

transceivers are distributed around the body of the robot—for details on the po-
sition of the sensors, see Mondada et al. (2009b). The Overo Gumstick is a single-
board computer that allows the e-puck to run Linux. The ground sensor comprises
3 IR transceivers positioned in the front of the robot and pointed downward to
measure the reflectivity of the ground. The range-and-bearing board (Gutiérrez
et al., 2009) comprises 12 IR emitters and 12 receivers equally distributed along
the perimeter of the board and pointed radially and outwards, on the horizontal
plane. The range-and-bearing board allows the e-puck to reliably send and receive
messages within a range of about 0.7 m. When an e-puck receives a message via the
range-and-bearing board, it also obtains information about the relative position
of the sender.

In this paper, the reference model that we adopt for the platform described
above is given in Table 1. According to this reference model, the control software
has a control cycle of 100 ms. At each control step, the control software makes
decisions based on the variables proz,, light,, gnd,;, n, 7m, and Zb,,, which abstract
the proximity, light, ground sensors and range-and-bearing readings. Similarly, the

10 Gianpiero Francesca et al.

control software can set the variables v; and v,, which abstract the actuators that
operate on the wheels. Specifically, proz,; can assume values in the range [0, 1] and
it is equal to 0 when the i-th proximity sensor does not perceive obstacles within
a 0.03 m range, while it is equal to 1 when the obstacle is closer than 0.01 m; light,
can assume values in [0, 1] and it is equal to O if the i-th light sensor perceives
only the ambient light, while it is equal to 1 when the sensor saturates;' gnd,; can
assume only three values and it is equal to 0, 0.5 or 1 when the i-th ground sensor
detects, respectively, a black, a gray, or a white floor; n is the number of robots in
the neighborhood, as perceived via the range-and-bearing board; r,, and Zb,, are
the range and bearing of each robot m in the neighborhood. The values v; and v,
define the speed of the wheels and are constrained in [—o,?], with ¥ = 0.16 m/s
being the maximum speed of the e-puck.

4.1.2 Module set

In AutoMoDe-Vanilla, the set of modules comprises six constituent behaviors and
six conditions. Some of the modules have tunable parameters that are optimized by
AutoMoDe-Vanilla. AutoMoDe-Vanilla selects, combines, and fine-tunes these
modules to produce a finite state machine. This finite state machine operates with
a period of 100 ms, which is the same period at which sensors and actuators are
updated, as specified by the reference model given in Table 1. At each control
cycle, the constituent behavior associated with the current state is performed.
Subsequently, each outgoing transition of the current state is considered and the
corresponding condition is evaluated to decide whether the transition is enabled
or not. In case no transition is enabled, no state transition occurs. If at least a
transition is enabled, one of them is randomly selected and the current state is
updated accordingly.

In the following, we describe the modules of AutoMoDe-Vanilla. We adopt the
convention that tunable parameters are denoted by letters of the Greek alphabet.

Constituent behaviors

Ezploration: the robot moves straight. If any of the proximity sensors positioned in
front senses an obstacle, that is, if proz; > 0.1 for any ¢ € {1,2,7, 8}, the robot
turns on itself for a random number of control cycles chosen in {0,1,...,7},
where 7 is an integer parameter in {1,2,...,100}. The robot turns away from
the direction faced by the proximity sensor that returned the highest value.

Stop: the robot stays still.
Phototazis: the robot moves towards the light source, if perceived; otherwise, it
moves straight. Obstacle avoidance is embedded: the robot follows the vector

w = w — kw,, where k is a hard-coded parameter whose value has been
a priori fixed to 5 and w’ and w, are vectors defined as:

;L)wr = Zle (light;, Zgs), if light is perceived,
@, 20), otherwise;
. (1)

Wo =Y (proz;, Zq;),

1=1

1 The reference model assumes that, besides the ambient light, at most one light source is
present in the environment.

AutoMoDe 11

where Zgq; is the angle at which sensor ¢ is positioned with respect to the head
of the robot.

Anti-phototaxis: the robot moves away from the light source, if perceived; other-
wise, it moves straight. Obstacle avoidance is embedded: the robot follows the
vector w = w’ — kw,, where

;=W if light is perceived,
(1, £0), otherwise;

and k, w;, and w, are defined in phototaxis.

Attraction: the robot uses the range-and-bearing board to go in the direction
of the robots in neighborhood, if any; otherwise, it moves straight. Obstacle
avoidance is embedded: the robot follows the vector w = w’ — kw,, where

Tm

, Wrgh = D1 (i me) , if robots are perceived,
w' = "= (2)
(1, £0), otherwise;

and « is a real-valued parameter in [1, 5], and where w, and k are defined in
phototaxis.

Repulsion: the robot moves away from the other robots in its neighborhood, if
any; otherwise, it moves straight. Obstacle avoidance is embedded: the robot
follows the vector w = w’ — kw,, where

/) —wrgp, if robots are perceived,
(1, £0), otherwise;

and w,.gp is defined in attraction, while w, and k are defined in phototaxis.

Conditions

Black-floor: if gnd; = 0, for any ¢ € {1, 2, 3}, the transition is enabled with prob-
ability 3, where (§ is a parameter.

Gray-floor: same as black-floor but the prerequisite is that gnd, = 0.5, for any
ie{1,2,3}.

White-floor: same as black-floor but the prerequisite is that gnd, = 1, for any
i€{1,2,3}.

Neighbor-count: the transition is enabled with probability:

_ 1
z(n) = 1+ en(€—n)’

(3)

where n is the number of robots in the neighborhood, 7 € [0, 20] is a real-valued
parameter and £ € {0,1,...,10} is an integer parameter. The transition is
enabled with probability 0.5 if n = £. The parameter n regulates the steepness
of the function z(n) at n = &.

