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IRIDIA, Université Libre de Bruxelles

50, Av. F. Roosevelt, CP 194/6 Brussels, 1050,Belgium
carlo.pinciroli@ulb.ac.be

MARCO DORIGO
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In this work, we study task partitioning in swarms of robots. Task partitioning is

the process by which a task is decomposed into sub-tasks. We consider here the case in

which a given task requires that a total amount of work is performed, and each sub-task
incrementally contributes a fraction of that amount of work.

We propose an approach that enables a swarm of robots to autonomously partition a

task. Each robot performs a sub-task; the entity of the amount of work that the sub-task
contributes to the execution of the overall task is decided autonomously by the robot.

The entity of the contribution has an impact on the cost of performing the overall task:

∗Université Libre de Bruxelles, 50, Av. F. Roosevelt, CP 194/6 Brussels, 1050,Belgium
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in some cases, partitioning the task in many small sub-tasks may be more advantageous

than partitioning it in few larger sub-tasks, or vice versa.

Each robot decides the entity of the amount of work that it contributes with its
sub-task on the basis of a model that it builds. This model provides an estimate of the

cost of performing the overall task as a function of the amount of work contributed by

a sub-task, which is an indicator of the number of sub-tasks into which the original task
is partitioned.

We test our approach on a foraging scenario: the robots collect objects from a source

location, and transport them to a target location. The robots use odometry to be able
to move back to the source location. Odometry is appealing due to its simplicity and

the fact that it does not require external infrastructures. However, it suffers from the

accumulation of errors in time.
Task partitioning can be used to reduce the effects of the odometry error. A robot

transporting an object travels a limited distance before depositing the object on the

ground. There, another robot picks it up and continues transportation. In such con-
text, autonomous task partitioning consists in deciding the distance traveled by a robot

when carrying an object, that is, the amount of work that the robot contributes to the
transportation task.

We validate our approach using simulation-based experiments. We study how the

task is partitioned by the swarm under a number of experimental conditions characterized
by different levels of odometry accuracy, size of the environment and the swarm, and

distance between source and nest. Our approach leads to partitioning solutions that are

appropriate for each experimental condition studied and that result in good performance.

Keywords: Task partitioning; swarm robotics; swarm intelligence; self-organizing sys-

tems; foraging.

Research paper

1. Introduction

Task partitioning is the process by which tasks are decomposed into sub-tasks. The

term was first introduced by [Jeanne, 1986] to indicate situations in which insects

divide tasks into sequences of sub-tasks. Task partitioning is applied to organize the

execution of tasks in many contexts. In artificial systems, task partitioning is ap-

plied, among others, in the fields of computer science and robotics (see Section 2 for

details). In nature, many examples of task partitioning have been observed in the

organization of work of social insects (see [Ratnieks and Anderson, 1999]). Social

insects utilize task partitioning in activities that involve the transportation of mate-

rial; examples have been reported in foraging [Seeley, 1995], hunting [Schatz et al.,

1996], nest excavation [Anderson and Ratnieks, 2000], and garbage disposal [Hart

et al., 2001].

The benefits of employing task partitioning are manifold. Task partitioning al-

lows physical separation of the workers, therefore diminishing the negative effects

of physical interference [Hart and Ratnieks, 2000] and competition for shared re-

sources [Pini et al., 2009]. Partitioning a task into sub-tasks can also enhance the

exploitation of specialization: sub-tasks can be assigned to the workers that are

better suited to perform them [Ratnieks and Anderson, 1999]. Finally, task parti-

tioning can also increase the efficiency in performing a task [Fowler and Robinson,

1979].
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Our research focuses on the study of task partitioning in the context of swarm

robotics, a branch of robotics that studies the implementation and control of large

groups of autonomous robots. Swarm robotics focuses on properties such as decen-

tralization, distributed control, limited perception, and local communication. The

goal is to implement systems that are robust, tolerant to faults, scalable, and flexi-

ble. Swarms of robots are frequently built taking inspiration from insect colonies, in

which such characteristics can often be observed. Since task partitioning is advan-

tageous for social insects, it is interesting to study its application to robot swarms.

Swarms in which the robots are capable of autonomously defining sub-tasks of a

given task would be extremely flexible. In fact, the way tasks are partitioned and

therefore performed could be adapted to specific environments and to the goals to

be reached.

In this work, we study autonomous task partitioning in foraging. Foraging is

an important benchmark in swarm robotics, since it is an abstraction of practical

problems such as search and rescue, mine clearance, and cleaning [Winfield, 2009].

We propose an approach that can be utilized by a swarm of robots to autonomously

partition the task of transporting an object. Our approach is based on the idea of

associating costs to the execution of tasks that must be performed. In general, the

nature of the costs depends on the specific tasks and goals to be attained. In the

foraging scenario we tackle in this work, the goal is to maximize the number of

foraged objects and costs are expressed as time.

