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et de Développements en Intelligence Artificielle
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The Swarm/Potential Model:
Modeling Robotics Swarms with Measure-valued

Recursions Associated to Random Finite Sets
Michele Pace, Mauro Birattari, Senior Member, IEEE, and Marco Dorigo, Fellow, IEEE

Abstract—We propose the S/P model (swarm/potential model)
to describe the dynamics of robot swarms—that is, large groups
of robots that coordinate without the use of any form of central
control. The S/P model is a set of measure-valued equations
that model the temporal evolution of a robot swarm and of a
potential function that the swarm uses to self-coordinate. The
S/P model is based on random finite sets (RFS), a general
formalism for modeling multi-object systems. In this paper, we
illustrate the S/P model by using it to describe and analyse three
swarm robotics systems; we use particle approximations for the
numerical solution of the model.

I. INTRODUCTION

We propose a model to describe the dynamics of large
groups of robots that operate in a self-organized way. Self-
organization is the core concept in swarm robotics, an ap-
proach to collective robotics that seeks robustness and fault-
tolerance via redundancy, local sensing, local communication,
and the lack of any form of central control. Results have
shown that, on the basis of local information gathered from the
environment or received from neighbouring peers, robots in a
swarm can make coherent decisions on tasks to be performed
and on their respective priorities [1], [2]. Designing and
analyzing robot swarms has proven to be a challenging task
due to the complex relation occurring between the local (or
microscopic) robot-robot and robot-environment interactions
and the resulting collective (or macroscopic) behavior of the
entire swarm. In order to design and analyze a robot swarm, it
is important to find an appropriate level of description that, on
the one hand, represents the relevant microscopic information
that is needed to grasp the macroscopic dynamics and, on the
other hand, is not flooded with excessive microscopic details.
In this paper, we propose to use the random finite set (RFS)
formalism [3], [4], [5] for modeling robot swarms. In partic-
ular, we illustrate a set of measure-valued equations that we
call the S/P model—swarm/potential model. The S/P model
describes the temporal evolution of a probabilistic description
of a robot swarm and of a potential function that the robots
use to encode and to share information that is relevant to
achieve self-coordination. The premise is that the state of the
robot swarm (i.e., the collection of the states of the individual
robots) may be formulated as a random finite set, that is, as
a random set in which the number of elements as well as
their values are stochastic. The central thesis of the article is
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that this formulation leads to a natural and elegant description
of large groups of robots and opens the door to efficient
simulation algorithms. In order to facilitate the intuition behind
the rather abstract measure-valued equations that we introduce,
we maintain a strong emphasis on the spatiality of the models,
that is, the underlying physical system is regarded as a discrete
set of points, linked to the physical positions of the robots.
Nothing, however, prevents the definition of RFS models for
extended state spaces, such as the combination of the physical
coordinates, speed, and an internal state of the robots.
To illustrate the S/P model, we present three case studies.
The first two concern wheeled robots that move in closed
environments and exhibit two collective behaviors commonly
studied in swarm robotics: movement in the direction of
a light [6] and aggregation [7], [8]. The last case study
concerns the so-called chemical robots [9]: colloidal particles
with diameters of about 200 nm or less, that are intended
to be injected in the human body to accomplish tasks such
as chemical sensing [10], targeted drug delivery and micro-
assembly [11].

The rest of the paper is organized as follows. In Section II
we provide a short list of references to relevant works on
modeling in swarm robotics and pointers to relevant literature
on random finite sets. In Section III we summarize the
concepts of the random finite set framework that will be used
throughout the rest of the paper. In Section IV we introduce the
general S/P model (swarm/potential model). In Section V we
specialize the S/P model for swarm robotics. In Section VI
we develop an approximate solution of the S/P model. In
Section VII we illustrate the S/P model on the three case
studies. We conclude the paper in Section VIII.

II. RELATED WORKS

In order to understand and model the relationship between
the local and global aspects of swarm systems (the so called
micro-macro link), several approaches have been proposed.
Early works investigate the derivation of coupled differential
equations to describe the average state of the swarm in time
[12]. When this description is able to capture the relevant
characteristics of the system, a large corpus of well established
theoretical techniques can be used to analyze the stability
and long term behavior of the macroscopic models. These
techniques have been used to study swarming and social aggre-
gation [7], collective decision-making [13], [14] and foraging
[15]. More recent approaches to model robotics swarms use
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analogies from the domain of chemical modeling [16] and
methods from statistical physics [6], [17]. In particular, in
[6] macroscopic models based on Fokker-Planck equations are
derived from microscopic models.

Differently, in this paper the main idea is to model the
objects at each time step as RFSs, that is set-valued random
variables, and then to characterise the uncertainty about
the collective motion of the swarm by propagating in time
the intensity of the associated point process [18], [5], [4],
[3]. Random set theory was first systematically examined
in connection with statistical geometry by Kendall [18]
and Matheron [3] in the mid-1970s and then applied to
two-dimensional image analysis by Serra [19]. Since then,
it has become a basic tool in theoretical statistics and it has
generated a substantial amount of innovation in the fields
related to data fusion and multi-target tracking [4], [20], [21],
[22]. An early application to robotics has been investigated
in [23].

III. THE RANDOM FINITE SET FRAMEWORK

A random finite set can be described as a finite, set-valued
random variable where not only the elements but also the
cardinality of the set is random [24].1 The realization of a
RFS is thus an unordered and finite set of elements distributed
according to a common probability distribution. This concept
is particularly relevant in the field of swarm robotics, where the
objective is normally not to describe the state of each single
robot, but rather to obtain a descriptive characterization of the
swarm as a whole. This section introduces the RFS formalism
that will be used throughout the article. The measure-valued
recursion describing the evolution in time of the intensity of a
Poisson RFS associated to the macroscopic behavior of robotic
swarms is introduced in Sec. IV.