Inverted-neighbor-count: the transition is enabled with probability 1— z(n), where
z(n) is defined in Equation 3.

Fized-probability: the transition is enabled with probability 8, where g is a pa-
rameter.

12 Gianpiero Francesca et al.

4.1.83 Optimization process

Concerning the optimization algorithm, AutoMoDe-Vanilla adopts F-Race (Bi-
rattari et al., 2002; Birattari, 2009), a racing algorithm originally developed for
tuning metaheuristics. In particular, we use the implementation provided by the
irace package (Lépez-Ibénez et al., 2011) for R (R Development Core Team, 2008).
F-race has been designed to handle stochasticity in the evaluation of candidates:
in the case of swarm robotics, the performance of a control software candidate is
highly stochastic and the ability of F-race to handle stochasticity appears to be
appropriate in this context. Moreover, F-race is an extremely simple algorithm and
in the context of this paper we wish to keep the focus on the control architecture
rather than on the optimization process.

Within the optimization process, control software candidates are evaluated via
a computer-based simulation performed using ARGoS (Pinciroli et al., 2012), a
multi-engine simulator of swarm robotics systems. In particular, we use ARGoS’
2D dynamic physics engine to model the robots and the environment.

F-Race iteratively evaluates a set of control software candidates, all generated
randomly at the beginning of the optimization process, and discards the candidates
that have a low expected performance, until a stopping criterion is met.

At iteration i, the candidates that have not been discarded in the previous i —1
iterations are evaluated on a test case. A test case is characterized by the specific
initial condition—e.g., the initial position of the robots in the arena. To evaluate a
control software candidate on a test case, F-Race performs a simulation run. After
all candidates are evaluated, F-Race discards those candidates whose expected
performance, as estimated on the i test cases considered so far, is statistically
dominated by at least another candidate. The surviving candidates enter iteration
i+1. The process stops either when a single candidate remains or when a predefined
maximum number of evaluations has been performed. The maximum number of
evaluations is the available design budget and is part of the specifications of an
automatic design problem. It measures the computational resources available to
produce the desired design.

In order to limit the complexity of the control software produced and therefore
its representational power, we limit the number of states and conditions included:
AutoMoDe-Vanilla can generate probabilistic finite state machines with up to 4
states, where each state can have up to 4 outgoing transitions. The candidates are
generated at the beginning of the optimization process using the built-in sampling
procedure provided by the irace package. This procedure samples the space defined
as:

<#S, Si, Sf? #Ni, Ni,jm Ci’jw C£31> i=1,2... #5 (4)

Ji=1,2,..., #N;

where #S € {1,2...,4} is the number of states of the probabilistic finite state
machine; S; € {1,2...,6} is the constituent behavior of state i; S? are the param-
eters of the constituent behavior S;, if any; #N; € {1,2,...,4} is the outdegree of
state 7, that is, the number of transitions outgoing state 4; j; is an index spanning
the #N; successors of state i; N; j, € {1,2,...,#S} is the j;-th successor of state
1; Cij, € {1,2,...,6} is the condition associated to the transition that connects
state ¢ to its j;-th successor N; j,; and Cf,ji are the parameters of the condition

2 State i = 1 is the initial state of the probabilistic finite state machine.

AutoMoDe 13

Fig. 2: Example of a finite state machine generated by AutoMoDe-Vanilla. The
notation adopted is the one defined in Equation 4.

C; j,, if any. Figure 2 provide an illustrative example of a finite state machine
sampled from the space defined in Equation 4.

The cardinality of the initial set of candidates is one sixth of the available
design budget.

AutoMoDe-Vanilla implements the best practice commonly followed in auto-
matic design to obtain control software that has the highest chance to overcome
the reality gap: A simulated uniform noise of 5% is added on the proximity, ground
and light sensors and on the wheels actuator (Jakobi et al., 1995). The noise of the
range-and-bearing board follows a model defined using empirical data. Moreover,
the initial position and orientation of the robots at each iteration of the F-Race
algorithm are randomly set by sampling from a uniform distribution.

5 Experimental setup

To assess the capabilities of AutoMoDe-Vanilla, we conduct a series of experi-
ments in which AutoMoDe-Vanilla is used to automatically design the control
software for robot swarms that are intended to perform two different tasks: ag-
gregation and foraging. We selected these two tasks because they are common
benchmarks in swarm robotics and it appears that they can be performed by a
swarm of robots characterized by the reference model presented in Section 4.1.
The experiments presented in this paper adhere to a hands-off experimental
protocol: we do not allow any human intervention in the automatic design process.
The aim of the experiments is to assess the expected performance of AutoMoDe-
Vanilla in designing control software for a robot swarm.> We run three sets of
experiments that differ in the design budget, that is, the total number of simulation
runs that AutoMoDe-Vanilla can use to design the control software. The three
design budgets are: 10,000, 50,000, and 200,000 simulation runs. For each design
budget, we execute 20 independent runs of AutoMoDe-Vanilla and we therefore

3 Because AutoMoDe-Vanilla is stochastic, reporting and discussing its expected perfor-
mance appears to be the appropriate choice (Birattari and Dorigo, 2007).

14 Gianpiero Francesca et al.

obtain 20 instances of control software; we then assess the performance of these
instances on the robots by performing a single run of each of them.*

The experimental protocol we adopt provides for a number of elements that
reduce the intervention of the human experimenter during the evaluation of the
control software produced by AutoMoDe-Vanilla: The control software obtained
in simulation is automatically cross-compiled by ARGoS and copied on the e-
pucks without any modification. The initial position and orientation of the robots
is obtained by running the constituent behavior exploration—see Section 4.1—for
a random number of seconds in {1,2,...,20}. The performance of the robots is
automatically computed by a tracking system (Stranieri et al., 2013) on the basis
of data gathered via a ceiling camera.