Task partitioning affects the costs associated to the execution of a task. On

the one hand, as mentioned, task partitioning can reduce certain costs (e.g., phys-

ical interference in foraging). On the other hand, task partitioning also introduces

overhead costs, mainly due to coordination efforts between individuals working on

different sub-tasks. Therefore, the best way of partitioning a task into sub-tasks

depends on the task at hand and on the goals to be attained. Moreover, since the

properties of the environment and the goals to be attained can vary, the best way

of partitioning a task can also change in time.

We propose an approach whereby the robots decide how to partition the object

transportation task on the basis of cost estimates. The use of cost estimates char-

acterizes our approaches and differentiates it from other task partitioning methods

proposed in the context of foraging. In all the existing work on the topic, the mech-

anisms that implement task partitioning are designed for the tasks at hand and are

highly dependent on the specific context. Our approach, on the other hand, decou-

ples the task partitioning process from the tasks being performed by the robots,

through the concept of cost. Decoupling the task partitioning process from the task

to be executed is a necessary step towards a general method for autonomous task

partitioning.

In the foraging scenario studied in this work, we consider the specific case in

which the objects to be collected are clustered in a unique location in the environ-

ment, referred to as source. The robots must initially explore the environment and
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locate the source. Upon finding the source, a robot utilizes odometry to maintain an

estimate of its position relatively to the source. This estimate is used by the robot

to return to the source. Odometry is suited to robotics because of its simplicity and

low cost, but it suffers from estimation errors that grow with the distance traveled.

In [Pini et al., 2012c], we use the same scenario to show that task partitioning

can be utilized to enhance the capability of the robots to return to the source. We

show that task partitioning can be used to limit the distance traveled by each robot,

therefore reducing the negative impact of odometry errors. An object is delivered

to the nest through a sequence of steps, performed by different robots: each robot

transports the object for a limited distance and the object is directly handed over

from robot to robot till it eventually reaches the nest.

In this work, we test an analogous solution based on task partitioning, with the

difference that the objects are not handed over directly, but deposited on the ground.

We use simulation-based experiments to show that the optimal way of partitioning

object transportation depends on the accuracy of the odometry and on the char-

acteristics of the environment. We present a swarm that autonomously partitions

the foraging task described. The swarm performs well across all the experimental

conditions we tested.

The contents of the paper are organized as follows. In Section 2, we present

related work on the topic of task partitioning, focusing on artificial systems, swarm

of robots in particular. In Section 3, we describe in detail the foraging scenario,

the behavior of the robots, and the application of our approach for autonomous

task partitioning to the studied scenario. In Section 4, we present the simulation

tools we utilized to carry out the experiments. In the same section we describe the

simulated robots and the environment in which foraging is performed. In Section 5,

we describe the experiments and comment on the results. In Section 6, we summarize

what presented in the paper and discuss directions for future research.

2. Related Work

Most of the research on the topic of task partitioning has been carried out in the

field of enthomology. A review of the state of the art of the field is beyond the scope

of this article; comprehensive reviews can be found in the works of [Ratnieks and

Anderson, 1999] and [Hart et al., 2002]. In this section, we review works devoted to

task partitioning in artificial systems and, in particular, in swarm robotics.

Several examples of task partitioning applied to artificial domains can be found

in computer science. A first example are recursive algorithms, often based on the

divide and conquer approach: the problem to be solved is decomposed into smaller

sub-problems that are solved recursively and their solutions are combined [Cormen

et al., 2001]. In modern operating systems, each process is executed on a CPU only

for a limited amount of time [Bovet and Cesati, 2005]. The result is that the execu-

tion of each process consists of a number of discrete steps, progressively performed

at different times. To the end user, the technique gives the illusion of parallelism.
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In architectures with multiple processors, task partitioning is the problem of divid-

ing the execution of a program into tasks that can be performed in parallel by the

processors [Ennals et al., 2005].

In swarm robotics, task partitioning has been mainly utilized for reducing physi-

cal interference between robots. Physical interference is a common problem in multi-

robot systems: the robots share the same physical space and interfere with the

movements of each other. As the density of robots in the environment increases, the

robots spend resources dealing with physical interference rather than performing

useful tasks and the performance of the swarm is affected negatively [Lerman and

Galstyan, 2002].

The use of task partitioning to deal with interference was originally proposed

by [Drogoul and Ferber, 1992]. In their work, the authors propose a solution based

on task partitioning to deal with “traffic jams” forming in certain locations of the

environment. In their experiments, the robots hand over objects one to another. The

result is that chains of robots form in the environment and objects are transferred

along these chains till they reach the nest. Notice, however, that the role of task

partitioning in the work of [Drogoul and Ferber, 1992] is only minor and the focus

is on how individual behavior affects group behavior.

