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Abstract Task partitioning consists in dividing a task into sub-tasks that can be tack-
led separately. Partitioning a task might have both positive and negative effects: On
the one hand, partitioning might reduce physical interference between workers, en-
hance exploitation of specialization, and increase efficiency. On the other hand, par-
titioning may introduce overheads due to coordination requirements. As a result,
whether partitioning is advantageous or not has to be evaluated on a case-by-case
basis. In this paper we consider the case in which a swarm of robots must decide
whether to complete a given task as an unpartitioned task, or utilize task partitioning
and tackle it as a sequence of two sub-tasks. We show that the problem of selecting
between the two options can be formulated as a multi-armed bandit problem and tack-
led with algorithms that have been proposed in the reinforcement learning literature.
Additionally, we study the implications of using explicit communication between the
robots to tackle the studied task partitioning problem. We consider a foraging scenario
as a testbed and we perform simulation-based experiments to evaluate the behavior
of the system. The results confirm that existing multi-armed bandit algorithms can be
employed in the context of task partitioning. The use of communication can result in
better performance, but in may also hinder the flexibility of the system.
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1 Introduction

In this work, we present a study on task partitioning in a swarm robotics context. The
term task partitioning comes from biology and it refers to situations in which a given
task is divided into two or more sub-tasks that can be tackled separately (Jeanne,
1986). The main body of research on the topic has been carried out in the field of en-
tomology. Many studies have been published that report examples of task partitioning
for the organization of work in colonies of ants, bees, and wasps (Ratnieks and An-
derson, 1999). Task partitioning has been mostly observed in activities that involve
the transportation of material such as foraging (Fowler and Robinson, 1979), nest
excavation (Anderson and Ratnieks, 2000), and waste removal (Hart and Ratnieks,
2001). However, examples of task partitioning have been observed in other activities,
such as hunting (Theraulaz et al., 2002).

The fact that several instances of task partitioning can be observed in different
species of animals indicates that partitioning a task into sub-tasks is an advantageous
way of organizing work. Indeed the benefits that insects draw from task partitioning
are many. In certain situations, task partitioning enhances the exploitation of special-
ization, either morphological or behavioral. For example, in the seed-harvesting ant
Messor bouvieri small workers transfer harvested seeds to larger workers, that trans-
port them to the nest (Arnan et al., 2011). Task partitioning allows each category of
workers to perform the activity for which they are best suited: smaller workers are
better (i.e., faster) at finding seeds, while larger workers are better at transporting
them.

Task partitioning can also increase the efficiency in performing a task. For ex-
ample, Fowler and Robinson (1979) described the foraging strategy employed by
the leaf-cutting ant Atta sexdens: some workers climb a tree and cut leaves that are
dropped to the ground. There, other ants collect the leaves and transport them to the
nest. In this case, partitioning the foraging task reduces the energy requirements for
the swarm since only a few ants need to climb the tree and they do it only once.

Finally, task partitioning allows for the separation of individuals working on dif-
ferent sub-tasks. In some situations, the separation of workers may be beneficial.
Think for example of the Atta cephalotes ant: the nest of this ant has an internal
garbage heap, which is managed by garbage heap workers confined in the heap loca-
tion. Waste management is carried out using task partitioning: garbage is delivered to
the entrance of the heap, where it is collected by garbage heap workers and stored in
the heap. This behavior allows the ants to isolate garbage heap workers, which are po-
tentially contaminated by pathogens, from the rest of the colony (Hart and Ratnieks,
2001).

Task partitioning requires the individuals to coordinate their work, and therefore
entails overhead costs. For example, honeybee foragers transfer nectar loads to re-
ceivers located near the nest entrance. In order to transfer nectar, a forager and a
receiver must search for each other, introducing a delay in foraging (Anderson and
Ratnieks, 1999). Task partitioning can also entail inefficiency in terms of material
losses. Returning to the example of the foraging activity of the Atta sexdens ant, men-
tioned previously, Hubbell et al. (1980) pointed out that many of the leaves dropped
to the ground are lost and therefore they cannot be utilized by the swarm.
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In this paper, we present a research work in the context of swarm robotics, a
branch of robotics that studies the implementation and control of large groups of
autonomous robots, often by using solutions inspired by nature, in particular by social
insect colonies. Robot swarms can obtain the same benefit as social insects from task
partitioning: better exploitation of specialization, increased efficiency, and physical
separation of the robots. Analogously to social insects, task partitioning also entails
costs due to overheads, which can hinder these benefits. Task partitioning should
therefore be used only when the benefits overcome the costs.

We concentrate here on what we call the fask partitioning problem: selecting be-
tween partitioning a given task into sub-tasks or performing it as a single piece of
work. We study the task partitioning problem in a foraging scenario. In our previ-
ous research, we proposed distributed methods that enable a robot swarm to tackle
the task partitioning problem autonomously (Frison et al., 2010; Pini et al., 2011).
Recently, we have shown that the task partitioning problem can be formulated as a
multi-armed bandit problem and tackled with existing algorithms proposed in the re-
inforcement learning literature (Pini et al., 2012a). This article further extends our
previous work by introducing a social component: the robots explicitly communi-
cate with each other. We perform simulation-based experiments to study the effect
of communication. The results suggest that communication affects the system in a
different way, depending on the algorithm being employed by the robots to take deci-
sions. In some cases, communication enhances the performance of the swarm while
in others the increased inflow of information can overwhelm the decision process of
the robots and renders the behavior of the swarm inflexible with respect to changing
environmental conditions.

This article is organized as follows. In Section 2, we review related work. In Sec-
tion 3, we present the task partitioning problem studied in this paper and illustrate
the approach we use to tackle it. In Section 4, we describe the tools that we used
to carry out the experiments. In Section 5, we describe the simulation-based experi-
ments that we carried out to study the system and comment on the results obtained.
In Section 6, we summarize the contributions of this work and propose directions for
further research.

2 Related work

As mentioned in the introduction, research on the topic of task partitioning has been
carried out mainly by entomologists. For a review of task partitioning in social in-
sects, we refer the reader to the work of Ratnieks and Anderson (1999). In Sec. 2.1,
we focus instead on the related work on task partitioning in swarm robotics.

The research presented in this article utilizes concepts and ideas that come from
reinforcement learning. The literature on the topic is vast and its review is beyond the
scope of this work. In Sec. 2.2, we mention the related research work that is the most
relevant to our study.
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2.1 Task partitioning in swarm robotics

In the domain of swarm robotics, task partitioning has been used mainly in forag-
ing scenarios as a mean for reducing physical interference between robots. Physical
interference results from the fact that robots share the same space at the same time.
Interference has a strong negative impact on the performance and the scalability of
a robotics system (Lerman and Galstyan, 2002). Task partitioning can mitigate inter-
ference in foraging through a physical separation of robots.

The first authors that used task partitioning to reduce physical interference in
robotics were Drogoul and Ferber (1992). They studied a foraging scenario and re-
ported the formation of “traffic jams” in the environment. The authors showed that
allowing the robots to pass objects one to another leads to the formation of a chain,
along which objects are passed till they reach the nest. This reduces interference and
increases the foraging performance of the swarm.