The set of all finite positive measures on some measurable
space E will be denoted byM(E), the subset of all probability
measures on E by P(E) ⊂ M(E) and the Banach space of
all bounded and measurable real-valued functions on E by
B(E). Let µ(f)

def
=
∫
f(x)µ(dx) be the Lebesgue integral of a

function f with respect to a measure µ ∈M(E). A bounded
positive integral operator Q from a measurable space E1 into
a measurable space E2 is an operator Q : f ∈ B(E2) 7→
Q(f) ∈ B(E1) such that the functions

x 7→ Q(f)(x)
def
=

∫

E2

Q(x, dy)f(y)

are measurable and bounded for some measure Q(x, ·) ∈
M(E2). These operators induce a dual operator (µQ)(dy)

def
=∫

µ(dx)Q(x, dy) from M(E1) into M(E2) which will be
used to model the way in which a probabilistic descriptor
associated to a swarm of robots changes in time. Intuitively,
the probability (or intensity) mass that characterizes the state
of the system is transported in time according to forces and
dynamics that are captured by the analytical form of the
transport operator Q.

1Note that the terms random finite set and simple-finite point process are
normally used to refer to the same mathematical object.

Let g : x ∈ E 7→ g(x) ∈]0,+∞[ be a bounded positive
function. A measure η ∈ M(E) can be transformed into a
probability measure by using the Boltzmann-Gibbs transfor-
mation Ψg : η ∈ M(E) 7→ Ψg(η) ∈ P(E) defined in
[25], Pag. 20, as:

Ψg(η)(dx)
def
=

1

η(g)
g(x) η(dx) (1)

provided η(g) > 0. One of the advantages that come from the
use of the Boltzmann-Gibbs transformation is that its particle
approximation is obtained straightforwardly by resampling
the particles approximating the original measure η according
to their weights obtained by the evaluation of the potential
function g. An introduction to particle methods with a detailed
explanation of the Boltzmann-Gibbs transformation is given
in [25]. Additional references covering the fundamentals of
the interacting-particle systems applied to filtering problems
can be found in [26] and [27].

The first moment measure M of a RFS X is the analogue of
the expectation and it is commonly called intensity measure.
It is defined for any subset S of the space E, S ⊆ E, by

M(S) = E [|S|] def
=

∫

S

γ(x)dx (2)

where |S| denotes the number of points in the subset S. M(S)
gives the expected number of points of X contained in S.
The last equality holds if the measure M admits a density
γ : E → [0,+∞[. In point process theory γ is called intensity
function and is simply referred to as the intensity.

Just as the density of a continuous random vector represents
the zero-probability event of a particular realization of the ran-
dom vector, the intensity γ(x) represents the zero-probability
event P(x ∈ X). The intensity γ(x) is usually multimodal and
the peaks are the regions of high object intensity.

In the following, we focus on a specific class of random
finite sets that have the important property to be uniquely
characterized by their intensity function: the Poisson RFS. In
this case, the integral of the intensity over the domain (some-
times called mass) γ(f)

def
=
∫
γ(x)f(x)dx when f(x) = 1

corresponds to the expected number of points, and it will be
denoted by γ(1) ≥ 0.

A realization of a Poisson point process consists of N points
i.i.d. with distribution η(dx) = γ(dx)/γ(1) where N is an
integer-valued Poisson random variable with parameter γ(1).
Essentially, the Poisson RFS characterizes a set of points with
no interaction, that is, complete spatial randomness. In the
context of swarm robotics, this property implies that the state
of a robot and its dynamics are independent of the state of the
other robots. While this may not be true in the general case, it
can be considered as an acceptable approximation for systems
where robots have a low level of mutual interdependence.

IV. THE S/P MODEL

This section introduces a coupled system describing the prop-
agation in time of the intensity function γt associated to a
Poisson point process that we use to describe the state of
a swarm at time t. The use of the intensity of the point
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Fig. 1: Intensity functions γt, γt+1, γt+2 of the point process associated to the robotics swarm at time t, t+1 and t+2 (a),(b),(c)
and realizations of the point process (d),(e),(f)

process as a probabilistic descriptor allows for the characteri-
zation of the uncertainty about the number and distribution
of the robots while keeping the computational complexity
significantly lower than other probabilistic descriptors, such
as the full multi-object probability density [3], [21]. Figures
1(a-b-c) provide an intuitive illustration of the probabilistic
description of a swarm’s state (in the example the state is given
by the 2-dimensional spatial position) in time as a sequence
of intensity functions γt, γt+1, γt+2. Figures 1(d-e-f) show a
realization of the point process Xt, Xt+1, Xt+2 superimposed
to the profile of the intensity functions. The points represent
one of the infinite possible realizations of a Poisson RFS
characterized by the respective intensities, corresponding to
a possible state configuration of the robots. The objective is
to couple the equation describing the evolution of the intensity
with an equation capturing the interaction of the swarm with
the environment. The dynamics of the interactions will be
modeled with a positive function which will be referred to
as potential. Phenomena of self-interaction and feedback, for
instance, are captured by modeling the way robots modify the
potential function and how, in turn, the potential modifies the
behavior of the robots. The system we are considering, referred
to in the following as the S/P model, has the following form:

{
γt+1 = γtQ

gt
t+1,γt

+ µt+1

gt+1 = Φ(gt, γt)
(3)

where the propagation of the intensity depends on the potential
function gt (the dependency is made explicit by using the
superscript gt in Q) while the potential, in turn, depends on

the intensity function γt. This dependency captures the fact
that robots may be able to modify the environment with their
actions. The evolution in time of the expected number of robot
is described both via the term Qgtt+1,γt

and µt+1. The mass
of Qgtt+1,γt

models modifications of the expected number of
robots in a region of space that are function of the intensity
γt, that is of the expected number of robots currently present
in the region. This capture the phenomenon of spawning and
the failure of robots. On the other hand, µt+1 is the intensity
of a Poisson point process modeling new robots coming in
the environment independently of the current distribution of
robots. This captures the deployment of further robots.