With the aim of quantifying the effects of the reality gap, we perform a further
independent assessment in simulation of the instances of control software produced
by AutoMoDe-Vanilla. Also in simulation, each instance is assessed by performing
a single run.

5.1 A yardstick: EvoStick

To put AutoMoDe-Vanilla into perspective, we define another automatic de-
sign method and we perform a comparison. This second method, which we call
EvoStick, is based on evolutionary robotics and implements the current best prac-
tice in the automatic design of robot swarms. EvoStick is the same method that
we have already successfully used in previous experiments (Francesca et al., 2012).

EvoStick is based on the same reference model that we have defined in Table 1
and that is adopted by AutoMoDe-Vanilla. Each robot is controlled by a fully
connected, feed-forward neural network whose control cycle has a period of 100 ms,
as specified by the reference model. The neural network has 24 inputs, 2 outputs
and no hidden units. The inputs are based on the capabilities defined by the
reference model: 8 proximity sensors proz,; € [0,1], ¢ € {1,2,...,8}; 8 light sensors
light; € [0,1],7 € {1,2,...,8}; 3 ground sensors gnd; € {0,0.5,1},4i € {1,2,3}; and
5 aggregated inputs from the range-and-bearing board. The aggregated inputs from
the range-and-bearing board are: 2(n) = 1 — 2/(1 + €™), where n is the number
of the robots perceived; and the scalar projections of wygp = 7" 1 (1/7m, ZLbm)
on the four unit vectors that point at 45° 135° 225° and 315° with respect to the
head of the robot. Please notice that Z(n) is defined as the function z(n) adopted
in AutoMoDe-Vanilla (Equation 3), with n = 1, £ = 0, and scaled and shifted
to be constrained in [—1,1]; w,gps is defined as the function of the same name

4 The reader might wonder why, in order to estimate the expected performance of
AutoMoDe-Vanilla on each design budget, we repeat the design process 20 times and we
test the resulting design on the robots only once. Due to time constraints, we have decided to
run 20 robot experiments per design budget. Having fixed to 20 the total number of robot ex-
periments, one might be tempted to consider alternative protocols: repeat the design 20 times
and evaluate each resulting design 1 time; repeat the design 10 times and evaluate each result-
ing design 2 times; repeat the design 5 times and evaluate each resulting design 4 times; or
even performing the design once and evaluate the result 20 times. Although all these protocols
would produce an unbiased estimate of the expected performance of AutoMoDe-Vanilla, the
one implemented in this study is the one that minimizes the variance of the estimate. A simi-
lar issue has been formally studied in the context of the assessment of stochastic optimization
algorithms (Birattari, 2004, 2009).

AutoMoDe 15

Table 2: EvoStick—Partition of the available design budget.

budget evolutionary algorithm (iterations) post-evaluation (per individual)

10,000 8,000 ®) 2,000 (20)
50,000 40,000 (40) 10,000 (100)
200,000 150,000 (150) 50,000 (500)

adopted in AutoMoDe-Vanilla (Equation 2), with @ = 1. The activation of the
output neurons is computed as the weighted sum of all input units plus a bias term,
filtered through a standard logistic function. The outputs of the neural network
are scaled in [—vpm, vm], with vy, = 0.16 m/s, as specified by the reference model,
and are used to set the speed of the two wheels.

The neural network is characterized by a set of 50 parameters. Each parameter
is a real value in [—5,5]. These parameters are optimized via a standard evolu-
tionary algorithm. The cardinality of the population is 100. The initial population
is randomly generated. At each iteration, each individual in the population is
evaluated through 10 simulations performed using ARGoS’ 2D dynamic physics
engine. The following population is generated via elitism and mutation. The elite
composed of the 20 best individuals is included unchanged. The rest of the popu-
lation is obtained from the elite via mutation: parameters are modified by adding
a random value drawn from a normal distribution with mean 0 and variance 1.
The evolutionary algorithm stops after a predefined number of iterations. The fi-
nal population is re-evaluated a number of times to obtain a better performance
estimation, and the individual with the highest mean performance is selected.
The available design budget is partitioned in two parts: one for the evolutionary
algorithm and one for the post-evaluation. See Table 2 for the details.

EvoStick implements exactly the same precautions adopted in AutoMoDe-
Vanilla to reduce the risk of obtaining control software that does not overcome the
reality gap—see Section 4.1.3. In the definition of EvoStick, we do not employ any
further technique to overcome the reality gap. The adoption of other techniques
is not a priori justified, and would possibly become apparent only a posteriori,
when looking at the results obtained on each specific task to be performed. If
additional techniques to overcome the reality gap are adopted on a per-task basis
and a posteriori on the base of the results obtained, the overall design process
would end up into a human-driven trial-and-error search and this would defeat
the purpose of our experimental protocol and of our research as a whole.

We assess the performance of EvoStick with the same criteria and under the
same experimental conditions that we adopt for the assessment of AutoMoDe-
Vanilla. In particular, the two methods use the same simulator, design control
software for the same robotic platform under the same reference model, and opti-
mize the same objective function under the same environmental conditions. Con-
cerning the robot experiments, to limit spurious effects of battery level and of other
possible unforeseen ambiental contingencies, the order of the experiments is ran-
domly generated and runs of instances of control software produced by AutoMoDe-
Vanilla and by EvoStick are interleaved.

16 Gianpiero Francesca et al.

(a) Simulated arena and 20 e-pucks. (b) Real arena and 20 e-pucks.

Fig. 3: Arena for the aggregation task.

5.2 Tasks

In all the experiments that we perform on the aggregation and the foraging tasks,
the swarm comprises 20 e-puck robots. The available time to carry out the task is
250s. The robots operate in a dodecagonal arena of 4.91 m?, surrounded by walls.
For future reference, we define a coordinate system with origin in the center of the
arena and x axis parallel to one of the sides. Coordinates in this system are given
in meters.