@stergaard et al. (2001) studied the benefits of task partitioning in a setup in which
the robots perform foraging in a maze. The authors concluded that task partitioning is
beneficial in cluttered environments, in which the width of the corridors is such that
it is hard for two robots traveling in opposite directions to pass at the same time.

Fontan and Matari¢ (1996) divided the environment in which the robots perform
foraging into non-overlapping working areas, each assigned to one robot. Each robot
transports pucks found in its working area to an adjacent working area, in the direc-
tion of the nest. A puck eventually reaches the nest by crossing several working areas.
As the range in which each robot operates is limited, physical interference is dimin-
ished and foraging performance is enhanced. Goldberg and Matari¢ (2002) used the
same setting to study the design of robust behavior-based controllers. The authors
observed that a solution based on task partitioning reduces interference.

Pini et al. (2009) also divided the environment in working areas and showed that
task partitioning reduces competition for accessing a shared resource (the nest where
the foraged objects are stored). In the work of Pini et al., differently from the one of
Fontan and Matari¢ (1996), the working areas are not exclusive, nor a priori assigned:
each robot selects its working area autonomously.

Shell and Matari¢ (2006) introduced a further novelty with respect to the work of
Fontan and Matari¢ (1996). In the work of Fontan and Matari¢ (1996), the position
of working areas are given with respect to a global coordinate system and are fixed
in time; on the other hand, in the work of Shell and Matari¢ (2006), the position of
the working areas are given in the local coordinate system of the associated robot and
drift in time. Indeed, given that robots estimate the position of working areas using
odometry, working areas drift in time due to estimation errors. Each robot transports
the pucks that it finds in its working area towards the nest, without leaving its working
area. The robot drops the pucks at the boundary of its working area, where they are
eventually collected by another robot. The authors showed that the higher the density
of robots, the smaller the optimal size of the working area.

Lein and Vaughan (2008, 2009) further extended the work of Shell and Matari¢
(2006). The first extension consists in the implementation of a simple algorithm that
each robot employs to dynamically regulate the size of its working area, on the basis
of the perceived interference (Lein and Vaughan, 2008). The second extension is a
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mechanism that the robots use to relocate their working areas towards zones in which
there is a high puck density (Lein and Vaughan, 2009).

Pini et al. (2012c) studied the case in which a robot swarm forages objects from an
initially unknown location in the environment. Each robot uses odometry to estimate
its position relatively to the location where an object was found. The authors showed
that task partitioning reduces the negative impact of odometry errors and improves
the foraging performance. Additionally the authors used the implemented system to
study the costs deriving from the direct transfer of foraged objects from robot to robot.
Together with the works of Fontan and Matari¢ (1996) and Goldberg and Matari¢
(2002), the work of Pini et al. (2012c) is the only work on the topic of task partitioning
that includes experiments performed with real robots.

The same experimental setup, proposed in the work of Pini et al. (2012c), was
employed in the work of Pini et al. (2012b). There, the authors proposed a method-
ology that allows a robot swarm to autonomously partition tasks into sub-tasks. Each
robot autonomously decides the amount of work that it should contribute with the
sub-task that it performs. The decision is made on the basis of cost estimates that the
robot computes while performing the sub-tasks.

In this article, the task partitioning problem that we study consists in selecting
whether to employ task partitioning or not. In a previous research work, we proposed
a simple method to let a swarm of robots tackle autonomously the task partitioning
problem (Frison et al., 2010). In follow up work, we extended the method so that the
costs of performing the given task and each of the sub-tasks are taken into account
by the robots when taking decisions (Pini et al., 2011). The research presented in
this article further extends a previous study, in which we have shown that the task
partitioning problem can be seen as a multi-armed bandit problem and can be tackled
with existing algorithms proposed in the reinforcement learning literature (Pini et al.,
2012a). We extend the work by adding a social element to the studied system: the
robots are allowed to exchange information with each other and they use the received
information to integrate their knowledge of the environment.

2.2 Multi-agent reinforcement learning

In the artificial intelligence community, the problem of multi-agent learning (Weiss,
1999; Shoham et al., 2007) is receiving a growing attention. In this context, also sim-
ple forms of social learning are being considered, where agents can communicate
with each other, in order to improve the overall performance of the group. Most ex-
isting multi-agent learning approaches are based on reinforcement learning (Sutton
and Barto, 1998; Busoniu et al., 2008): the agents are allowed to interact with each
other and with the environment, choosing actions sequentially according to some
policy, which is learned online. The only feedback available to guide learning is a
(possibly delayed) reward signal. Only limited work in multi-agent learning deals
with some form of social learning (see Panait and Luke, 2005, for a review). In the
work of Whitehead (1991), agents interact only with a common environment, and
can exchange learning episodes, in the form of (state, action, next state) triplets. Tan
(1993) allowed for interactions between agents, as well as for some forms of com-



6 Giovanni Pini et al.

cost cyp

unpartitioned task

Y
Given
task ;
task interface /
9y
sub-task o, sub-task ®,
| i
interfacing interfacing
cost 111 cost I1>
cost ¢y, cost ¢y,

Fig. 1 Representation of the task partitioning problem considered in this study. A given task can be either
completed as a whole, unpartitioned task (top) or partitioned into a sequence of two sub-tasks ¢; and
¢, connected by an interface I (bottom). Depending on the chosen option, the cost for performing the
given task is different. If the given task is performed as an unpartitioned task, it entails a cost cyp for its
completion. If task partitioning is used, the cost for the completion of the given task is the sum of the costs
cp, and cg, required for completing the sub-tasks. These costs include possible interfacing costs IT; and
I, required to access I. In general, cyp differs from the sum of ¢y, and cg,, rendering task partitioning
advantageous or not.

munication, such as sharing observed reward values and learned policies. In the work
of Nunes and Oliveira (2008), each agent broadcasts the reward obtained during the
last learning episode, and poorly performing agents can query the best ones for ad-
vice. Reinforcement learning in a stateless environment corresponds to what is called
the multi-armed bandit problem (Sutton and Barto, 1998; Cesa-Bianchi and Lugosi,
2006): in a sequence of trials, the player chooses one of the arms of a multi-armed
bandit and receives the corresponding reward. The aim of the agent is to minimize
its regret of not having played the remaining arms, whose reward is not observed.
Schlag (1998) studied social learning in a group of agents, all playing against the
same multi-armed bandit. They focused on social learning strategies in which each
agent observes the last pulled arm, and the corresponding reward, for itself and an-
other individual, randomly selected.

3 Problem and methodology description

In this section, we present the task partitioning problem studied in this work and il-
lustrate the approach we employ to tackle this problem. In Section 3.1, we describe in
detail the task partitioning problem and introduce the terminology used in the rest of
the paper. In Section 3.2, we provide an abstract description of the foraging scenario
studied in this work and frame the task partitioning problem in the context of forag-
ing. In Section 3.3, we illustrate the approach we use to tackle the task partitioning
problem and present algorithms that we compare in our study.