In the work of [Fontan and Matarić, 1996], the environment is divided into

territories, each exclusively assigned to one robot. The task of the robots is to

forage for pucks and transport them to a target location. Each robot transports

the pucks found in its territory towards the target location. Each robot delivers

objects to the neighboring territory, so that the robot assigned to that territory

can continue the transportation. The authors show that their solution increases the

performance of the system, due to a reduction of physical interference. The same

robotic system and experimental setup are utilized in the work of [Goldberg and

Matarić, 2002], that aim at studying the design of robust and easily modifiable

behavior-based controllers.

[Pini et al., 2009] present a work similar to the one of [Fontan and Matarić,

1996]. The work focuses on the usage of task partitioning to reduce competition

for accessing a shared resource. In this case, the territories of the robots are not

exclusive and are dynamically assigned in a self-organized manner.

[Shell and Matarić, 2006] also restrict the area in which each robot operates

to reduce physical interference. Differently from the work of [Fontan and Matarić,

1996], the working area of a robot is not associated to a given location in the

environment, but it is defined relatively to the current position of the robot. Each

robot performs foraging in a circular area of a certain radius. The robots estimate

the position of the working areas using odometry. The robots collect objects found

in their area and transport them towards a target location. If a robot leaves its area

while transporting an object, it drops the object and returns towards the center of

its area. Each object is progressively delivered to the nest crossing several areas.

The authors show the relation between the number of robots in the environment
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and the radius of the working area of each robot. They demonstrate that reducing

the radius impacts positively the performance for an increasing swarm size.

[Lein and Vaughan, 2008] extend the work of [Shell and Matarić, 2006] with an

algorithm that dynamically regulates the radius of the working area on the basis

of the interference perceived by a robot. In a follow-up work, the authors point out

that the performance of the system depends on the distribution of objects in the

environment. Therefore, the authors further extend their algorithm to allow the

relocation of the working areas towards zones of the environment where the density

of objects is high [Lein and Vaughan, 2009].

In the work of [Østergaard et al., 2001], a group of robots forages in a maze-like

environment. The authors compare an algorithm based on task partitioning to a

non-partitioning algorithm, in environments that differ in the width of the corridors.

The authors conclude that the algorithm based on task partitioning performs better

in spatially constrained environments.

[Pini et al., 2011] propose a distributed algorithm for robot swarms to decide

whether to employ task partitioning to perform a given task. Each robot takes

its decision independently from the others, on the basis of cost estimates. The

authors study the algorithm in situations in which task partitioning is advantageous

and others in which it is not. They show that the algorithm performs well in the

tested conditions and that it renders the system flexible with respect to variations

occurring in the environment. In a follow-up work, [Pini et al., 2012a] show that the

problem of deciding whether to employ task partitioning can be approached with

algorithms proposed in the literature to tackle multi-armed bandit problems.

[Pini et al., 2012c] study the same setup proposed in this article. The robots

forage for objects clustered in a certain location of the environment. The robots use

odometry to estimate their position relatively to this location. The authors propose a

solution based on task partitioning to tackle the problem: each object is transported

to the nest through a sequence of steps, performed by different robots. Each robot

contributes to transportation by carrying objects for a limited distance. The objects

are handed over directly from robot to robot. The authors show that the approach

based on task partitioning improves the foraging performance. Additionally, the

authors use the system as a test-bed for studying the costs of task partitioning in

case of direct object transfer.

[Parker and Zhang, 2010] study the case in which a group of robots performs

sequences of mutually exclusive tasks: a task can begin only when the preceding

one in the sequence is completed and no robot is working on it anymore. Analogous

situations may occur when a task is partitioned into a sequence of sub-tasks. The

focus of the study is on the decision making process that allows the robots to

collectively estimate whether a sub-task is complete and the group can start working

on the following.

Notice that most of the work presented in this section has been carried out using

simulation tools only. The only exceptions are the works of [Fontan and Matarić,
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1996], [Goldberg and Matarić, 2002], and [Pini et al., 2012c].

3. Description of the Approach

In this section, we present the approach we propose for obtaining autonomous task

partitioning in a swarm of robots performing foraging. The foraging scenario is

described in Section 3.1; our approach and its application to such a scenario are

discussed in Section 3.2. In Section 3.3, we present task partitioning algorithms

that are tested in the experiments, including an algorithm based on the proposed

approach.

3.1. The Foraging Scenario

In the foraging scenario studied in this work, the goal of the robots is to collect

objects from an environment and transport them to a unique location referred

to as nest. We focus on the specific case in which the objects are located in a

unique position in the environment, the source. In this context, a task consists in

transporting an object from the source to the nest. An instance of such a task is

completed when an object is successfully transported to the nest. Foraging consists

in the parallel repetition of the transportation task performed by the robots of the

swarm.