The S/P model of equation (3), inspired from a model
discussed in [28], takes into account the effects of the in-
teractions between the robots and a potential representing a
set of characteristics of the environment that can be perceived
by the robots. Dynamics of the potential that do not depend
on the robots, such as potential diffusion and dissipation, are
also modeled in the operator Φ (via the dependence of gt+1

on gt). We will illustrate the S/P model by using it to describe
and analyse three swarm robotics scenarios: movement in the
direction of a light [6], swarm aggregation [8], [29], and
coordinated motion of colloidal particles (so-called chemical
robots [30]). The actual modeling of specific swarm robotics
systems is obtained by appropriately defining the operator
Qgtt+1,γt

, which governs the evolution of the intensity in
time, and the operator Φ, which governs the evolution of the
potential in time. In addition, robots that are added to the
swarm are modeled by µt+1.
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In this framework, robots are modeled as memory-less. This
constraint, introduced to make the equations more tractable, is
acceptable when robots make limited use of their memory and
do not take decisions based on stimuli or events happened in
the distant past. Consequently, typical characteristics of swarm
robotics such as sharing of information or positive and negative
feedback dynamics have to be modeled in the potential via the
operator Φ.

The numerical solution of the S/P model can be obtained
by adopting a stochastic particle interpretation for which
many stability properties as well as a series of estimators for
the approximation errors are available [31].

V. SPECIALIZING THE S/P MODEL FOR SWARM ROBOTICS

In this section we introduce a specialization of the S/P model
(Eq. (3)) that makes it suitable for swarm robotics. To do so,
we define the form of the operator Qgtt+1,γt

associated to the
evolution of the intensity and the operator Φ associated to the
evolution of the potential.

In the context of swarm robotics, this specialization cor-
responds to the microscopic model that describes the way
robots sense the environment (i.e., how robots measure the
potential function in their surroundings), how they react by
choosing from a set of possible actions, and how they modify
the potential function.

Section V-A introduces a model for the dynamics of the
robots, while section V-B describes the evolution of the
potentials.

A. Robots dynamics

The first step towards the specialization of the S/P model is to
characterize the probability with which a robot in state Xt = x
moves to an infinitesimal region dy centered in Xt+1 = y. We
assume that this transition, given by the normalized version
of Qgtt+1,γt

, is time-homogeneous and independent of γt. The
transport operator can therefore be written as Qgt(x, dy).
The removal of the dependency on time indicates that the
robot behaviour does not change in time. The removal of
the dependency on the intensity γt indicates that the robot
behavior does not depend on the overall state of the swarm.
These assumptions allow for a simplification of the S/P model
equations. Additionally, we assume that Qgt(x, ·) ∈ P(E) for
each x ∈ E (this is equivalent to say that the transport operator
Qgt has integral 1). This implies that the number of robots
in the scene is expected to remain the same. We model the
dependence of the dynamics of the robots on the value of the
potential function by the Markov operator originally proposed
in [32]:

Qgt(x, dy) = Q0(x, dy)e−λ(gt(x)−gt(y))+ (4)

+Q1(x, dy)

(
1−

∫
Q0(x, dy)e−λ(gt(x)−gt(y))+

)

This operator captures the intrinsic dynamics of the robots
(modeled by Q0(x, dy)) as well as the effect of the potential
field. The parameter λ specifies the sensitivity of the robots to

the difference in potential between the current state Xt = x
and one of the possible future states Xt+1.

Suppose a robot is in state Xt = x at time t, possibly
representing its physical location. Its future state Xt+1 at
time t + 1 depends on the environmental conditions around
it, captured by the potential function, and on the robotics
controller. In Eq. (4) the operator Q0(x, dy) models the
dynamics of the robot in absence of any external conditioning,
that is, when gt(·) is constant. When gt(·) is not constant, the
robot dynamics is influenced by the potential. The probability
that Xt+1 ∈ dy is e−λ(gt(x)−gt(y))+ : that is, it depends on
the difference of potential between the current and the new
state. If the movement is not performed, the new state of
the robot if sampled according to the operator Q1(x, dy).
This happens with probability (1 −

∫
e−λ(g(x)−g(y))+). It is

important to note that even though the dynamics of the robots
given by Eq. (4) are completely specified by the transition
probabilities Q0(x, dy), Q1(x, dy) and by the parameter λ, no
constraints are imposed on the development of the algorithm
used by the robots to take decisions. In practical terms, the
link between the analytical form of the operator Qgtt+1,γt

and
the implementation of robotics controllers can be established
in two ways. If the S/P model (with Qgtt+1,γt

in its simplified
version as in Eq. (4)) is used to derive specific behaviors to
be implemented on the robots, the form of Q0, Q1, and λ
are first investigated numerically. When the analytical form of
the operators that generate the desired swarm-level behavior is
found, the robotic controller can be implemented as a series of
actions that individual robots take with certain probabilities.
If, however, a robotic controller is already available (for
example implemented by using other methodologies [33]), one
must first consider if Eq. (4) is sufficiently general to model
the behavior of the robots. If this is the case, the form of
Q0(x, dy), Q1(x, dy) and the value of the parameter λ that
capture the dynamics of the robot must be derived. Once
the characteristics of the robot controller are satisfactorily
captured by Qgt , the system can be studied numerically to gain
insights on the swarm-level dynamics. Otherwise, if Eq. (4) is
not sufficiently general to model the behavior of the robots, an
alternative and possibly more complex expression of Qgtt+1,γt
is necessary.
The advantage of adopting Eq. (4) as a probabilistic descrip-
tion of the microscopic dynamics of the robots is that if closed
form solutions are not available, as it is generally the case,
generating samples from Qgt(x, ·) is straightforward and can
be done with the following procedure:

• Draw a sample y0 ∼ Q0(x, ·) and a sample Y1 ∼ Q1(x, ·)
• If g(y0) ≥ g(y1) accept y0 and do the transition x→ y0

• If g(y0) ≤ g(y1) accept y0 with a probability
e−λ(g(x)−g(y))+ and do the transition x → y0 otherwise
do the transition x→ y1

Figure 2 shows the acceptance probability of the samples
obtained from Q0 as a function of the difference of potential
(g(x) − g(y)) when different values of the parameter λ are
used. For low values of λ, robots accept the transitions towards
regions with lower potential with relatively high probability.
In this case, the gradient of the potential exerts only a weak
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Fig. 2: Acceptance probability of the sample obtained from
Q0 with decreasing values of λ.

influence on the behavior of the robots. For high values of λ,
on the contrary, the movement is accepted almost exclusively
if the new location has a higher potential than the current
location. The macroscopic result is that the swarm is strongly
attracted towards regions of the space associated with high
potentials.
To clarify this important point, Figure 3 illustrates the evo-
lution of the probability density (approximated with 1000
particles) of the position x = [ψ1, ψ2]T of the robots moving
according to Eq. (4) with λ = 50, Q0(x, ·) = N (·;x, 0.1I2),
Q1(x, ·) = N (·;x, 10−4I2). The n-dimensional identity ma-
trix is denoted by In. The value of the potential is represented
as a grayscale image (white associated to higher potentials).
In time, the robots are attracted by high potential regions.
The particle approximation provides, at each time step, a
characterization of the probability of finding a certain number
of robots in a certain region of the space.

B. Potential dynamics

The second step to complete the specialization of the S/P
model is to characterize the form of the recursion of the
potential in Eq. (3). In doing so, we focus on two types
of intrinsic potential dynamics, dissipation and diffusion,
and on potential dynamics due to the actions of the robots,
stigmergy2.

In order to avoid negative potentials, we assume that the
potential πt is given in terms of positive measures: πt : S 7→
R, where S is the set of subsets of E. According to the notation
previously introduced, the integral of the potential over the
state space is denoted by πt(1)

def
=
∫
E
πt(x)dx. Simililarly to

what discussed in Sec. V of [37], the evolution of the potential

2Stigmergy is a mechanism of indirect coordination observable in insect
societies such as ant colonies. It is based on the ability of the individuals
to create dissipative fields by spreading chemical substances into the envi-
ronment. Other individuals then sense the chemical fields and are influenced
to perform certain activities or to assume certain behaviors. The spreading
of additional chemical substances as a reflection of these activities tends to
create reinforcement dynamics. Stigmergy allows complex social behaviors
to emerge from the actions of the individuals without the need for central
planning, control, or even direct communication [34], [35], [36].
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Fig. 3: Distribution of the position of the swarm at time t = 10
(a), t = 20 (b), t = 30 (c), t = 40 (d). In the example: λ = 50,
Q0(x, ·) = N (·;x, 0.1I2), Q1(x, ·) = N (·;x, 10−4I2), where
I2 denotes the identity matrix with dimension 2. Low potential
regions are shown in gray/black.

is modeled as follows:

πt+1 = πtR+ Cπt,γt (5)

or, equivalently:

πt+1(dy) =

∫
πt(x)R(x, dy)dx+ Cπt,γt(dy) (6)

where Cπt,γt denotes a positive measure on S modeling the
robots’ stigmergic contribution to the potential. The subscripts
πt and γt are used to stress the fact that, at any given time,
the increase of the potential occurs in a way that depends
on the intensity of the robots at time t (represented by
γt), and possibly on the potential function πt itself. The
operator capturing the diffusive and dissipative dynamics of
the potential is denoted by R(x, dy).

C. S/P Model dynamics

The S/P model describing the evolution of the potential and
particle approximation of the intensity measure is as follows:

{
γNt+1 = γNt Q

πt + µNt+1

πt+1 = πtR+ Cπt,γt
(7)

where N is used to stress the fact that we are using N particles
to approximate the flow of γt. The limit N → ∞ formally
corresponds to the S/P Model of Eq. (3):

{
γt+1 = γtQ

πt + µt+1

πt+1 = πtR+ Cπt,γt
(8)
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As stated in Eqs. (7) and (8), the expression of the potential
function is assumed to be known in closed form at each time
step. No particle approximation of πt is thus required. This
is true only for a limited set of models. The general case
would require an approximation of the potential function as
well: πNt+1 = πNt R + CπNt ,γNt . For the sake of clarity and
ease of implementation, we assume that an analytical form of
πt is available at each time step. Section VI-B discusses the
implications of this assumption.
Figure 4 illustrates the evolution in time of the measures
associated to the system (8). Arrows are used to show the
dependencies between the elements of the recursion.

VI. SOLUTION OF THE SPECIALIZED S/P MODEL

In this section we discuss the numerical techniques used in
the rest of the article to approximate in time the solution of
the specialized S/P model of Eq. (7). In particular, Sec.VI-A
introduces the theoretical background of the particle approx-
imation techniques used to approximate the first equation of
the S/P model. Sec. VI-B discusses a Gaussian form of the
potential function that allows for an efficient computational
treatment of the second equation of the S/P model.

A. Mean field particle interpretation

The evolution of the intensity γt can be described by decou-
pling the process in the pair (γt(1), ηt) ∈ (R+×P(E)), where
γt(1) represents the mass at time t and the normalized intensity
ηt = γt/γt(1) is the density function at time t. A way to
solve the non-linear equations of the S/P model is to find a
judicious probabilistic interpretation of the flow of normalized
intensity ηt = γt/γt(1) and to devise a particle approximation
scheme for the probability density ηt such that the total mass
of the process at time (t+1) can be computed in terms of the
particle approximations. We use the so-called mean field-type
interpretation that is based on the fact that the density ηt+1

can be thought as a non-linear Markov chain whose elementary
transitions depend both on the distributions ηt and on the mass
process γt(1).