3.1 The task partitioning problem

In this work, we tackle the problem represented in Fig. 1. A given task can be par-
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titioned into the sequence of two sub-tasks ¢ and ¢,, that interface with each other
by means of an interface /. The interface allows to store the output of the sub-task
@1, that can be subsequently used as input for ¢,. In this context, we tackle what we
refer to as the task partitioning problem: selecting whether to perform the given task
as overall, unpartitioned task (Fig. 1, top), or to employ task partitioning and exe-
cute the two sub-tasks separately (Fig. 1, bottom). Notice that we do not tackle the
problem of defining what the sub-tasks ¢ and ¢, are. We consider the sub-tasks as
defined a-priori and we tackle the problem of selecting whether to execute the given
task with or without partitioning it into sub-tasks. For an example of a swarm that au-
tonomously defines sub-tasks of a given task, we refer the reader to the study of Pini
et al. (2012b).

An example of the situation depicted in Fig. 1 is the leaf foraging activity of the
Atta ant, described in the work of Fowler and Robinson (1979). In that case, the task
consists in harvesting a leaf from a tree and transporting it to the nest. Ants partition
this task into two sub-tasks. A group of ants cut leaves from the tree and drop them to
the ground (sub-task ¢;). There, the leaves are collected by a second group of ants and
transported to the nest (sub-task ¢,). The ground underneath the tree is the interface
I, where the output of the first sub-task (a leaf that has been cut) is temporarily stored
before it is used as the input of the sub-task that follows. In principle, the ants could
perform the same task without partitioning it into sub-tasks by repeatedly climbing
the tree to collect leaves.

Returning to the problem represented in Figure 1, we use the term strategy to
indicate the way the given task is performed. We indicate with partition strategy the
case in which the given task is performed as two separate sub-tasks and with non-
partition strategy the case in which the given task is performed as one unpartitioned
task. Each strategy entails a cost; the way costs are measured depends on the specific
context; examples are: energy, time, and resources needed for executing tasks and
sub-tasks. Notice that, in general, the costs of the two strategies are different (i.e.,
CNP # Cg, +Cg,). The cost cyp of the non-partition strategy may include a component
deriving from competition in accessing a shared resource, such as space (Pini et al.,
2009). On the one hand, the partition strategy can be used to reduce costs of this
nature, by distributing individuals across sub-tasks. On the other hand the partition
strategy usually entails overhead costs such as interfacing costs (I} and Il;). Which
of the two strategies is the most advantageous depends on the context and on the
nature of the costs involved.

In the case of leaf foraging in the Affa ant, the ants perform foraging using the
partition strategy. The result, compared to the use of the non-partition strategy, is that
the total energy spent by the swarm is lower due to the fact that the ants do not need
to repeatedly climb the tree trunk. However, the partition strategy is costly in terms
of foraging efficiency: many of the leaves that are dropped to the ground by an ant
are not found by any other ant (Fowler and Robinson, 1979).
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Fig. 2 Representation of the environment in which foraging is performed. The robots collect objects from
the source, and deposit them in the nest. The areas containing the source and the nest are connected by
a corridor, which can be utilized by the robots to reach one area from the other. The corridor allows the
robots to perform transportation without employing task partitioning: a robot directly HARVESTS an object
from the source and STORES it in the nest. The cache can be used to transfer objects from an area to the
other and it allows the robots to partition transportation: an object is first DROPPED in the cache by a robot
and subsequently it is PICKED UP by another robot on the other side. The robots decide whether to use the
cache or the corridor in two cases, represented as question marks: after taking an object form the source
(left-hand side) and after depositing an object in the nest (right-hand side)

3.2 The foraging scenario

Foraging consists in the repetition of an object transportation task: collecting an ob-
ject from the environment and delivering it to a predefined location. Figure 2 rep-
resents our experimental environment, in which the robots forage for objects. We
consider the case in which the objects are located in a unique place in the environ-
ment, referred to as the source. The objects that are collected from the source must
be delivered by the robots to the nest. We assume that the source never depletes and
that the robots know a priori the locations of the source and the nest. Source and nest
are located in two separate areas, which are connected by a path referred to as the
corridor. The corridor allows the robots to reach the source from the nest and the
other way around. The two areas are separated by the cache, which cannot be crossed
by the robots, but that can be used to transfer objects from one area to the other.

The foraging scenario illustrated in Fig. 2 is an instance of the task partitioning
problem presented in Fig. 1. Performing the transportation task as one unpartitioned
task corresponds to utilizing the corridor: a robot directly HARVESTS an object from
the source and STORES it in the nest. The cache corresponds to the interface I and it
allows the robots to partition the transportation task into a sequence of two sub-tasks:
a robot DROPS in the cache an object that it collected from the source; the same
object is subsequently PICKED UP by a second robot on the other side of the cache
and delivered to the nest. Dropping an object in the cache corresponds to the sub-
task labeled with ¢, in Fig. 1; picking up an object from the cache to the sub-task
labeled with ¢,. In the foraging context, we measure costs as time for completing
the transportation task. The cost cyp of the non partitioning strategy depends on the
length of the corridor, which defines the time required to navigate through it. The
overhead cost of the partitioning strategy depends on the time required to use the
cache on both its sides. The use of the cache imposes an interfacing time IT that is
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required to drop or pick up an object from the cache: depending on the value of IT
and the length of the corridor, task partitioning can be more or less advantageous.

The robots decide whether to use the cache or the corridor (i.e., whether to parti-
tion object transportation or not) in two occasions, represented with a question mark
in Fig. 2. After taking an object from the source, a robot must decide whether to
traverse the corridor and directly store the object in the nest or to use the cache to
drop the object. After delivering an object to the nest, a robot must decide whether
to traverse the corridor and harvest the following one from the source or to reach the
cache to pick up an object there. As each robot takes decisions autonomously, there
is not, in general, a unique decision made by all the robots: some robots may employ
the cache while others may employ the corridor.

The robots can abandon the decision to use the cache to pick up or drop an object
(details are given in Sec. 3.3.2). This protects the swarm against deadlocks, which
may occur if all the robots try to pick up objects at the same time, and the cache is
empty or, dually, if all the robots try to drop objects at the same time and the cache is
full.

3.3 The approach

In this section we describe the approach we employ for tackling the task partitioning
problem presented in Sec. 3.1. In our approach, each robot associates a cost to the
possible actions and uses these costs to select which action to perform. In Sec. 3.3.1,
we describe how the robots compute the cost estimates. In Sec. 3.3.2, we describe the
abandon mechanism that prevents potential deadlocks in the system. In Sec. 3.3.3,
we present algorithms that the robots can employ to select which action to perform.
In Sec. 3.3.4, we illustrate how the robots communicate with each other and use the
information received.

3.3.1 Computation of the cost estimates

As mentioned above, the robots use cost estimates to select the action they should
perform. In the foraging scenario studied here, possible actions are: i) HARVEST an
object from the source, ii) STORE an object in the nest, iii) DROP an object in the
cache, and iv) PICK UP an object from the cache. Robots aim at maximizing the num-
ber of objects delivered to the nest in a given time, which is equivalent to minimizing
the time needed to deliver each object. Therefore, in this study costs are expressed
as time. Each robot computes four cost (time) estimates #;, each corresponding to the
robot’s estimate of the duration of the (sub-)task i. The estimates #; are computed as
a recency-weighted average of the observed costs:

fi—(1—a)fi+aty, (D

where a € (0,1] is a weight factor and s is the measured time required to perform
the corresponding action i.! We decided to use a recency-weighted average since it

! In the experiments, & is set to 0.5, refer to Section 5 for details.
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gives more weight to recent observations, resulting in a more reactive behavior in
non-stationary environments compared to a simple average (Sutton and Barto, 1998).