Figure 1 illustrates a finite state machine that describes how foraging is per-

formed by a robot. Initially, the robot does not have information about the location

of the source and therefore it must explore the environment to find it. Upon finding

the source and collecting an object, the robot navigates towards the nest. The robot

can reach the nest by heading towards a landmark (three lights) that marks the

location of the nest. While navigating towards the nest, the robot keeps an esti-

mate of its position, relatively to the location in which the source was found. Upon

reaching the nest, the robot releases the object and uses the position estimate to

return to the source.

Estimating the position of a robot relatively to a target (the source in our setup)

is a problem known as localization. Several techniques have been proposed in the

robotics literature to tackle this problem (see [Feng et al., 1994] for a review). Most

of these techniques are not suited to swarm robotics, because either they rely upon

external devices and infrastructures or they require complex sensing and computa-

tional capabilities. In our experiments, the robots use odometry to estimate their

position relatively to the source. Odometry consists in the integration of motion

sensor information to estimate the position of the robot. Contrary to other tech-

niques, odometry is suited for swarm robotics as it can be easily implemented using

onboard sensors (i.e., motor encoders) and it requires low computational capabil-

ities. However, odometry suffers from the accumulation of errors in time that are

caused by several phenomena (e.g., mechanical imperfections, finite sensors resolu-

tion, wheel slippage). Due to these errors, the estimate of the relative position of the

robot with respect to the source can deviate from the real one. Upon reaching the
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Fig. 1. Finite state machine describing the high level behavior of each robot.

position at which the source is estimated to be, the robot performs a neighborhood

exploration, which consists in searching for the source within a limited area centered

around the estimate. Neighborhood exploration allows to compensate for relatively

small estimation errors. In case the estimation error is big, the neighborhood ex-

ploration is likely to fail. If this happens, the robot explores again the environment

to locate the objects source. We say that the robot got lost when the neighborhood

exploration fails and the robot must explore the environment again. Exploring the

environment is a time consuming operation due to its stochastic nature, therefore

it is desirable to minimize the frequency at which a robot gets lost.

In a previous work, we showed that task partitioning can be used to reduce the

negative effect of odometry errors and to improve the localization capabilities of the

robots [Pini et al., 2012c]. Instead of traveling all the way from source to nest, each

robot only travels a limited distance L from the source (i.e., it performs only a part

of the transportation task). Upon traveling such distance, referred to as partition

length, the robot deposits the object on the ground and returns to the source using

its position estimate. Since the odometry error grows with the distance traveled,

the expected estimation error is smaller compared to the case in which the robot

travels all the way from the source to the nest. The result is that the probability

that a robot gets lost diminishes.

As objects can be deposited everywhere in the environment, the robots can find

them not only at the source, but also in other locations along the way from source

to nest. The result is that the object transportation task is carried out as a sequence
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of sub-tasks performed by different robots, as represented in Figure 2. The number

of sub-tasks depends on the distance between source and nest and on the partition

length L. We refer to the way a transportation task instance is performed in terms

of number and length of the sub-tasks as the partitioning strategy employed by the

robots to tackle that task instance. For example in Figure 2, the robots R1, R2, and

R3 use a partitioning strategy such that the task is partitioned into three sub-tasks,

each contributing with the same amount of work to transportation. The robots R4

and R5 employ a partitioning strategy such that the task is partitioned into two

sub-tasks, each contributing a different amount of work to the transportation task.

N
E
S
T

SourceR1 R2

R5

R3

R4

LR1 LR2 LR3

LR4
' LR5

''

Fig. 2. Representation of the task and contribution of the robots to object transportation. Each
robot transports objects towards the nest for a limited distance L, which can be different from

robot to robot. The way the object transportation task is partitioned into sub-tasks depends on
the values L selected by the robots.

The value of the partition length L affects the system in different ways. On the

one hand, a large value is desirable, since the robots travel further while carrying

objects. This reduces the number of times each object is deposited on the ground

before reaching the nest. Depositing an object on the ground introduces overheads

because the same object must be found and picked up by a different robot. On the

other hand, traveling further increases the magnitude of the odometry error and

the likelihood that the robot gets lost.

3.2. The Approach Applied to Foraging

The general idea upon which our approach is based is represented in Figure 3 (left).

A cost function maps the amount of work contributed by a robot performing a

sub-task to the cost of executing of the overall task. Each robot utilizes the cost

function to decide the amount of work it contributes to the overall task, with the

goal of minimizing the resulting cost for the execution of the overall task. The cost

function cannot be defined a priori since it depends on properties of the environment

and the tasks that may be unknown. Additionally, the cost function may change in
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time, since the cost associated to the execution of tasks is likely to vary as a result

of the actions performed by the robots. As a consequence, the cost function must be

determined with an online process performed by the robots. Each robot is merely

able to build a model of the real cost function, based on sensory input. To apply

our approach to a given scenario, the robots must be equipped with the means of

modeling the cost function.