More precisely, as shown in Fig. 3, the approximation of
the normalized intensity measures ηt and process mass γt(1)
is obtained by using a population of particles that evolve
according to specifically designed probabilities. These discrete
approximations are denoted by:

ηNt =
1

N

N∑

i=1

δxit and γNt = γNt (1) ηNt (9)

where N denotes the number of particles used to approximate
ηt, and δxit denotes the Dirac delta, which can be interpreted
as a point mass at xit ∈ E. A detailed description of the origin
of these particle approximations can be found in [31], [38] and
reference therein.

As it has been discussed in [25], [26], [27], [31], the non-
linear transformation of the normalized intensity ηt can be
rewritten in the form of the product of a selection operator
St,γt and an update operator Mg

t+1,γt
, both depending on the

measure γt:
ηt+1 = ηtSt,γtM

g
t+1,γt

(10)
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Fig. 5: Diffusion and dissipation of the potential corresponding
to the solution of equation (13) in the Gaussian case.

and ηtSηt can be written in term of the Boltzmann-Gibbs
transformation: ηtSηt = Ψgt,γt

(ηt) [27], [38].
Therefore, the solution of the γt recursion in the S/P model,

Eq. (3), is given by the set of particles evolving according to
these selection and propagation mechanisms:
(
γNt (1)
ηNt

)
selection
−−−−−→

(
γ̂Nt (1)
η̂Nt

) propagation
−−−−−→

(
γNt+1(1)
ηNt+1

)

When a large number of particles are used, their distribution
in time provides both a good approximation of the flow of
intensity γt, as shown in Fig. 3, and of the mass terms γt(1).

B. A Gaussian representation of the potential

The potential function πt can be represented as a weighted
mixture of Gaussian terms. In particular, we assume that the
potential at each time step t can be written in the form:

πt(x) =

Jt∑

i=1

witN (x;mi
t, P

i
t ) (11)

where N (x;m,P ) denotes a Gaussian term centered in m
with covariance matrix P :

N (x;m,P ) = |2πP |− 1
2 exp

{
−1

2
(x−m)TP−1(x−m)

}

(12)
wit represents the weight of the i-th Gaussian in the mixture
and Jt the total number of terms in the approximation of the
potential at time t.

We assume that the dissipation of the potential is described
by a constant coefficient αt(x) = α and that the diffusion
of the potential and the contribution of the robots to the
potential are linear-Gaussian. These assumptions are sufficient
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Fig. 4: Evolution in time of the measures associated to the system (8). The dependencies between the potential and the
intensity function is illustrated with arrows. Each arrow specifies the dependency of each term on other terms available during
the previous time-step. The intensity γt+1 associated to the state of the system at time t + 1, for instance, depends on the
potential πt at time t as well as on γt and on the intensity on the robots appearing at time t+ 1. Similarly, the potential πt+1

at time t+ 1 depends on the intensity γt and on the potential πt of the previous time step.

to characterize in closed form the potential πt at each time
step [39] [40]:

πt+1(dy) = α︸︷︷︸
dissipation

∫
πt(x)D(x, dy)︸ ︷︷ ︸

diffusion

dx +

∫
Cπt,γt(x, dy)︸ ︷︷ ︸

contribution

dx (13)

where R(x, dy) = αD(x, dy) and the contribution to the
potential Cπt,γt(x, dy) is a mixture of Gaussian terms. Equa-
tion (13) states that the potential in an infinitesimally small
region dy at time t+1 is given by the sum of the potential that
is transferred to dy from the other regions of the space (due
to diffusive dynamics) and the additional potential released
by the swarm in dy. The term α accounts for the dissipation,
the term D(x, dy) for the diffusion dynamics of the potential,
and the term Cπt,γt for the contribution of the swarm to the
potential at time t. In this latter term, the subscripts πt and
γt stress that the contribution to the potential depends on the
distribution of the robots and may as well depend on the value
of the potential at time t.

To simplify the formulae, we make the reasonable assump-
tion that:

Cπt,γt(x, dy) = γt(x)Cπt(x, dy)

By using the particle approximation of the intensity γt(x)
defined in Eq. (9), we can write:

∫
Cπt,γt(x, dy) dx ≈ γt(1)

N

∫ N∑

i=1

δxit Cπt(x, dy) dx

=
γt(1)

N

N∑

i=1

Cπt(x
i
t, dy) (14)

Therefore, Eq. (13) can be written as:

πt+1(dy) ≈ α
∫
πt(x)D(x, dy)dx +

1

N

N∑

i=1

cit C̄πt(x
i
t, dy) (15)

where
cit = γt(1)

∫
Cπt(x

i
t, dy)

and C̄πt(x
i
t, dy) is Cπt(x

i
t, dy) normalized by its integral.

The evolution in time of the potential, Eq. (13), has the
following Gaussian form: at time t it is represented by the
Gaussian mixture of Eq. (11), while at time t + 1 it is given
by

πt+1(x) =

Jt∑

i=1

wit+1N (x;mi
t+1, P

i
t+1) +

Jt+1+N∑

i=Jt+1

wit+1N (x;mi
t+1, P

i
t+1) (16)

where wit+1 = αwit, for i = 1, . . . , Jt; wit+1 = cjt/N , for
i = Jt + 1, . . . , Jt + 1 + N and j = i − Jt + 1; mi

t+1 and
P it+1, for i = 1, . . . , Jt, are means and covariance matrices of
the Gaussians resulting from the product between the terms of
πt(x) and D(x, dy), calculated by using the well known closed
form solutions described in [39] and [40]; mi

t+1 = xit, for i =
Jt+1, . . . , Jt+1+N ; and P it+1, for i = Jt+1, . . . , Jt+1+N
is a design parameter representing the covariance matrix of the
contribution of a robot to the potential function.