Each robot initializes the estimates # with a random value (refer to Sec. 5 for
details). The way #); is measured depends on the estimate being updated. In all the
cases, ) measures the time taken between two sub-sequent decisions, made by the
robot (see question marks in Fig. 2). When the robot estimates the time #; for HAR-
VESTING an object from the source, f3y measures the time from the moment an object
was deposited in the nest to the moment the following object is harvested from the
source, after navigating through the corridor. In case the estimate being updated is
the time 75 required to STORE an object in the nest, f3; measures the time from the
moment the robot takes an object from the source to the moment it deposits it in the
nest, after navigating through the corridor. The estimate p of the time required to
PICK UP an object from the cache is updated with the time #); measured from the
moment an object is deposited in the nest, to the moment the next object, picked up
from the cache, is deposited in the nest. Analogously, a robot updates its estimate 77,
of the time required to DROP an object in the cache with the time #); measured from
the moment an object is taken from the source to the moment the following object is
taken from the source, after the first has been dropped in the cache.

3.3.2 Abandon mechanism

The abandon mechanism allows a robot to cancel the decision of using the cache.
Abandoning is based upon a timeout mechanism: the robot measures the time f,
spent trying to access the cache and abandons the decision (i.e., it takes the corridor)
if #py is greater than a certain threshold. In our previous work, we proposed different
methods to compute this threshold (see Pini et al., 2012a). We report here the two
methods that are utilized in the experiments presented in this work.?

The first method consists in computing two thresholds, 7p and 7p. The threshold
Tp is used when a robot is trying to pick up an object from the cache, Tp when a robot
is trying to drop an object in the cache. The two thresholds are computed as follows:

Tp = 31‘;), p = 3t2) . )

The second method uses a single threshold 7, that is derived using a formula analo-
gous to Eq. 1. Each time a robot utilizes the cache to pick up or to drop an object, the
measured time 7, required to use the cache updates a value 7:

F=(1-a)f+oan, 3)

o is the same weight factor used in Eq. 1 for computing the estimates #. f is initialized
to the average of 7p and #p. The timeout threshold 7 is then computed as:

T=3f. (@)
Notice that, in case a robot abandons the decision of using the cache, its current value

ty updates the estimates 7p or 7p using Eq. 1 (and 7 in case the timeout threshold is
computed using Eq. 3).

2 In our previous work, we selected for each algorithm one method for computing the threshold. In this
study we use for each algorithm the corresponding method that was selected in the previous work (refer to
Sec. 5).
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3.3.3 Studied algorithms

In this work, we study three algorithms that the robots can use to take decisions on the
basis of the cost estimates. These algorithms are compared to a set of four reference
algorithms, in which the decisions do not depend on the value of the estimates. In the
following we describe each algorithm in detail.

The AdHoc algorithm. The AdHoc algorithm was originally proposed in one of our
previous works (Pini et al., 2011). A robot employing the AdHoc algorithm selects
actions stochastically. After collecting an object from the source, a robot DROPS it in
the cache with a probability P defined as:

[1 Sttty i) T i iy +is > (i)
P= ) &)

NS PN -1
{1 + 6*5(1*(1P+ID)/(YH+IS))} . if Ty +7s < (tp+1ip)

where S is a parameter that regulates the degree of exploration of the algorithm. Ex-
ploration consists in sampling less-advantageous solutions in order to detect varia-
tions in the environment that possibly made these solutions more advantageous. In
the case of the AdHoc algorithm, the lower the value of S, the higher the exploration.
In other words, the lower the value of S, the higher the ratio between fy +fs (i.e.,
the estimated cost of using the corridor) and 7p +7p (i.e., the estimated cost of using
the cache) must be in order to obtain a given partition probability P. After delivering
an object to the nest, a robot PICKS UP the next one from the cache with the same
probability P. Therefore, a robot employing the AdHoc algorithm partitions the trans-
portation task with a probability P and performs transportation as one unpartitioned
task with a probability 1 — P.

The e-Greedy algorithm. The €-Greedy (Sutton and Barto, 1998) is a simple stochas-
tic algorithm that has been applied in many contexts. The robots employing the &-
Greedy select with a probability 1 — € the action i with the lowest associated cost #;
and with probability € a random action. € is the only parameter of the algorithm and
defines the degree of exploration: the higher &, the higher the exploration.

The UCB algorithm. The UCB is a heuristic adaptation of the UCB1 policy presented
in the work of Auer et al. (2002), that in turn was derived from the index-based
policy proposed by Agrawal (1995). UCBI is characterized by a rapid convergence
because it was originally designed for stationary problems (Auer et al., 2002). The
robots employing the UCB algorithm deterministically select the action to perform.
For example, after depositing an object in the nest, a robot PICKS UP the following
one from the cache if:

N Zln(np+nH) N 21n(l’lp—|—n[.])
p=W————— <=V ——— (6)
np ny
otherwise the robot uses the corridor to HARVEST an object from the source. np and
ny are, respectively, the number of times the robot used the cache to PICK UP an
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object and the number of times the robot HARVESTED an object from the source (i.e.,
going through the corridor). 7 is a parameter that allows tuning the degree of explo-
ration: higher values of ¥ correspond to a higher exploration. A formula analogous
to Eq. 6 is used by the robots to decide whether to DROP and object in the cache or
STORE it in the nest.

The Exp3 algorithm. Exp3 (Cesa-Bianchi and Lugosi, 2006) is a well-known MAB
solver designed to keep bounds on regret in a variety of settings, including the pes-
simistic adversarial setting, where the problem is designed to be deceptive for the
player. Using Exp3 the robots stochastically select between the cache and the corri-
dor. After taking the i’ object from the source, a robot DROPS it in the cache with a
probability Pp ; defined as:

e~ NLp.i

Ppi=(1-7) +%7 (7

e Mo 4 e MLs.i

where Lp; = Z;_:l] Ip,; and the values Ip ; are computed as:

% . th . .
Ip, = { Po if the j'" object was dropped in the cache @)

0 if the j'* object was stored in the nest via the corridor ’

Lg ; is computed in an analogous fashion, substituting D for DROP with S for STORE.
fyp,; in Eq. 8 is analogous to 7 in Eq. 1: it is the measured time required to drop the
7 object in the cache. In this case the measure is normalized, using a maximum and
minimum values set a priori (refer to Sec. 5 for details).