5.2.1 Aggregation

In the aggregation task, the swarm has to cluster in one of the two black areas of
the arena’s floor. The aggregation task is the same analyzed in Francesca et al.
(2012). Figure 3 shows the arena for the aggregation task in both simulation and
reality. The floor of the arena is gray and there are two black circular areas on the
floor, namely a and b. The areas have the same radius of 0.35 m and are centered
in (0.6,0) and (—0.6,0).

At the beginning of each run, the 20 e-puck robots are randomly distributed in
the arena. The objective function is Faggregation = max(Na, Np)/N, where Ny and
N, are the number of robots that are in the black areas a or b at the end of the
simulation, and N = 20 is the size of the swarm. This objective function equals 1
if all the robots are aggregated in one of the two areas.

5.2.2 Foraging

In the foraging task, the swarm has to retrieve as many objects as possible from
two sources and deposit them in the nest. Because the e-puck platform has no
grasping capabilities, we abstract the actions of retrieving and depositing objects:
We reckon that an e-puck has retrieved an object when it enters a source, which is
represented by a black circle on the ground. Similarly, we reckon that an e-puck has
deposited the object it is carrying when it enters the nest, which is represented by
a white area. Our foraging task is inspired by the one presented in Liu et al. (2007).
Figure 4 shows the arena for the foraging task in both simulation and reality. The

AutoMoDe 17

(a) Simulated arena and 20 e-pucks. (b) Real arena and 20 e-pucks.

Fig. 4: Arena for the foraging task. The red circle at the bottom of the simulated
arena represents the light source.

two black areas have a radius of 0.15m and are centered in (0.75,0) and (—0.75, 0).
Moreover, a light source is positioned behind the nest area, in (0,1.25) at 0.75m
from the ground. The objective function is Ff,reging = No, Where NN, is the total
number of objects retrieved and deposited.

6 Results

We analyze the results of the experiments from two points of view: first, we es-
timate the performance of the control software produced by AutoMoDe-Vanilla,
using the performance of the one produced by EvoStick as a yardstick; second, we
compare the performance of the control software produced by AutoMoDe-Vanilla
in simulation and on the robots to evaluate the impact of the reality gap. Also in
this case, we use EvoStick as a yardstick.

Moreover, for each task we provide a behavioral analysis of the swarms designed
by AutoMoDe-Vanilla and by EvoStick. In this analysis, we also highlight the
main differences between the behaviors observed in simulation and those observed
in reality.

The complete set of experimental data and video recordings of all the robot
experiments is available online (Francesca et al., 2013).

6.1 Aggregation

Figure 5 shows the performance of AutoMoDe-Vanilla and of EvoStick in simu-
lation and on the robots.

In all three sets of experiments, AutoMoDe-Vanilla designs robot swarms that
perform better than those designed by EvoStick: for each design budget, the dif-
ference in performance between AutoMoDe-Vanilla and EvoStick is statistically
significant according to the Wilcoxon test, with 95% confidence.

18 Gianpiero Francesca et al.

Wide boxes: robots
Narrow boxes: simulation

Objective function
00 02 04 06 08 10

1

[s

Objective function
00 02 04 06 08 1.0

AutoMoDe
Vanilla

EvoStick

(a) 10,000 design budget.

(b) 50,000 design budget.

AutoMoDe
Vanilla

EvoStick

Objective function
00 02 04 06 08 1.0

AutoMoDe EvoStick
Vanilla

(¢) 200,000 design budget.

Fig. 5: Aggregation—Performance of the control software obtained using differ-
ent design budgets. The plot shows, for AutoMoDe-Vanilla and EvoStick, the
performance of the 20 instances of the control software (one for each independent
run) both in simulation (narrow boxes) and on the robots (wide boxes). A box
comprises observations between the first and third quartile; the black horizontal
line represents the median of the observations; the top whisker extends either to
the largest observation or to 3/2 of the upper quartile (whatever is smaller); the
bottom whisker is defined similarly; observations falling outside the extension of
whiskers (if any) are outliers and are represented as circles.

A visual inspection of the plots shows that AutoMoDe-Vanilla and EvoStick
have similar performance in simulation. For what concerns the reality gap, in the
case of EvoStick there is a large difference in performance between simulation
and reality. The control software obtained by EvoStick, even though it yields
good results in simulation, is not able to reliably produce aggregation on the
robots. On the contrary, in the case of AutoMoDe-Vanilla the difference between
simulation and reality is small. A statistical analysis based on the Wilcoxon test is
reported in Table 3. The data confirms that the mismatch between simulation and
reality is lower in AutoMoDe-Vanilla than in EvoStick. The difference between
the mismatch observed for AutoMoDe-Vanilla and for EvoStick is significant
with a confidence level of at least 95%. The table indicates that the performance
difference between simulation and reality observed in EvoStick increases with
the design budget from 10,000 to 50,000, and then saturates. These observations
could be explained as a result of overfitting: the larger the design budget, the
longer the fine-tuning of the control software, and consequently the larger the risk
of overfitting, up to saturation.

In all 60 runs, across the three budget levels, AutoMoDe-Vanilla has used
the whole available design budget. As a result, AutoMoDe-Vanilla and EvoStick
have always run the same number of simulated experiments.

6.1.1 Behavioral analysis

In this section, we describe the behavior of the control software designed by
AutoMoDe-Vanilla and EvoStick for aggregation.