A comparison between Eq. (11) and Eq. (16) indicates that
the number of Gaussian terms used to approximate π increases
in time. In practical implementations of the S/P model, this
problem can be addressed with a pruning operation: the weight
w of each Gaussian term decreases exponentially in time due
to dissipation; when the weight of a Gaussian term reaches
a predefined threshold, the term can be neglected and is not
considered in further computation.

VII. CASE STUDIES

In this section, we develop the concepts introduced in the
previous sections for a series of swarm robotics scenarios:
movement in the direction of a light, swarm aggregation,
and coordinated motion of colloidal particles. We define the
operators of the specialized S/P model so that its solution
captures classical behaviors encountered in swarm robotics. As
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previously noted, the model is composed of two equations: one
describes the dynamics of the robots and the other describes
the dynamics of the potential function. These two equations are
coupled: the movement of the robots depends on the potential
function via the transport operator; and the evolution of the
potential function depends on the distribution of the robots.

In the first example, we focus on the first equation of
the specialised S/P model of Eq. (7) and we show how it
describes the collective dynamics of the swarm starting from
the behavior of the individual robots. We also derive a particle
approximation of the solution. In the second example, we
focus on the second equation and we discuss the potential
function that influences the behavior of the robots. Finally, in
the third example we address a more complex scenario from
the recently introduced field of chemical robots [30]: we use
the S/P model to describe the cohesive motion of chemical
robots along a preferential direction. These chemical robots
coordinate by modifying the concentration of a chemical in
the environment.

A. Swarm motion towards a light

In this section, Eq. (7) is solved to show that the S/P model
can describe the motion of a robot swarm towards a light. Col-
lective motion towards a light is a classical behavior studied in
swarm robotics that has been discussed, for example, in [41]
and [6].

In order to illustrate the mean-field approximation of the
flow of the intensity measures, we focus here exclusively on
the first equation of the S/P model: robots do not modify the
environment, hence the second equation is set to zero. The
appearance of new robots at time t+ 1 is modeled as a RFS
with a known intensity µt. The number of robots appearing
at each time step is described by a Poisson distrution with
mean µt(1), and their initial position has probability density
µt/µt(1). Robots are equipped with a light sensor that allows
them to estimate the direction of the light. Despite the fact
that robots sense the direction of the light and deterministically
attempt to move towards it, due to sensing and actuation errors
their behavior appears to be stochastic and can be conveniently
described as a random walk biased by a light field. The
following Markov operator captures the main elements of the
robots dynamics:

Q(x, dy) =
l(y)M ′(x, dy)∫
l(y)M ′(x, dy)

(17)

where l(y) represents the light intensity at point y and
M ′(x, dy) denotes the free motion of the robots, assumed
Gaussian with zero mean and covariance matrix Σ2 =
[4, 0; 0, 4], expressed in square meters. We assume that, at each
time step, a robot has a survival probability of ε = 1− 10−3.
The first equation of the specialised S/P model of (7) is written
as follow:

γt+1 = γtεQ+ µt+1 (18)

Furthermore, we assume that robots enter in the region
from time t = 0 s to t = 25 s and from time t = 100 s to
t = 125 s. The number of new robots entering at each time

step during these intervals has a Poisson distribution with
mean 2. The decoupling of the intensity γt into the pair
(γt(1), ηt) ∈ (R+ × P(E)) corresponding to the mass γt(1)
and to density function ηt(dxt) = γt(dxt)/γt(1) as described
in section VI-A can be written as:

{
γt+1(1) = γt(1)ε+ µt+1(1)

ηt+1 = βtΨε(ηt)Q+ (1− βt)µ̄t+1

(19)

where the first equation is simply the integral of Eq. (18) over
the state space and the second is obtained dividing Eq. (18) by
γt+1(1) and using the definition of the operator Ψg(ηt) given
in Eq. (1):

ηt+1 =
γt+1

γt+1(1)
=
γtεQ+ µt+1

γt+1(1)

=
γt(1)ηtεQ+ µt+1

γt+1(1)
=
γt(1)ηtε

ηt(ε)
ηt(ε)

Q+ µt+1

γt+1(1)

=
γt(1)ε

γt+1(1)
Ψε(ηt)Q+

µt+1(1)µ̄t+1

γt+1(1)
(20)

By using the notation introduced in Sec. III and letting
µ̄t+1 = µt+1/µt+1(1) and βt = γt(1)ε/γt+1(1), the second
equation of the system given in Eq. (19) is obtained.
The approximation of the solution of (19) is illustrated in
Figure 6. At each step, with probability βt, particles are
resampled according to Ψε(ηt) and are propagated according
to Q. With probability 1 − βt, particles are resampled from
µ̄t+1. Algorithm 1 provides the details on how the numerical
solution is obtained.

B. A model of swarm aggregation

In this section, the S/P model is specialized to describe the
phenomenon of aggregation in robots moving in a square
region of 100 × 100 m2. In this region there are two square
green areas that the robots can perceive when they are on
them—see Fig. 7. The robots are required to aggregate in these
areas. The initial distribution of the swarm is assumed to be
known, its intensity Gaussian with mean γµ0 = [50, 45]T m and
covariance matrix γΣ

0 = 20 I2 m2. The system is as follows:
{
γt+1 = γtQ

πt

πt+1 = Cγt
(21)

where Qπt is defined in Eq. (4). The modification of the
potential occurs when robots sense the green areas. These
areas stimulate the robots to emit light signals that can be
perceived by other robots. In this context, the potential is the
intensity of the light.
In this case study, terms modeling dissipation or diffusion
are thus not required. Moreover, the contribution term Cγt
does not depend on the intensity of the potential πt, but
only on the expected intensity of robots in the aggregation
area. Robots move according to Eq. (4) with parameters
λ = 105, Q0(x, ·) = N (·;x,Σ0), Q1(x, ·) = N (·;x,Σ1)
where Σ0 = 5 I2 m2 and Σ1 = I2 m2. Each robot moves
randomly but when a light stimulus is perceived, random
motions towards regions of the space where the intensity of
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Fig. 6: Normalized intensity function ηt of the point process
associated to the robot swarm at time t = 1 (a), t = 50 (b),
t = 100 (c), and t = 200 (d), approximated by 5000 particles.
The average number of active robots at each time step is given
by γt(1), shown in (e).