O
v
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ll 
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sk
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o
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Amount of
work

O
v
e
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ll 
ta

sk
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o
st

Amount of
work

C1
^

C2
^

C3
^

C4
^

C5
^

L 1 L 2 L 3 L 4 L 5

Δ

Fig. 3. Cost function (left) and its modeling as done by each robot (right). The cost function
maps the amount of work contributed by robot performing a sub-task to the resulting cost for

performing the overall task. This information is used by each robot to decide how to partition the

overall task into sub-tasks.

The way costs and amount of work are measured depends on the specific tasks

to be performed and the goals to be attained. In the context of the foraging scenario

studied in this work, the amount of work contributed by a robot is proportional to

the distance traveled by that robot with an object. Therefore we directly express the

amount of work as the distance L traveled by a robot when carrying an object. Given

this relation between amount of work and distance traveled, we refer to the length

of a sub-task performed by a robot to indicate the amount of work contributed by

the robot performing that sub-task. Since the goal of the swarm is to maximize the

total number of objects transported to the nest, which corresponds to the number

of task instances performed, we express costs as time. Therefore, the cost function

maps the distance traveled by a robot to the time required to perform the object

transportation task.

The robots build a discrete model of the cost function, as represented in Figure 3

(right). The model consists of a finite set of cost estimates Ĉi, each associated to a

given value Li of the partition length. In this context, selecting the length of a sub-

task consists in selecting the index i (i.e., a value of Li) on the basis of the estimates

Ĉi. In the rest of this section we describe how the model of the cost function is built

by the robots and used to implement autonomous task partitioning.

Figure 4 illustrates the high level behavior of each robot and can be used as

a reference to better understand the concepts explained throughout the rest of

this section. In the figure, the white rectangles indicate actions performed by the
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Fig. 4. High level representation of the behavior of the robots. The state machine also indicates

when information is updated by the robot (gray rectangles).

robot. The gray rectangles indicate moments in which the robot updates internal

information that is related to the approach described in this section.

The rest of this section is organized as follows. In Section 3.2.1, we illustrate how

discretization is performed and its implications on the task partitioning process. In

Section 3.2.2, we explain how the robots estimate costs.

3.2.1. Discretization

Each robot individually builds a set L of potential partition lengths. The set L
corresponds to the domain of the cost function modeled by a robot (see Fig. 3,

right). Each robot selects a particular value from this set and utilizes it as its par-

tition length. In this section, we explain how robots build the set L. In Section 3.3,

we illustrate possible ways by which the selection of the partition length can be

implemented.

Number of elements in L: The set L is composed ofN values, each corresponding

to a different partition length. Each robot builds the set L by discretizing the

overall task length D, which corresponds to the distance between source and nest

in our scenario, with a discretization step ∆ (see Figure 3, right). The value of N

is computed by a robot as:

N =

⌈
D̂

∆

⌉
(1)

In our setup, we fixed the discretization step ∆ to 0.5 m which corresponds (roughly)

to the visual perception range of the robots (see Section 4). The discretization is

performed by a robot on the basis of D̂, which is its estimate of the real distance D

between source and nest (i.e., an estimate of the overall task length). Notice that

the value D̂ of a robot can underestimate D: the robot can find objects deposited by
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other robots along the way between source and nest (i.e., closer to the nest than the

source is). For this reason, the robot must keep D̂ and the set L up to date. Details

about the way the robots update D̂ and L are given at the end of this section.
Elements of L: The values Li that compose the set L are calculated as follows:

Li = ∆ · i with i ∈ {1, 2, . . . , N − 1} (2)

In addition to the N − 1 values Li, the set L also contains the special value Lnp,

which corresponds to performing the transportation task without employing task

partitioning. A robot selecting Lnp transports the carried object all the way to the

nest. Figure 5 represents the set L and illustrates the relationship between N , the

D^

Δ Δ Δ Δ

L1

L2

L3

Lnp

Fig. 5. Example representing the set L from which a robot selects the value of the partition length.

The robot builds the set by discretizing the estimated task length D̂ with a step ∆, obtaining
N − 1 values Li. The figure reports the case in which N = 4. The special value Lnp is also an

element of L and corresponds to performing the task without employing task partitioning.

estimated length of the task D̂, the discretization step ∆, and the values Li.

Every time a robot grips an object, it selects a partition length Li, that is used

for the following trip towards the nest (see Fig. 4, left-hand side). Consequently, dif-

ferent task instances (i.e., objects to be transported) can be partitioned in different

ways, depending on the partition length Li selected by the robots involved in the

transportation (see, for example, Fig. 2). Notice that each robot is not aware of the

choice of Li made by the other robots. The global process by which the overall task

is partitioned into sub-tasks results from independent choices in a self-organized

manner.
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Estimation of D: Each time a robot reaches the nest (label nest reached in Fig. 4),

it checks if its current value D̂ underestimates the distance to the nest.a In this case,

the robot sets D̂ to the estimated distance to the source. In case the value of D̂ is

updated, the robot also updates the set L, using Equations 1 and 2. Initially, robots

do not have information about the source to nest distance. Initially the value of D̂

is set to zero and the set L only contains Lnp. Consequently, the robots travel all

the way to the nest in their first trip, thus calculating a first estimate of the value

of D.