AutoMoDe 19

Table 3: Aggregation—Estimated mismatch between simulation and reality, and
corresponding confidence intervals according to the Wilcoxon test.

estimated | 95% confidence

budget mismatch interval
10,000 AutoMoDe-Vanilla 0.01 -0.06 0.08
EvoStick 0.19 0.07 0.30
50,000 AutoMoDe-Vanilla 0.03 -0.12 0.17
EvoStick 0.40 0.30 0.50
200,000 AutoMoDe-Vanilla 0.01 -0.11 0.12
EvoStick 0.40 0.30 0.50

fixed-probability

attraction

ro—
La:SJ

black-floor

P
BTy

gray-floor

Fig. 6: Aggregation—An instance of control software designed by AutoMoDe-
Vanilla. The initial state is represented by the double-line circle. The robot per-
forms attraction and moves toward the other robots. When it detects the black
floor, it stops. In the stop state it checks for its transitions. It changes state when it
detects the gray floor. It also starts moving, with a 0.25 probability, independently
from the floor color.

AutoMoDe-Vanilla. A feature of AutoMoDe is that the obtained control
software is a probabilistic state machine, which is human readable. The 60 in-
stances of the control software designed by AutoMoDe-Vanilla for the aggregation
task have, with minor differences, the same structure. Figure 6 shows a represen-
tative instance. Each robot starts in the attraction state, that is, it moves toward
other robots. With probability 1, a robot changes state to stop when it senses
that the floor is black. In the stop state, the robot does not move. The robot
then changes the state to attraction with a 0.25 probability or when it perceives
the gray floor. This last event can happen because the robot is pushed outside
the black area by other robots. The resulting collective behavior can be described
as follows: Initially, robots tend to move in the direction of their neighbors and
tend to cluster. Robots that enter a black area stop for some time and act as an
attraction point for their neighbors. After a while, all robots are either in a black
area or in its proximity. Eventually, most of the robots are attracted inside the
black area where the majority of the robots are located. The behaviors observed
in simulation and in reality are similar.

EvoStick. Because neural network are not human readable, the only way to
analyze the control software obtained by EvoStick is to instantiate it on the robots

20

Gianpiero Francesca et al.

Wide boxes: robots

Narrow boxes: simulation

o o o
S S S
o o [=3 H
= S c 37 c 37 ;
S S i S B
2 87 2 87 H 2 87 :
E : 3 . ‘ 3
. H o | i i Q - —
g § e = gE s ~
el = T % HH | % 43T
8 i i .8 L : -8 Lo 1
B ° = °e =
o — o . o i
AutoMoDe gyostick AutoMoDe pyostick AutoMoDe gyostick
Vanilla Vanilla Vanilla
(a) 10,000 design budget. (b) 50,000 design budget. (¢) 200,000 design budget.

Fig. 7: Foraging—Performance of the control software obtained using different
design budgets. The plot shows, for AutoMoDe-Vanilla and EvoStick, the per-
formance of the 20 instances of the control software (one for each independent
run) both in simulation (narrow boxes) and on the robots (wide boxes). See the
caption of Figure 5 for an explanation of the graphical conventions adopted in the
plot.

and observe the resulting behavior. The 60 instances of control software obtained
by EvoStick show behaviors that are qualitatively similar to one another. When
a robot is in the gray area, it moves following a circular trajectory. The radius
of this trajectory decreases when the number of robots perceived increases. This
movement allows the robots to create aggregates. When a robot enters a black
area, the radius of its trajectory becomes very small, to the point that the robot
almost rotates on the spot. In this condition, the robot leaves the black area only
because pushed out by other robots. The robots that are in the black areas attract
other robots. From our observations, it appears that the quality of the resulting
collective behavior strongly depends on where the first aggregates are created: if
these aggregates are far from the black areas, the robots are not able to find the
black areas. In simulation, the behavior is qualitatively similar but the circular
trajectories have a larger radius with respect to the ones observed in reality.

6.2 Foraging

Figure 7 shows the performance achieved on the foraging task by AutoMoDe-
Vanilla and by EvoStick, both in simulation and on the robots. The obtained
results show the same trend observed in the aggregation task.

In all three experiments, AutoMoDe-Vanilla designs robot swarms that per-
form better than those designed by EvoStick. Differences are all significant ac-
cording to the Wilcoxon test, with 95% confidence.

Concerning the reality gap, it is interesting to note that EvoStick shows signs of
overfitting: the mismatch between simulation and reality is large and increases with
the design budget. On the contrary, AutoMoDe-Vanilla is able to design control
software that is robust to the reality gap. The statistical analysis reported in

AutoMoDe 21

Table 4: Foraging—Estimated mismatch between simulation and reality, and cor-
responding confidence intervals according to the Wilcoxon test.

estimated | 95% confidence

budget mismatch interval
10,000 AutoMoDe-Vanilla -3 -7 2
EvoStick 39 31 47
50,000 AutoMoDe-Vanilla -2 —6 3
EvoStick 57 51 64
200,000 AutoMoDe-Vanilla -1 —6 4
EvoStick 70 64 79

exploration

(a) First class: an example.

black-floor
[P
=043,

phototaxis

white-floor
[P
B=075,

exploration

|
227,

(b) Second class: an example.

Fig. 8: Foraging—The two classes of control software designed by AutoMoDe-
Vanilla. The initial state is indicated by a double-line circle.

Table 4 confirms these observations: In all the experiments, the difference between
the mismatch observed for AutoMoDe-Vanilla and for EvoStick is significant
with a confidence level of at least 95%. In the case of AutoMoDe-Vanilla, the
simulation slightly underestimates the performance of the robots. This is shown
by the fact that the expected difference is slightly negative. On the contrary, in
the case of EvoStick the simulation greatly overestimates the performance of the
robots.

In all 60 runs, across the three budget levels, AutoMoDe-Vanilla has used
the whole available design budget. As a result, AutoMoDe-Vanilla and EvoStick
have always run the same number of simulated experiments.

22 Gianpiero Francesca et al.

6.2.1 Behavioral analysis

In this section, we describe the behavior of the control software designed by
AutoMoDe-Vanilla and EvoStick for foraging.