the light is greater have a higher probability. The probability of
moving towards a light source is proportional to the intensity
of the light itself. The release of the potential is modeled by
the term πt+1 that can be approximated by:

πt+1(dy) ≈ γt(1)

N

N∑

i=1

δxti(A)C(xti, dy) (22)

with A ⊂ R2 modeling the aggregation areas and C(xti, dy)
capturing the intensity of the light perceived in the infinitesi-
mal region dy emitted by a robot with state xti. These terms
are modeled as Gaussians, centered in xti, whose covariance

Algorithm 1 Particle approximation algorithm

N : number of particles
ξNi,t: i-th particle approximating γt, i ∈ {1, . . . , N}
ηNt : particle approximation of ηt: ηNt = 1

N

∑N
i=1 δξNi,t

µNt : particle approximation of µt
g(x): function modeling the probability of a robot survival
at x. For scenario VII-A g(x) = ε
M : max number of iterations
Initialization
γN0 (1) = µ0(1)
for i = 1 to N do

Sample ξNi,0, i ∈ {1, . . . , N} from µ̄0 = µ0(·)/µ0(1)
end for
Main loop
while t ≤M do
ηNt (g) = (1/N)

∑N
i=1 g(ξNi,t);

βt = (γNt−1(1)ηNt (g))/(γNt−1(1)ηNt (g) + µNt (1))
Compute the weight of each particle:
wNi,t = g(ξNi,t)/

∑
i g(ξNi,t)

for i = 1 to N do
Sample u ∼ U [0, 1]
if u ≤ βt then

Sample a new particle from the current particle
approximation with probability given by the weights
ξ̄Ni,t ∼ wNj,t, j ∈ {1, . . . , N} and propagate it
according to the dynamical model: ξNi,t ∼ Q(ξ̄Ni,t, . )

else
Sample a new particle from the birth distribution
ξNi,t ∼ µ̄t

end if
end for
γNt (1) = γNt−1(1)ηNt (g) + µNt (1)
t = t+ 1

end while

matrices model the intensity of the light over the space.
Figure 7 illustrates the numerical solution of the system
when the swarm distribution is approximated with N = 500
particles.

C. Swarming behavior of Brownian particles towards prefer-
ential directions

While existing robotic technologies are mostly based on
mechatronic hardware principles (i.e., robots are mechanical
machines controlled by electronics), a novel approach consists
in designing and fabricating robots based on soft matter that
function on the basis of chemical principles [9]. Taking inspi-
ration from single cell organisms like protozoa and bacteria,
a chemical robot can be defined as an internally structured
vesicle in the size range of 10-100µm, with the ability to
uptake, store, chemically process and release molecules as
a function of external stimuli. Prototypes of such chemical
robots are already being built [30], [42], [43], [44]. In recent
works on chemical robots such as [9], chemical robots are
modeled as particles capable of releasing chemical signals
that can be sensed by other particles in close proximity. In
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Fig. 7: Solution of the S/P model specialized as in Eq. (21)
at time t = 1 (a), t = 100 (b), t = 200 (c), and t = 300
(d), approximated by 500 particles. Particles represent the
discrete approximation of the intensity functions. Isolines of
the Gaussian mixture corresponding to the potential are shown
in blue.

this section we design the transport operator and the potential
function that generate a phenomenon of coordinated motion
towards a preferential direction in a swarm of chemical robots.
The following version of the specialised S/P model of Eq. (8)
will be studied numerically:

{
γt+1 = γtQ

πt

πt+1 = απtD + Cπt,γt
(23)

In Eq. (23) it is assumed that no new particles enter the scene
(µt+1 = 0) and that Qπt has the expression as in Eq. (4). The
particles can move anywhere on the plane but are observed
in a region of 250× 300 mm2. The random dynamics of the
individuals are modeled trough Gaussian operators: Q0(x, ·) =
N (·;x,Σ0), Q1(x, ·) = N (·;x,Σ1) and

Σ0 = σ2
0I2 mm2 , Σ1 = σ2

1I2 mm2

where I2 denotes the identity matrix of dimension two,
σ0 = 9 mm and σ1 = 6 mm. The sensitivity threshold is
set to λ = 106, and the diffusion of the potential occurs
at a rate of α = 0.8. The diffusion dynamics is Gaussian
with mean zero and covariance σ2

DI2 with σD = 6.3 mm.
According to Eq. (4), the robot dynamics is modeled as
follows: if random movements chosen according to Q0(x, ·)
are directed towards regions of the space associated to high
potentials, the movements are performed, otherwise a random

displacement is chosen according to Q1(x, ·). Deplacements
towards regions with lower values of the potential are done
with an exponentially decreasing probability.
The colloidal particles are able to modify the level of the
potential in the environment by releasing chemical signals.
The release is assumed to occur in a preferential direction.
Although the implementation of this behavior on chemical
robots has not been achieved yet, efforts to devise the technol-
ogy necessary to coordinate the collective motion of particles
and to orientate them in a certain direction are being made
[9]. In the model, we assume the presence of an external
force field which can orient the particles in such a way that
the release of the chemical substances occurs in a specific
direction. The response of the robots to the potential (second
term of Eq. (23)) is approximated as follows:

Cπt,γt(dy) ≈ 1

N

N∑

i=1

wxti C̄πt(x
t
i, dy) (24)

with C̄πt(x
t
i, ·) = N (·;xti + c0, σ

2
cI2), having c0 = [0, 5]T

mm and σ2
c = 4.5 mm2. The release is done only if a particle

perceives a sufficiently high concentration of chemical signal
in its surroundings. The weight wxti is written as:

wxti =

{
0 if πt(x

t
i) < θ

γt(1)Cπt(1) if πt(x
t
i) ≥ θ

(25)

where the amount of potential injected by a particle is
Cπt(1) = 1. The sensing threshold is set to θ = 2 · 10−4. The
numerical solution of Eq. (23) is shown in Fig. 8. The solution
is approximated with 500 particles. The initial potential is
modeled as a Gaussian centered in πµ0 = [150, 150]T mm
with covariance matrix πP0 = [120, 0; 0, 120] mm2. The initial
distribution of the swarm is modeled with a Gaussian term
with mean γµ0 = [180, 175]T m and covariance matrix γΣ

0 =
1000 I2 m2. Figure 9 illustrates the phase transition occurring
with increasing values of the dissipation coefficient α. Highly
dissipative chemical signals tend to disappear rapidly since
the chemical robots have less opportunities to sense them
and to release additional potential. When this happens, the
initial potential dissipates completely and the coupling of the
system disappears. By increasing the dissipation coefficient
towards 1, the initial chemical signal is able to remain in
the environment long enough to be perceived by the swarm.
In particular, for the the parameters discussed above, values
of α > 0.6 trigger the flocking behavior: as a response
to the stimulus, particles release additional chemicals in the
environment and progressively start to aggregate and move
cohesively in the direction of the potential release. In the
simulation, the preferential direction corresponds to the ψ2-
axis.

VIII. CONCLUSION

In the paper, we introduced a measure-valued recursion for
spatial swarm robotics models arising from an random finite
set (RFS) interpretation of the state of a swarm at any given
time. The premise of the application of the RFS framework
to swarm robotics is that the collection of robots’ states can
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Fig. 8: Solution of the S/P model specialized as in Eq. (23) t =
2 (a), t = 40 (b), t = 80 (c), and t = 120 (d), approximated
by 500 particles. Particles represent the discrete approximation
of the intensity functions. Isolines of the potential are shown
in blue.

be treated as a random variable that is random both in the
number and the value of the elements. When this is the case,
the evolution in time of the intensity of the RFS can be used to
describe the dynamics of robotic swarms in a computationally
efficient way. We coupled the RFS-based modeling of the
macroscopic behavior of a swarm of robots with a second
general equation modeling the evolution in time of positive
potentials. The resulting S/P model captures the dynamics of
the interaction between the robots and the potential. Suitable
forms for the operators of the abstract model have been derived
for a series of scenarios. Results show that numerical solutions
of the system are able to provide insights into the non-linear
dynamics of complex phenomena such as coordinate motion
and swarm aggregation. Moreover, the model allows for the
study of the dynamics of swarm robotics systems, including
phase transitions, when fundamental parameters are changed.

In the paper, numerical solutions have been derived by
assuming that the potential function can be approximated at
each time step by a weighted Gaussian mixture. While this
assumption is introduced to render the models computation-
ally tractable, it is also realistic in practical terms. Typical
sensing operations encountered in swarm robotics, such as
the recording of images or the perception of physical objects
through infrared sensors, are often represented in Gaussians
terms as a practical approximation or due to the noise in the
acquisition process. More advanced robot swarms, such as
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Fig. 9: Phase transition with varying dissipation coefficients
α. Lower dissipation coefficients cause the potential to rapidly
disappear. When the initial potential dissipates slowly, robots
are able to sense it and can release additional potential and the
process self-sustains. The intensity of the potential increases
in time up to a value corresponding to a stable configuration
of the system.

chemical robots, will be able to sense chemical substances that
exhibit diffusion dynamics whose nature is typically Gaussian.
In more complex scenarios in which this assumption does not
hold, a particle approximation of the evolution of the potential
is required.
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Brussels, Belgium, Tech. Rep., 2013.

[38] P. Del Moral, L. Kallel, and J. Rowe, “Modeling genetic algorithms
with interacting particle systems,” in Theoretical Aspects of Evolutionary
Computing. Springer, Berlin, Germany, 2001, pp. 10–67.

[39] Y.-C. Ho and R. Lee, “A Bayesian approach to problems in stochastic
estimation and control,” IEEE Transactions on Automatic Control, vol. 9,
no. 4, pp. 333–339, 1964.

[40] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter:
Particle Filters for Tracking Applications. Norwood, MA, USA: Artech
House, 2004.

[41] J. D. Bjerknes, A. F. Winfield, C. Melhuish, and C. Lane, “An analysis
of emergent taxis in a wireless connected swarm of mobile robots,” in
In IEEE Swarm Intelligence Symposium. IEEE Press, 2007, pp. 45–52.

[42] S. Balasubramanian, D. Kagan, C. Hu, S. Campuzano, M. Lobo-
Castaon, N. Lim, D. Kang, M. Zimmerman, L. Zhang, and J. Wang,
“Micromachine-enabled capture and isolation of cancer cells in complex
media,” Angewandte Chemie International Edition, vol. 50, no. 18, pp.
4161–4, 2011.

[43] J. Wu, S. Balasubramanian, D. Kagan, K. M. Manesh, S. Campuzano,
and J. Wang, “Motion-based DNA detection using catalytic nanomotors,”
Nature Communications, vol. 1, no. 36, 2010.

[44] D. Kagan, R. Laocharoensuk, M. Zimmerman, C. Clawson, S. Bala-
subramanian, D. Kang, D. Bishop, S. Sattayasamitsathit, L. Zhang, and
J. Wang, “Rapid delivery of drug carriers propelled and navigated by
catalytic nanoshuttles,” Small, vol. 6, no. 23, pp. 2741–2747, 2010.