3.2.2. Estimation of the costs

The robots construct a model of the cost function. Such model consists of a set of

values Ĉi, each associated with a value in L. Each robot approximates the overall

task cost on the basis of the cost experienced when performing its own sub-tasks.

The moment an object is gripped marks the beginning of a new sub-task for

that robot. Upon gripping an object, a robot updates its cost estimates Ĉi and

selects a new partition length value Li to employ next (see Figure 4, left). The cost

estimates Ĉi are updated as follows:

Ĉi = (1− α) Ĉi + α C
′

(3)

where α is a memory factor and C
′

is the cost associated to the last trip towards

the nest (i.e., the last sub-task performed) using a given partition length Li. C
′

is

computed as:

C
′

=
D̂

Li
ϑt + ϑe (4)

where ϑt is the measured cost of the last sub-task performed by the robot (see

Figure 4, top). ϑt is measured from the moment an object was gripped (excluding

the time needed to grip that object) to the moment the following object was gripped

(including the object gripping time). ϑt does not include the time spent exploring

the environment in case the robot got lost (if any), which is measured by ϑe (also

indicated in Figure 4, top).

ϑt takes into account not only the cost of the actions performed to complete a

sub-task (i.e., transporting and dropping an object), but also the cost of the actions

that must be performed before the following sub-task can be started (i.e., returning

to the source, performing neighborhood exploration, and gripping the following

object).

The cost estimate Ĉi updated by a robot depends on whether or not the robot

reached the nest during the last execution of the task. If the robot reached the nest

aNotice that the robots can only determine whether D̂ underestimates D and not whether it
overestimates D.
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(transition labeled nest reached in Fig. 4), it recomputes the index i on the basis

of the distance that was actually traveled. In fact, if the value Li selected by a

robot upon gripping an object exceeds the distance between the robot and the nest,

the robot actually travels a smaller distance than Li. In this case, the cost to be

updated is the one associated to a shorter sub-task (i.e., a smaller Li). If, on the

other hand, the robot does not reach the nest, the cost Ĉi that will subsequently

be updated is the one associated to the selected value Li.

The cost estimates are initialized randomly: when a robot reaches the nest and,

according to Equation 2, adds new values Li to the list of values that can be selected,

it initializes the associated costs Ĉi with a random value.

3.3. Task partitioning algorithms

In the experiments presented in this paper, we compare different task partitioning

algorithms that can be utilized to select the value of the partition length from the

set L. We compare an algorithm based on the approach proposed in the previous

sections to a set of reference algorithms. All the reference algorithms utilize the

set L to select the value of the partition length Li. However, in none of them the

selection is done on the basis of the cost estimates Ĉi that model the cost function.

In the rest of this section we describe in detail each algorithm.

3.3.1. The cost-based partitioning algorithm

The application of the approach presented in the Section 3.2 requires a mechanism

to select the value of the partition length Li among the possible values in L, on

the basis of the cost estimates Ĉi. In this work, we use the ε-greedy algorithm

for selecting the value of the partition length. ε-greedy selects with a probability

1−ε the value Li with the minimal associated cost and with probability ε a random

value. We call cost-based partitioning algorithm the task partitioning algorithm that

utilizes ε-greedy and the cost estimates to select the value of the partition length.

Notice that the proposed approach does not require any specific algorithm to

select the value Li. Other algorithms, such as reinforcement learning techniques

(see [Sutton and Barto, 1998]), could be used in place of ε-greedy. We decided to

use ε-greedy because of its simplicity and because its only parameter ε directly

expresses the degree of exploration of the algorithm.

3.3.2. The fixed algorithms

A first family of reference algorithms are the fixed algorithms: the partition length

Li is fixed a priori to a given value. This value is the same for all the robots and

remains constant over time. We refer to a fixed algorithm with the label fixed X,

where X identifies the partition length value Li that is used by the algorithm. A

special case of fixed algorithm is the never partitioning algorithm: in this case, the
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robots do not employ task partitioning and transport objects from the source to

the nest.

3.3.3. The random initialization algorithm

The random initialization algorithm consists in stochastically selecting the value of

the partition length Li in L at the beginning of the experiment. Each robot selects

its own value Li and never changes it during the course of the experiment.

The algorithm requires to initialize the set L. To this aim, the first time a robot

grips an object, it transports it directly to the nest, so that D̂ can be estimated.