The parameter Y in Eq. 7 is computed as:

am2 \'?
=C| —— , 9
Y (nD +nH) ©)
and the parameter 7 as:
1 m  \*?
n=— <> . (10)
C 2(nD —l—ny)

In Eq. 9 and Eq. 10, np and ng are the total number of times the robot DROPPED an
object in the cache and the number of times the robot STORED an object in the nest
(i.e., traversing the corridor), respectively. In other words, np + ny is the total number
of decisions that the robot made concerning where to deposit an object taken from
the source (also refer to Fig. 2), therefore corresponding to the value of i in Eq. 7.3 C
is a constant value, computed as:

c— (m>2/3 . (11)

Analogous formulas define the probability Pp; of PICKING UP an object from the
cache after the robot deposited its i’ object in the nest (substitute DROP with PICK
UP and STORE with HARVEST in all the formulas).

3 Notice that y and 17 are not constants, due to their dependency on np + ny
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The reference algorithms. The reference algorithms are used as a yardstick to evaluate
the algorithms presented above. The first reference algorithm is the never-partition
algorithm, which consists in always using the corridor to harvest and store objects.
Analogously, the always-partition algorithm consists in always using the cache, to
pick up and drop objects. In case the robots use the always-partition algorithm, they
are prevented from abandoning (see Sec. 3.3.2). The third reference algorithm is
the random algorithm. Using this algorithm, the robots select the actions to perform
stochastically with equal probability. Finally, the informed algorithm consists in al-
ways selecting the cache or the corridor on the basis of an external oracle information
provided to the robots. The performance of the informed algorithm is therefore an up-
per bound for the performance of the studied algorithms. Notice that both the random
and the informed algorithms allow the robots to abandon the decision of using the
cache.

3.3.4 Communication

The robots are equipped with a communication device that allows them to exchange
information. Each robot communicates the time 74 associated to the last action A it
performed. The robots integrate their own cost estimates with the information re-
ceived. Each robot uses received information as if it were its own observation—i.e.,
as if the robot itself performed the action A and measured the time #4. Equation 1 is
utilized to update the estimate using the information received (A identifies the index
i and 14 replaces fy7).

The communication device of the robots imposes many limitations. First, the
communication range is limited to roughly 0.75m, and robots can only exchange
messages when they are in line of sight. Second, a robot can receive one message per
control step at most. Third, each message has a payload limited to 16 bits.

Communication is implemented as explained in the following. As mentioned, a
robot communicates the measured time #4 associated to the last performed action A.
The first 2 of the 16 payload bits are used to identify the action A: HARVEST, STORE,
DROP, or PICK UP. The remaining 14 bits directly express the value 74, measured in
control cycles.* Each robot broadcasts a message every control cycle.

At most one message per control cycle can be received by a robot. To avoid using
the same piece of information more than once, each robot memorizes the last 10
received messages (i.e., 16-bits numbers). Each time a robot receives a new message,
it checks it against the contents of the buffer. If the same message is already present,
the robot discards it; otherwise, the received information integrates the cost estimates
of the robot, and the message is inserted in the buffer. The message buffer is managed
using a FIFO’ policy: if a new message must be added to the buffer and the buffer
is full, the oldest message in the buffer is discarded. Notice that, in principle, it is
possible that two different robots send the same message (i.e., they performed the
same action A and measured the same time #4). A robot receiving a message from
both robots would therefore discard the second message received, assuming that the
two messages came from the same sender.

4 Each control cycle lasts 0.1 seconds.
5 Acronym for first in, first out.
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Fig. 3 An e-puck entering a TAM: picture (left) and schematic representation (right).

4 Experimental setup

In this section, we present the tools that we employed to carry out the experiments
described in Section 5. All the experiments presented in this work have been carried
out in simulation. In Section 4.1 we describe the e-puck, which is the robot that we
simulate in the experiments. In the same section we present the TAM, a device that
is used in the experiments to abstract object handling. In Section 4.2, we illustrate
the environment in which the robots perform foraging. In Section 4.3, we describe
ARGoS, which is the simulator employed to carry out our study.

4.1 Robots and objects

In this work, we perform foraging experiments using a simulation of the e-puck®. The
e-puck is a small wheeled robot that has been developed by Mondada et al. (2009) as
an open tool for university students. Each e-puck features a minimal set of sensors and
actuators that allow the robot to navigate and interact with other robots. The e-puck
has a modular structure that permits to add extension boards that enhance the basic
capabilities of the robot. In this work, we employ the infrared ground sensors board
and the infrared range and bearing board (for the latter refer to Gutiérrez et al., 2009).
The infrared range and bearing board allows line of sight communication between the
e-pucks.

The e-puck does not have the capability of grasping and manipulating objects.
To overcome this limitation, in the experiment we simulate a device developed by
Brutschy et al. (2010), the TAM (acronym for task abstraction module).

Figure 3 reports a picture of an actual TAM (left) and a schematic representation
of an e-puck entering a TAM (right). Each TAM is a small booth that can be entered
by one e-puck at a time. The TAM features two RGB LEDs that can be perceived by
the e-puck by means of the front camera. The TAM is also equipped with an infrared
barrier that can detect the presence of a robot inside the TAM. The user can program
the TAM and define its behavior, that is, the way LEDs are actuated on the basis of
the event detected (e.g., a robot entering or exiting the TAM).

® http://www.e-puck.org
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Fig. 4 Implementation of a cache slot using two paired TAMs. The source (not represented) is located on
the left-hand side, the nest (not represented) on the right-hand side. Robots carrying an object are marked
with a black arrow, robots not carrying an object with a white arrow. (a) Initial configuration: the cache
slot is empty, a robot can enter the TAM oriented towards the source (lit up in blue) to drop an object. (b)
An object has been deposited by a robot; the TAM oriented towards the source turns the LEDs off and the
paired TAM turns on the LEDs in green. (¢) The object is available at the TAM oriented towards the nest
and another robot enters the TAM to pick up the object. (d) When this robot leaves with the object, the two
TAMSs return to their initial configuration.

In this work, we use TAMs to abstract object handling. In the experiments, a
TAM whose LEDs are green represents an object that can be collected by an e-puck
by entering that TAM. Conversely, a TAM whose LEDs are blue represents a location
where an object can be deposited. In both cases, the TAM temporarily turns the LEDs
to red when a robot is inside. This serves as an acknowledgement mechanism for the
robot, to confirm its presence inside the TAM. The robots themselves keep track of
whether they are carrying objects or not and behave accordingly.

In the foraging experiments, the source, the nest, and the cache are implemented
with arrays of TAMs. The TAMs at the source are always green, to represent an
object source that never depletes. The TAMs at the nest are always blue, to represent
unlimited storage space at the nest. The cache is implemented using an array of paired
TAMs: the opening of one TAM is oriented towards the source and the opening of the
other towards the nest.