AutoMoDe-Vanilla. The 60 instances of the control software obtained by
AutoMoDe-Vanilla can be grouped into two classes. The instances in the first class
feature only exploration. See Figure 8a for an example. By performing exploration,
the robots periodically enter the black and the white areas incrementing the value
of the objective function. Instances of the first class of control software are frequent
when the lowest design budget is used (14 instances out of 20), while they are rare
for the other design budgets (3 and 0 instances in the case of design budget 50,000
and 200,000, respectively). The instances of the second class feature an alternation
between exploration and phototaxis. See Figure 8b for an example. A robot uses
exploration to search for the black areas. When it finds a black area, it switches to
phototaxis to return to the white area. When it reaches the white area, it resumes
exploration. The behaviors observed in simulation and in reality are similar.

EvoStick. The 60 instances of the control software obtained by EvoStick show
qualitatively similar behaviors. Robots explore the arena following curved trajec-
tories that are perturbed by the presence of other robots, the color of the floor
and the intensity of the light. As a result of the perturbations, robots follow the
walls and sometimes cross the arena passing on the black areas (the sources) and
on the white area (the nest). However, this behavior is strongly affected by in-
terference among robots: frequently, robots create aggregates that dissolve after
a while. Concerning the comparison between the simulation and reality, two are
the main differences. i) robots interfere less with each other in simulation than
in reality; and ii) circular trajectories have a larger radius in simulation than in
reality.

7 Discussion

In the experiments reported in Section 6, AutoMoDe-Vanilla scored better than
EvoStick at overcoming the reality gap. It should be noted that the two meth-
ods have been tested under the same conditions: same simulator, environment,
objective function, design budget, robot platform, and reference model. The real-
ity gap that AutoMoDe-Vanilla and EvoStick had to overcome is therefore the
same. Nonetheless, the mismatch between simulation and reality that we observed
is significantly higher for the control software generated by EvoStick than for the
one generated by AutoMoDe-Vanilla. Following the conjecture we presented in
Section 3, we ascribe this difference to the different representational power of the
control architecture adopted by AutoMoDe-Vanilla and EvoStick. It is true that,
besides the control architecture, AutoMoDe-Vanilla and EvoStick also differ in
the optimization algorithm adopted. Nonetheless, it is our contention that the im-
pact of the optimization algorithm is negligible in this context and that the control
architecture is the main responsible for the differences observed in our experiments.
To backup this contention, we performed some exploratory experiments (Francesca
et al., 2013) in which we compare EvoStick with another method, FanStick, in
which the control architecture is the same neural network adopted in EvoStick

AutoMoDe 23

and the optimization process is the one adopted in AutoMoDe-Vanilla. The re-
sults of these exploratory experiments show that FnnStick performs slightly worse
than EvoStick, which excludes that the differences between the performance of
AutoMoDe-Vanilla and EvoStick can be explained by a superior performance of
the optimization process adopted in AutoMoDe-Vanilla. We can therefore con-
clude that our experiments corroborate the conjecture presented in Section 3:
the high representational power provided by the fine-grained control architecture
adopted in EvoStick is not properly exploited and results in solutions that do not
properly generalize to the real world. On the contrary, AutoMoDe-Vanilla, with
its relatively low representational power, displays better generalization capabilities.
In terms of the bias-variance tradeoff (Geman et al., 1992), AutoMoDe-Vanilla has
a higher bias towards a relatively restricted class of behaviors—specifically, those
that can be obtained by assembling a four-state probabilistic finite state machine
starting from the six given constituent behaviors and the six given conditions.
As a result, AutoMoDe-Vanilla expectedly features a lower variance compared
to EvoStick. Eventually, this results in a superior ability to overcome the reality

gap.

8 Conclusions and future work

Guided by the concept of bias-variance tradeoff, we introduced AutoMoDe: a new
approach to the automatic design of control software for robot swarms. AutoMoDe
designs control software in the form of probabilistic finite state machines by draw-
ing from a given set of preexisting parametric modules. AutoMoDe automatically
selects, combines, and instantiates these modules using an optimization algorithm
that aims at maximizing a task-specific measure of performance. By injecting an
appropriate bias in the form of predefined modules, we can reduce the wvariance
of the automatic design process. As a result, the control software produced by
AutoMoDe is able to overcome the reality gap.

We presented also AutoMoDe-Vanilla, which is a proof-of-concept instance of
AutoMoDe specialized for a specific reference model of the e-puck robot. We car-
ried out an experimental analysis in which we used AutoMoDe-Vanilla to design
control software for two different swarm robotics tasks: aggregation and foraging.
The experiments were carried out using a hands-off experimental protocol, that is,
no human intervention has been allowed in the automatic design process. The re-
sults show that AutoMoDe-Vanilla is able to successfully design control software
for both tasks. The control software obtained by AutoMoDe-Vanilla overcomes
the reality gap: the performance in simulation and in reality is comparable.

Future work will focus on the empirical characterization of the class of tasks for
which AutoMoDe-Vanilla can successfully design control software. We will also
focus on the development of other instances of AutoMoDe. We plan on improving
over AutoMoDe-Vanilla by exploring the use of different optimization algorithms
and more sophisticated ways to encode probabilistic finite state machines.

Acknowledgements. The research leading to the results presented in this paper
has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agree-
ment n. 246939. G. Francesca acknowledges support by the META-X project, an

24 Gianpiero Francesca et al.

Action de Recherche Concertée funded by the Scientific Research Directorate of
the French Community of Belgium. M. Brambilla, A. Brutschy, and M. Birattari
acknowledge support from the Belgian F.R.S.-FNRS. Vito Trianni acknowledges
support by the Italian National Research Council (CNR) within the EUROCORES
Programme EuroBioSAS of the European Science Foundation. The authors thank
the anonymous reviewers for their useful comments.