10% of the value is then added to the estimate, to partially compensate for under-

estimation errors. The resulting value is used to initialize the set L as described by

Equations 1 and 2. The robot then stochastically selects a value Li from the set L
and the selected value is used by that robot throughout the rest of the experiment.

We also tested a variation of the algorithm, whereby the robots stochastically select

the value of the partition length among the possible values Li each time an object

is gripped. The algorithm performed badly across all the experiments and therefore

we do not include its results in this work.

4. Experimental tools

In this section, we describe the tools that we utilized to carry out the experiments

presented in this paper. All the experiments have been carried out in simulation.

In the experiments, we simulate the foot-bot robotics platform using the ARGoS

simulator. ARGoS allows a faithful simulation of the foot-bot and the properties

of the environment which are relevant for our foraging scenario. The contents of

this section are organized as follows. In Section 4.1, we describe the environment

in which the robots perform foraging. In Section 4.2, we introduce the features of

the foot-bot robotic platform that are relevant for the experiments presented in this

work. In the same section, we also present objects that are used to perform foraging

experiments with the foot-bot. In Section 4.3, we describe the simulation software

ARGoS and illustrate how the system is implemented in simulation, focusing in

particular on the model of the odometry noise.

4.1. Environment

The robots perform foraging in the environment represented in Figure 6. The en-

vironment is a rectangular arena surrounded by walls. Its dimensions W and L

depend on the specific experiment (see Section 5). The nest, located in proximity of

one of the walls, is marked by a black rectangular patch on the ground, 1.4 m wide

and 0.45 m long. Three lights (represented by crossed circles) are located outside

the perimeter of the arena, in proximity of the nest. The lights are used by the

robots to determine the direction of the nest.
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D

Nest

Source

W

L

Lights

Fig. 6. Environment in which the robots perform foraging. The length L and the width W depend

on the specific experiment. The source is located at a distance D from the nest and it is composed

of 5 objects. The nest (black rectangle represented on top), can be reached by approaching three
lights located in its vicinity.

The object source is located on the opposite side with respect to the nest. The

distance D between source and nest, measured from the center of the nest to the

object in the center of the source, depends on the specific experiment. Five objects,

arranged as represented in Figure 6, are positioned at the source. The objects are

positioned at a distance of 0.17 m, from the object in the center of the group. Each

time a robot removes an object from the source, a new one is added in the same

location. Thus, the source never depletes. When a robot releases an object within

the boundaries of the nest, transportation is completed and the object is removed

from the environment.

4.2. Foot-bots and Objects

The foot-bot is a mobile ground robot developed within the Swarmanoid

project [Dorigo et al., 2012]. The foot-bot is roughly cylindrical-shaped, it has a

diameter 170 mm and an height of 290 mm, and it weights 1.8 kg. Figure 7 depicts

a foot-bot and highlights sensors and actuators that have been utilized in the ex-

periments presented in this work.

The foot-bot navigates the environment by means of a differential drive system

that combines tracks and wheels. A metal gripper is used to connect to objects
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Treels (track + wheels)

Gripper

IR sensors (24)

Rotating turret with 
RGB LEDs (12)

Camera and mirror for 
omnidirectional vision

Ground color sensors (4)

Fig. 7. The foot-bot robotic platform. The sensors and actuators utilized in the experiments are

highlighted in figure.

for transportation. The gripper is mounted on a rotating plastic ring, that allows

the robot to point the gripper towards a desired direction (e.g., to position an

object before releasing it). The ring also hosts 12 RGB LEDs that we use to convey

information about the internal status of the robot.

Among the sensors available on the foot-bot, we use the omnidirectional cam-

era, the infrared ground sensors, and the infrared proximity sensors. The omni-

directional camera is a system composed of a color camera pointing to a convex

mirror mounted on top of a transparent tube. Objects and LEDs can be perceived

as colored blobs up to a distance of roughly 0.5 m. The infrared ground sensors are

positioned underneath the robot and allow the robots to recognize the color of the

ground. In the experiments, the ground sensors are used by the robots to detect

the black patch representing the location of the nest. Twenty-four infrared sensors

are evenly distributed below the plastic ring that hosts the gripper. These sensors

can be utilized to measure the intensity of the ambient light and they also serve as

bumpers, to detect obstacles in the vicinity. In the experiments, the infrared sensors

are employed to determine the direction of the lights marking the nest as well as to

provide information about the presence of obstacles to be avoided (walls and other

robots). For more information about the foot-bot, we refer the reader to the work

of [Bonani et al., 2010].

To perform transportation experiments with the foot-bots, we designed objects
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that can be grasped by the robots using their metal gripper. In Fig. 8, we show

one of these objects and report its dimensions. The object is composed of a 90 mm

plastic ring that can host the gripper of a foot-bot. The ring is fitted on top of a

60 mm tall PVC pipe with a diameter of 80 mm. A red cardboard disk, on top of the

plastic ring, can be perceived by the robots using the omnidirectional camera. For

more details about the design and the features of the objects refer to the technical

information reported in [Brutschy et al., 2012].