Figure 4 depicts the behavior of two paired TAMs that implement a slot in the
cache.” In the figure, a robot carrying an object is marked with a black arrow, a robot
without an object with a white arrow. Figure 4 (a) shows an e-puck carrying an object
that enters an empty cache slot. The cache TAM facing the source (left-hand side) is
blue, the paired TAM facing the nest is off. In Fig. 4 (b) the robot is leaving the TAM,
after depositing the object previously carried. The object becomes available on the
other side of the cache slot: the TAM facing the nest (right-hand side) is now green
and therefore an object can be picked up there. The paired TAM facing the source

7 The TAMs can communicate via WiFi. The behaviour of a cache slot, that is, the coordination between
two paired TAMs, can be easily implemented in the real-world by interfacing the TAMs with a PC.
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side is switched off, to avoid additional objects to be delivered there. In Fig. 4 (¢) a
second robot enters the cache slot on the nest side, to pick up the object. When the
robot leaves the TAM with the object (Fig. 4 (d)), the cache slot returns to its initial
configuration: an object can be dropped again in the cache at the source side. A video
that illustrates the behavior of the cache can be found in (Pini et al., 2012d). The
interfacing time IT is implemented as a delay between the two phases represented
in Fig. 4 (a) and (b). After the robot entered the TAM oriented towards the nest, the
TAM turns its LEDs to red (not shown in figure) to acknowledge the robot presence,
the LEDs do not turn off (i.e., the robot cannot leave the TAM) until a time equal to
IT has passed. Analogously, the transition between the phases represented in Fig. 4
(c) and (d), requires a time I1.

4.2 Implementation of the foraging environment

The environment in which we carry out the experiments is represented in Figure 5.
It is a 1.8 m by 4.4m rectangular arena surrounded by walls. The source and the nest
are implemented using 4 TAMs organized in arrays. The cache consists of two arrays
of 4 TAMs each, one facing the source and one facing the nest. A row of 3 light
sources, located at the bottom of the arena, is used by the robots as a directional cue
for navigation. The robots estimate the direction of the lights using the 8 on-board
ambient light sensors. The directional information allows the robots to traverse the
corridor and to estimate their heading with respect to source, cache, and nest, which
is necessary to navigate towards the TAMs. The color of the ground, different for
every location in the arena, is recognized by the robots by means of the infrared
ground sensors. This information is used by the robots to determine their location in
the arena. While navigating the environment, the robots perform obstacle avoidance
using the 8 infrared proximity sensors as bumpers.

4.3 ARGoS

All the experiments presented in this paper have been carried out using ARGoS, a
physics-based simulation software developed within the Swarmanoid® project (Dorigo
et al., 2013). ARGoS allows the real-time simulation of thousands of robots and can
be customized by the user (Pinciroli et al., 2012). In the experiments presented in this
work, the e-puck and the TAM are simulated using the 2D-dynamics physics engine
available in ARGoS. The simulation proceeds at discrete steps. At each simulation
step, a uniformly distributed random value between -5% and 5% of the reading is
added to the ambient light, proximity, and ground sensor readings. The maximum
communication distance of the simulated range and bearing board is set to 0.75m;
each robot has a 30% probability per control step of not receiving any message (even
the ones that were sent within communication range).

8 http://www.swarmanoid.org
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5 Experiments and results

Fig. 5 The environment in which the
robots perform foraging. The source,
the nest, and the cache are implemented
using arrays of TAMs. Different areas
in the arena are marked with a specific
ground color, that can be recognized by
the robots. A row composed of 3 light
sources (each marked with “L”) is used
by the robots as a directional clue for
navigation.

We carry out all the simulation-based experiments with a swarm of 20 e-pucks. At
the beginning of each experimental run, 10 robots are placed in the area containing
the source and 10 in the area containing the nest. The initial position and orientation
of each robot are selected randomly. We chose this initial configuration because the
always-partition algorithm requires an equal number of robots to be positioned on
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Table 1 Selected parameters for the exploiting and exploring versions of the studied algorithms.

Algorithm Version Parameter Abandon
exploiting §=6.0 Equation 4
AdHoc exploring S=1.0 Equation 4
UCB exploiting v=100 Equation 4
exploring ¥ = 1000 Equation 2
) exploiting £=0.01 Equation 2
&-Greedy exploring e=0.11 Equation 2
Exp3 does not apply None Equation 2

both sides of the cache, in order to use it optimally. To allow for a fair comparison of
the algorithms, we use the same initialization also for the other algorithms. The cost
estimates are initialized stochastically: we uniformly sample 7p and 7p from the inter-
val [20,40] and 7y and 75 from the interval [40, 80]. Each experimental run amounts to
a time of 10 simulated hours. For each experimental condition we perform 100 runs,
varying the seed of the pseudo-random number generator.

For each algorithm presented in Sec. 3.3.3, we test two versions that differ in
the amount of exploration, controlled by setting the corresponding parameter (S for
the AdHoc, ¥ for UCB, and ¢ for £-Greedy), and in the method utilized to compute
the timeout threshold, used by the abandon mechanism. In our previous work, we
carried out experiments targeted at determining the values of the parameters of the
algorithms (refer to Pini et al., 2012a, for details). In this work, we use the values
previously determined, which are summarized in Table 1. The value of the parameter
a, which is used to compute estimates according to Eq. 1, is set to 0.5 for all the
algorithms. Note that Exp3 has no parameters and therefore there is only one version
of the algorithm. We tested Exp3 with both methods to compute the abandon thresh-
old presented in Sec. 3.3.2. The results obtained with the two are comparable and
therefore we chose to report in the paper only the ones obtained with Eq. 2. Com-
plete results are available in Pini et al. (2012d). As mentioned in Sec. 3.3.3, Exp3
requires the time measures of the robots to be normalized (Eq. 8). The values used
for normalization are 12s for the minimum and 300s for the maximum, determined
as follows. The minimum corresponds to the minimum time observed by a robot to
access the cache for II = 0s. The maximum corresponds to the maximum time ob-
served by a robot to travel along the corridor (one direction only). Both values have
been determined in experiments in which the robots employ the random algorithm.

The main goal of the experiments is to determine the effect of communication
on the studied system: we compare two versions of each algorithm, with and without
communication, labeled social and non-social respectively.

The rest of this section is organized as follows. In Sec. 5.1, we present experi-
ments in which we study the behavior of the non-social version of the algorithms. In
Sec. 5.2, we describe experiments in which we study the social versions. In Sec. 5.3,
we propose a modification to the AdHoc and UCB algorithms, that we made to tackle
an issue that emerged in the experiments performed with the social version of the al-
gorithms.
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Fig. 6 Performance of the studied algorithms, measured as objects delivered to the nest by the swarm. The
top plot reports the results obtained for I = 0s, the bottom plot for IT = 160s.

5.1 Non-social algorithms: experiments and results

In this section, we present the experiments carried out with the non-social version of
the studied algorithms. In a first group of experiments, we test the capability of the
swarm to decide whether to use the cache or the corridor for different values of the
cache interfacing time IT. We test two cases: in one, we set II to 0s, which means
that the cache is preferable over the corridor; in the other, we set I1 to 160s, which
means that the corridor is preferable.

Figure 6 reports the performance of the studied algorithms, for II = Os (top) and
IT = 160s (bottom). We measure the performance of an algorithm as the total num-
ber of objects delivered to the nest by the swarm, when that algorithm is employed.
The results confirm that, for II = Os, the cache is advantageous and the best perform-
ing algorithm is the always-partition algorithm. Dually, for II = 160s, the corridor
is advantageous and the never-partition algorithm is the best performing. With the
exception of Exp3, the studied algorithms perform well in both environments. The re-
sults obtained by the £-Greedy and UCB algorithms confirm that existing algorithms
that are used in the literature for tackling the multi-armed bandit problem can be suc-
cessfully applied to the task partitioning problem. The poor performance of Exp3 can
likely be ascribed to an excessive exploration due to its pessimistic assumptions: in
an adversarial setting, one can never be too careful in exploiting.