References

G. Baldassarre, V. Trianni, M. Bonani, F. Mondada, M. Dorigo, and S. Nolfi. Self-
organised coordinated motion in groups of physically connected robots. IEEE
Transactions on Systems, Man and Cybernetics - Part B, 37(1):224-239, 2007.

S. Berman, V. Kumar, and R. Nagpal. Design of control policies for spatially in-
homogeneous robot swarms with application to commercial pollination. In 2011
IEEE International Conference on Robotics and Automation (ICRA), pages
378-385, Piscataway, NJ, 2011. IEEE Press.

M. Birattari. On the estimation of the expected performance of a metaheuris-
tic on a class of instances. How many instances, how many runs? Technical
Report TR/IRIDIA /2004-001, IRIDIA, Université Libre de Bruxelles, Brussels,
Belgium, 2004.

M. Birattari. Tuning Metaheuristics: A Machine Learning Perspective. Springer,
Berlin, Germany, 2009.

M. Birattari and M. Dorigo. How to assess and report the performance of a
stochastic algorithm on a benchmark problem: Mean or best result on a number
of runs? Optimization Letters, 1(3):309-311, 2007.

M. Birattari, T. Stiitzle, L. Paquete, and K. Varrentrapp. A racing algorithm
for configuring metaheuristics. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2002), pages 11-18. Morgan Kaufmann, San
Francisco, CA, 2002.

C. Bishop. Training with noise is equivalent to Tikhonov regularization. Neural
Computation, 7(1):108-116, 1995.

J. Bongard, V. Zykov, and H. Lipson. Resilient machines through continuous
self-modeling. Science, 314(5802):1118-1121, 2006.

J. C. Bongard. Evolutionary robotics. Communications of the ACM, 56(8):74-83,
2013.

M. Brambilla, C. Pinciroli, M. Birattari, and M. Dorigo. Property-driven design
for swarm robotics. In Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2012), pages 139-146,
Richland, SC, 2012. IFAAMAS.

M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. Swarm robotics: A review
from the swarm engineering perspective. Swarm Intelligence, 7(1):1-41, 2013.
R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal

of Robotics and Automation, 2(1):14-23, 1986.

E. Sahin. Swarm robotics: From sources of inspiration to domains of application.
In Proceedings of the 2004 International Conference on Swarm Robotics, volume
3342 of LNCS, pages 10-20, Berlin, Germany, 2005. Springer.

AutoMoDe 25

T. Dietterich and E. B. Kong. Machine learning bias, statistical bias, and statistical
variance of decision tree algorithms. Technical report, Department of Computer
Science, Oregon State University, 1995.

M. Dorigo, M. Birattari, and M. Brambilla. Swarm robotics. Scholarpedia, 9(1):
1463, 2014.

M. Duarte, S. Oliveira, and A. L. Christensen. Automatic synthesis of controllers
for real robots based on preprogrammed behaviors. In From Animals to Animats
12, volume 7426 of LNCS, pages 249-258, Berlin, Germany, 2012a. Springer.

M. Duarte, S. Oliveira, and A. L. Christensen. Hierarchical evolution of robotic
controllers for complex tasks. In 2012 IEEE International Conference on Devel-
opment and Learning and Epigenetic Robotics (ICDL), pages 1-6, Piscataway,
NJ, 2012b. IEEE Press.

E. Ferrante, E. D. Guzméan, A. E. Turgut, and T. Wenseleers. GESwarm: Gram-
matical evolution for the automatic synthesis of collective behaviors in swarm
robotics. In Proceedings of the Fifteenth International Conference on Genetic
and Evolutionary Computation Conference Companion, pages 17-24. ACM, New
York, NY, 2013.

D. Floreano and L. Keller. Evolution of adaptive behaviour in robots by means of
Darwinian selection. Plos Biology, 8(1):€1000292, 2010.

D. Floreano, P. Husbands, and S. Nolfi. Evolutionary robotics. In Springer Hand-
book of Robotics, pages 1423-1451. Springer, Berlin, Germany, 2008.

G. Francesca, M. Brambilla, V. Trianni, M. Dorigo, and M. Birattari. Analysing an
evolved robotic behaviour using a biological model of collegial decision making.
In From Animals to Animats 12, volume 7426 of LNCS, pages 381-390, Berlin,
Germany, 2012. Springer.

G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birat-
tari. AutoMoDe: A novel approach to the automatic design of con-
trol software for robot swarms, 2013. Supplementary information page at
http://iridia.ulb.ac.be/supp/IridiaSupp2013-007/.

S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance
dilemma. Neural Computation, 4(1):1-58, 1992.

A. Gutiérrez, A. Campo, M. Dorigo, J. Donate, F. Monasterio-Huelin, and L. Mag-
dalena. Open E-puck range & bearing miniaturized board for local communi-
cation in swarm robotics. In 2009 IEEFE International Conference on Robotics
and Automation (ICRA), pages 3111-3116, Piscataway, NJ, 2009. IEEE Press.

H. Hamann and H. Woérn. A framework of space—time continuous models for
algorithm design in swarm robotics. Swarm Intelligence, 2(2):209-239, 2008.

1. Harvey, P. Husbands, D. CIliff, A. Thompson, and N. Jakobi. Evolutionary
robotics: The Sussex approach. Robotics and Autonomous Systems, 20(2):205—
224, 1997.

S. Hauert, J.-C. Zufferey, and D. Floreano. Evolved swarming without positioning
information: An application in aerial communication relay. Autonomous Robots,
26(1):21-32, 2008.