Given that the problem is stationary (i.e., I does not vary in time), the exploiting
version of each algorithm performs better than the corresponding exploring version.
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Fig.7 Performance, measured as objects delivered to the nest by the swarm, for a sub-set of the algorithms.
The figure reports the results obtained for the experimental setup in which IT is initialized to Os and set to
160s when the experimental run reaches a quarter of its duration.

In fact, once the robots have determined whether the cache is advantageous over the
corridor or not, they do not need to keep exploring and the exploiting version of the
algorithms is more efficient.

To test a more challenging situation for the robots, we study a non-stationary en-
vironment in which we vary IT during the course of the experimental run. Varying the
value of the cache interfacing time allows us to model situations in which the envi-
ronmental conditions change and render task partitioning more or less advantageous.

We test two cases; in one case the interfacing time is initialized to Il = Os and,
at time t = 2.5hours (i.e., one quarter of experiment), we set it to 160s. Therefore,
the cache is initially preferable (for + < 2.5hours). After IT changes, the cache
becomes costly and the robots should utilize the corridor. In the other, dual case, we
initialize IT to 160s and we set its value to Os at # = 2.5hours. When the robots
use the informed algorithm their behavior is hard-coded. While IT is low, the robots
always use the cache. Conversely, when IT is high, they always traverse the corridor.
As mentioned in Sec. 3.3.3, the informed algorithm is an upper bound for the other
algorithms.

Figure 7 reports the performance of the two versions of each algorithm and the
four reference algorithms, for the case in which IT is changed from Os to 160s. The
results reported in the figure show that the exploiting version of each algorithm per-
forms better than the corresponding exploring version and reaches performance levels
close to the ones of the informed algorithm. As in the previous case, Exp3 performs
badly in the tested experimental conditions.

Figure 8 reports the percentage of usage of the cache in time for the studied
algorithms. The plots in the same row refer to the same algorithm, from top to bottom:
AdHoc, UCB, and &-Greedy. ° The left-hand side column of plots reports the results
of the exploiting version of the algorithms, the right-hand side column of plots the
results obtained with the exploring version of the algorithms. Each box reports the
percentage of usage of the cache in the 30 minutes that precede the time reported
on the X axis. The plots show that, in all the cases, the robots initially identify the
cache as the best choice and utilize it most of the times. When II changes from 0s

9 An analogous plot for Exp3 is available in Pini et al. (2012d).
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Fig. 8 Percentage of usage of the cache in time, for the different versions of the algorithms. The plots
report the results of the experiment in which IT is initialized to 0s. Each box reports the overall data
collected over 100 experimental runs, for the period of 30 minutes that precedes the value reported on the
X axis. The vertical dashed line marks the instant in which the value of IT is changed.

to 160s, the robots switch to the corridor, which becomes advantageous over the
cache. Since in the first part of the experiment the robots mostly use the cache, they
directly perceive the variation of IT and react to the change. The difference between
the exploring and exploiting version of the algorithms is that the exploring version
samples the (perceived) less advantageous option with a higher frequency.

This results in a loss of performance, as observable in Fig. 7. Therefore, in case
IT varies from a low to a high value, the swarm does not benefit from exploration: the
variation directly impacts the cost of the choice selected the most by the robots (i.e.,
using the cache) and therefore the change can be perceived directly by the swarm. The
dual case in which IT varies from a high to a low value presents a different challenge
to the robots. Figure 9 reports, analogously to Fig. 8, the percentage of usage of the
cache in time, for the two versions of the studied algorithms. In this case, the initial
value of IT is high and the robots initially select the corridor more frequently than the
cache. This implies that, differently from the previous case, the variation occurring at
the cache cannot be directly detected by all the robots in the swarm. The plots on the
left-hand side of Fig. 9 show that the exploiting versions of the algorithms struggle
to detect the variation of Il. The exploring versions of the algorithms, on the other
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Fig. 9 Percentage of usage of the cache in time, for the different versions of the algorithms. The plots
report the results of the experiment in which IT is initialized to 160s. Each box reports the overall data
collected over 100 experimental runs, for the period of 30 minutes that precedes the value reported on the
X axis. The vertical dashed line marks the instant in which the value of IT is changed.

hand, allow the swarm to adapt their choice to the new value of II. This indicates
that, in this case, exploration is beneficial.

i Reference AdHoc e-Greedy UCB Exp3
B § — —a— ——
g @ + - - -
2 ™ i ‘ =
3 5 = | T 8
o 8 ° N ° ;
% g | 8 3 : 3
2 1 : Q H —
‘5 —_— i e =
o g9 | N °
- 9 ———— b, 2 H
8 |
i<l i
o
] 5 N >y O & @& & & O >
& & LSS S S S S h
& 9 & &S T F &S

Fig. 10 Performance of the algorithms for the case in which IT is initialized to 160s and set to Os when
the experimental run reaches a quarter of its duration.

Figure 10 confirms that indeed exploration entails benefits. In this case, the per-
formance of the exploring version of the algorithms is higher than the performance
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of the corresponding exploiting versions. The results highlight that, as in the multi-
armed bandit problem, also in the task partitioning problem a tradeoff exists between
exploiting the cumulated knowledge and exploring the environment to detect changes
and react to them. Compared to the previous case (Fig. 7) Exp3 performs relatively
better, but its performance is still far from the one of the best algorithms.

5.2 Social algorithms: experiments and results

In this section, we present the experiments that we carried out to test the influence
of communication on the behavior of the system. We focus on the case in which the
cache interfacing time is initialized to 160s and set to Os at# = 2.5hours. We study
the behavior of the social and non-social versions of the AdHoc, e-Greedy, and UCB
algorithms.

3 Reference e-Greedy AdHoc ucB Exp3

R
=}
{_,‘j N - = - N %
o 3 T O=STm s = T
3 2 : =3 l PR o ‘ :
o ° ° '
g i l 2 : R R 8
o 8 ! ! -
T 8 e : i ! i =
=] : ! N o
< T - oo ° T ¢ =
e s

S ] I Non-social

O Social
o
- 1y
$Q @Q & % 6\\@ SQQQ §Q é‘& §<» o'*(‘&
F& g & N S & S < N
? < € & & & & & &

Fig. 11 Performance of the studied algorithms for the case in which IT is initialized to 160s and set
to Os when the experimental run reaches a quarter of its duration. For each algorithm (excluding the
reference algorithms) we report the results obtained with the non-social (gray boxes) and social version
(white boxes).

Figure 11 reports the performance of the algorithms. Each plot reports the per-
formance of the four reference algorithms and the four different versions of each al-
gorithm (exploring/exploiting and social/non-social). In the plot, the gray and white
boxes report the results of the non-social and social versions of the algorithms, respec-
tively. The data reported in the figure shows that communication affects the swarm
differently, depending on the algorithm being utilized by the robots. Communication
affects positively the €-Greedy algorithm: the performance increases independently
of the setting of the parameter €. Communication also improves the performance
of Exp3. Conversely, communication has a strong negative effect on the UCB algo-
rithm, independently of the value of . The effect of communication on the AdHoc
algorithm depends on its version. The performance of the exploring version increases
slightly, while there is an increase in the variability of the results obtained with the
exploiting version.