N. Jakobi. Evolutionary robotics and the radical envelope-of-noise hypothesis.
Adaptive Behavior, 6(2):325-368, 1997.

N. Jakobi, P. Husbands, and I. Harvey. Noise and the reality gap: The use of
simulation in evolutionary robotics. In Advances in Artificial Life (ECAL’95),
volume 929 of LNCS, pages 704-720, Berlin, Germany, 1995. Springer.

26 Gianpiero Francesca et al.

S. Kazadi, J. R. Lee, and J. Lee. Model independence in swarm robotics. Inter-
national Journal of Intelligent Computing and Cybernetics, 2(4):672—694, 2009.

S. Koos, J. Mouret, and S. Doncieux. The transferability approach: Crossing
the reality gap in evolutionary robotics. IEEE Transactions on Evolutionary
Computation, 17(1):122-145, 2013.

W. Liu, A. Winfield, J. Sa, J. Chen, and L. Dou. Strategies for energy optimisation
in a swarm of foraging robots. In Swarm Robotics, volume 4433 of LNCS, pages
14-26. Springer, Berlin, Germany, 2007.

M. Lépez-Ibanez, J. Dubois-Lacoste, T. Stiitzle, and M. Birattari. The irace
package, iterated race for automatic algorithm configuration. Technical Re-
port TR/IRIDIA/2011-004, TRIDIA, Université Libre de Bruxelles, Brussels,
Belgium, 2011.

P. Maes. The agent network architecture (ANA). ACM SIGART Bulletin, 2(4):
115-120, 1991.

D. Marocco and S. Nolfi. Emergence of communication in embodied agents evolved
for the ability to solve a collective navigation problem. Connection Science, 19
(1):53-74, 2007.

M. Matarié¢. Learning social behavior. Robotics and Autonomous Systems, 20(2-4):
191-204, 1997a.

M. Matarié. Reinforcement learning in the multi-robot domain. Autonomous
Robots, 4(1), 1997b.

O. Miglino, H. H. Lund, and S. Nolfi. Evolving mobile robots in simulated and
real environments. Artificial Life, 2(4), 1995.

S. Mitri, D. Floreano, and L. Keller. Relatedness influences signal reliability in
evolving robots. Proceedings of the Royal Society of London. Series B: Biological
Sciences, 278(1704):378-383, 2011.

F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat,
J.-C. Zufferey, D. Floreano, and A. Martinoli. The e-puck, a robot designed for
education in engineering. In Proceedings of the 9th Conference on Autonomous
Robot Systems and Competitions, pages 59-65, Castelo Branco, Portugal, 2009a.
IPCB: Instituto Politécnico de Castelo Branco.

F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat,
J.-C. Zufferey, D. Floreano, and A. Martinoli. E-puck website, 2009b. URL
http://www.e-puck.org/. Last checked on November 2013.

S. Nolfi. Power and the limits of reactive agents. Neurocomputing, 42(1):119-145,
2002.

S. Nolfi and D. Floreano. Ewvolutionary Robotics: The Biology, Intelligence, and
Technology of Self-organizing Machines. MIT Press, Cambridge, MA, 2000.

L. Panait and S. Luke. Cooperative multi-agent learning: The state of the art.
Autonomous Agents and Multi-Agent Systems, 11(3):387-434, 2005.

L. E. Parker. L-ALLIANCE: Task-oriented multi-robot learning in behavior-based
systems. Advanced Robotics, 11(4):305-322, 1996.

C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla, N. Math-
ews, E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari, L. M. Gambardella, and
M. Dorigo. ARGoS: A modular, parallel, multi-engine simulator for multi-robot
systems. Swarm Intelligence, 6(4):271-295, 2012.

T. Pinville, S. Koos, J.-B. Mouret, and S. Doncieux. How to promote generalisation
in evolutionary robotics: The ProGAb approach. In Proceedings of the 13th
Annual Conference on Genetic and Evolutionary Computation, pages 259-266,

AutoMoDe 27

New York, NY, 2011. ACM.

R Development Core Team. R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2008. URL
http://www.R-project.org.

L. Riano and T. M. McGinnity. Automatically composing and parameterizing
skills by evolving finite state automata. Robotics and Autonomous Systems, 60
(4):639-650, 2012.

A. Stranieri, A. Turgut, G. Francesca, A. Reina, M. Dorigo, and M. Birat-
tari. IRIDIA’s arena tracking system. Technical Report TR/IRIDIA /2013-013,
IRIDIA, Université Libre de Bruxelles, Brussels, Belgium, November 2013.

V. Trianni and M. Dorigo. Self-organisation and communication in groups of
simulated and physical robots. Biological Cybernetics, 95(3):213-231, 2006.

V. Trianni and S. Nolfi. Self-organising sync in a robotic swarm. A dynamical
system view. IEEE Transactions on Evolutionary Computation, 13(4):722-741,
2009.

V. Trianni and S. Nolfi. Engineering the evolution of self-organizing behaviors in
swarm robotics: A case study. Artificial Life, 17(3):183-202, 2011.

E. Tuci. An investigation of the evolutionary origin of reciprocal communication
using simulated autonomous agents. Biological Cybernetics, 101(3):183-199,
2009.

J. Urzelai, D. Floreano, M. Dorigo, and M. Colombetti. Incremental robot shaping.
Connection Science, 10(3-4):341-360, 1998.

M. Waibel, L. Keller, and D. Floreano. Genetic team composition and level of
selection in the evolution of cooperation. IEEE Transactions on FEvolutionary
Computation, 13(3):648-660, 2009.

A. F. T. Winfield and M. D. Erbas. On embodied memetic evolution and the
emergence of behavioural traditions in robots. Memetic Computing, 3(4):261—
270, 2011.

S. Wischmann, D. Floreano, and L. Keller. Historical contingency affects signaling
strategies and competitive abilities in evolving populations of simulated robots.
Proceedings of the National Academy of Sciences, 109(3):864-868, 2012.