To understand the effect of communication on the exploiting version of the Ad-
Hoc algorithm, we study the behavior of the robots across single experimental runs.
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Fig. 12 Cache usage in time, as observed in 4 selected experimental runs. Top: non-social version of the
AdHoc algorithm (exploiting). Bottom: social version of the AdHoc algorithm (exploiting).

In the plots of Fig. 12, we report the percentage of use of the cache in time, for four
experimental runs. The plots in the first row report the results obtained with the non-
social version of the AdHoc algorithm, the plots in the second row for the case in
which the social version is employed.

The runs reported here are examples that allow us to illustrate general trends
that we observe in the experiments. Analogous plots for each experimental run are
available in (Pini et al., 2012d). In general, communication renders the choice made
by the robots of the swarm more uniform. This affects the system in two ways. On
the one hand, as shown in Fig. 12(c) and Fig. 12(d), the transitions are sharper. If a
few robots detect that the cache became advantageous, information spreads within the
swarm and all the robots rapidly switch to using the cache. The sooner this happens,
the more the robots can exploit the benefits of using the cache. In case the robots do
not communicate (Fig. 12(a) and Fig. 12(b)), the transition is slower, because every
robot has to detect by itself that the cache became advantageous.

Besides rendering the transitions quicker, the fact that the choice made by the
robots is strongly biased towards one of the two options also entails the risk that the
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change occurring at the cache goes undetected, as in the case reported in Fig. 12(d),
where the robots detect the variation of II only at the end of the experiment.

In the case of UCB, the situation is pushed to the extreme: in all the runs, the
robots converge to the usage of the corridor and the cache is never sampled again.
Therefore, the robots are not able to detect that the cache became advantageous and
the resulting performance of the swarm is low (see Fig. 11). This is likely due to the
fact that, as mentioned in Sec. 3.3.3, the algorithm on which our UCB heuristic is
based was originally designed for stationary problems (Auer et al., 2002) and it is
therefore characterized by a rapid convergence, which is here further accelerated by
communication.

Differently from the other algorithms, €-Greedy algorithm does not suffer the
mentioned problem. This is because the probability of selecting the action perceived
as the worst does not change with the estimated action cost, being always €. There-
fore, the e-Greedy draws only benefits from the increased flow of information.

5.3 Algorithms with €-exploration: experiments and results

To face the problems we encountered with the AdHoc and UCB algorithms, we mod-
ify the two algorithms to include a term of e-exploration, as in £-Greedy: with prob-
ability 1 — g, the robots make a choice according to the corresponding algorithm and
with probability € the robots choose randomly. We select the value € = 0.01, which
is the same utilized in the exploiting version of the €-Greedy algorithm. We refer to
the modified versions of the AdHoc and UCB algorithms as the e-AdHoc and e-UCB
algorithms, respectively.

Figure 13 highlights the effect of €-exploration on the performance of the differ-
ent versions of the UCB (top) and AdHoc (bottom) algorithms. The top plot shows
that, in general, the UCB benefits from the e-exploration, the only exception being
the exploiting version that uses communication.

The social version of the AdHoc algorithm also benefits from the added e-exploration.
The performance of the e-AdHoc (in its exploiting version) is higher than the one of
the AdHoc and the variability in the results is reduced. The e-exploration, together
with communication, allows the AdHoc algorithm to have a portion of exploitation,
which allows the swarm to use efficiently the cache (or the corridor) and, at the same
time, to remain flexible with respect to changes.

6 Conclusions

Task partitioning, the process by which tasks are decomposed into sub-tasks, can
be beneficial for the organization of work in groups of individuals. Examples in na-
ture demonstrate that social insects benefit from task partitioning in terms of an in-
creased exploitation of specialization, enhanced efficiency, and physical separation of
the workers. Swarms of robots share many similarities with colonies of social insects
and can draw the very same benefits from partitioning their tasks. Task partitioning
also entails overhead costs, that are due to the increased coordination required within
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Fig. 13 Performance of the UCB (top) and AdHoc (bottom) algorithms, with and without e-exploration.
The gray boxes report the data for the case in which communication is not used, the white boxes for the
case in which communication is used.

the members of the swarm. Depending on the specific situation and on the costs in-
volved, task partitioning may or may not be advantageous. It is therefore important
that a swarm properly selects whether to employ task partitioning or not.

In previous research works, we proposed distributed methods to tackle the task
partitioning problem: selecting whether to perform a given task as a whole, or per-
form it as a sequence of sub-tasks. The research work presented in this article builds
upon our previous research. As in the previous works, the robots take decisions indi-
vidually, on the basis of the estimated cost of task partitioning. We extend the system
by adding a social component within the swarm: the robots exchange information
about the environment by communicating explicitly. Each robot communicates the
measured cost of the last action it performed and uses the received information to
integrate the cost estimates used to take decisions.

We evaluate the system in simulation-based experiments, using a foraging sce-
nario as a testbed. We study three different algorithms, that the robots can utilize to
solve the task partitioning problem: an AdHoc algorithm, that we explicitly designed
to tackle the task partitioning problem and three algorithms taken from the multi-
armed bandit literature, £-Greedy, UCB, and Exp3. We compare the algorithms in
their social and non-social versions, the former using communication.

In the experiments, we compare situations that differ in terms of the cost of us-
ing task partitioning. The results of the experiments confirm that existing algorithms
for the multi-armed bandit problem can be successfully employed in the context of
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swarm robotics to perform task partitioning. We point out that, as in the multi-armed
bandit problem, also in the task partitioning problem a tradeoff exists between explo-
ration and exploitation. The results obtained with the social version of the algorithms
indicate that communication leads to conformism within the swarm and strongly bi-
ases the choice made by the robots. On the one hand, this renders the swarm quicker
in taking decisions, but on the other hand it may prevent the swarm from being able
to detect variations occurring in the environment. We propose a modification to the
ad-hoc algorithm, in terms of built-in exploration, which improves the capability of
the algorithm to react to changes occurring in the environment. We point out that the
same modification does not improve the performance of UCB for the exploiting ver-
sion of the algorithm that uses communication. This indicates that, contrary to what
one might expect, communication does not always lead to benefits for the swarm.

Future research will aim at investigating more deeply the effects of communica-
tion in the studied system as well as studying different communication strategies and
ways of using the information received. For example, the robots could directly ex-
change information about their internal states, rather then the last observation made
in the environment. An other option is that the robots associate a confidence level to
the information they are communicating. On the reception side, a robot would then
use this confidence measure to weight the information it received. Finally, more com-
plex communication strategies could be used to achieve explicit coordination among
the robots of the swarm. A number of works in the literature of multi-agent systems
has shown that coordination improves performance. Decentralized coordination is a
well studied research domain and many solutions proposed in the literature can be
applied. However, coordination approaches are in general much more complex, in
terms of both communication and computation. The communication strategy used in
our study, on the other hand, is minimalistic and it can be used by agents with limited
communication capabilities.
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