90

3
8

6
0

80

1
3

Fig. 8. Objects utilized to perform foraging. On the left an actual picture of an object. On the

right a schematic representation reporting its dimensions in mm.

In the rest of this section, we provide implementation details about the behavior

of the robots and describe the odometry noise that characterizes the foot-bots.

Exploration of the environment: The robots explore the environment using

a random walk implemented as follows. By default, the robots move straight,

at a maximum velocity of 0.1 m/s, avoiding obstacles. The stochastic component

consists in randomly generating a new direction of motion, uniformly sampled in

[−115◦, 115◦]. The random direction is generated with a 5% probability per control-

step. The neighborhood exploration is also performed using random walk, but the

robot remains in a circular area of radius 0.5 m, centered around the position at

which the robot expected to find the source. If a robot is about to leave the explo-

ration area, it generates a new random direction biased towards the center of the

area. As mentioned, a robot may abandon the exploration of a neighborhood when

unsuccessful. A timeout mechanism governs abandoning. The robot abandons in

case it has been performing the neighborhood exploration for 60 s without detect-
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ing any object.b In this case, in fact, it is likely that the robot reached a position

far away from the object source.

Object gripping: Object gripping is based on vision; the foot-bot uses information

from the omnidirectional camera to perceive objects in the surrounding and to

approach them. Once the robot is close to an object to be gripped, it uses the front

proximity sensors to refine its alignment. A repulsion mechanism is also part of

object gripping: the robots ignore any red blob (i.e., an object) which is perceived

in proximity of a blue blob. This prevents that more robots grip the same object

at the same time. While approaching an object with the intent of gripping it, a

robot lights up its LEDs in blue, to repel other robots from the same object. For

the same reason, the LEDs are lit up in blue also during the transportation of an

object towards the nest.

Check for unreachable destination: Due to odometry errors, the robot may

try to reach a position that lies outside the perimeter of the arena while navigating

to the source. To determine whether it is trying to reach a position that is not

within the arena boundaries, each robot periodically checks its estimated distance

to the source. If the distance does not decrease in time, the robot assumes that it

is trying to reach a position outside the arena perimeter and it returns exploring

the environment (i.e., it gets lost). In fact, if the estimated distance to the source

is not decreasing, it means that an obstacle blocks the movements of the robot. If

this happens for a long period of time (30 consecutive seconds in our experiments),

it is likely that the obstacle is a wall marking the perimeter of the arena, rather

than another robot. Notice that the mechanism is prone to errors: if the density of

robots is high, the movements are harder and the mechanism described here can be

triggered by the presence of other robots.

Odometry noise: The foot-bots suffer from a systematic drift towards the left-

hand side with respect to the direction of motion. Figure 9 shows the shape of the

trajectory followed by a foot-bot when the speed of both wheels is set to −0.1 m/s

(left-hand side) and 0.1 m/s (right-hand side). The figure is built using snapshots

taken from a video that is available with the online supplementary material [Pini

et al., 2012b]. The figure reports the direction of motion of the robot (white arrow

on top), the trajectory followed by the robot (white continuous line) and a reference

straight trajectory (white dashed line). The drift towards the left-hand side is not

constant: the amount by which the same foot-bot drifts varies from trip to trip.

The foot-bot cannot measure such drift: using odometry the robot would estimate

its trajectory to be (roughly) straight.

The odometry of the robots could be improved by the usage of calibration pro-

bThe values of the neighborhood exploration time and radius are the same utilized in our previous
work [Pini et al., 2012c].
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Fig. 9. Trajectory followed by a real foot-bot when the speed of both wheels is set to −0.1 m/s

(left-hand side) and 0.1 m/s (right-hand side)

cedures or Kalman filtering [Kalman, 1960]. However, in our experiments the goal

is not to maximize the foraging efficiency of the robots, but to test the proposed

approach for autonomous task partitioning in a realistic setup. Therefore we do not

implement any mechanism that aims at correcting or limiting the odometry error.

4.3. Simulation of the system using ARGoS

ARGoSc is the physics-based robot simulator that we employed for the experiments

presented in this paper. ARGoS allows the real-time simulation of thousands of

robots and it is highly customizable. The level of detail at which the robots, their

sensors and actuators, and the physical space are simulated is defined by the user.

For additional details about ARGoS, we refer the reader to the original contribution

of Pinciroli et al., 2011 [Pinciroli et al., 2011].

In the foraging experiments presented in this work, we employ the 2D-dynamics

physics engine offered by ARGoS. The simulation proceeds at discrete time-steps,

0.1 simulated seconds long. All the simulated sensors and actuators are subject

to noise. Gaussian noise with 0.02 m standard deviation is added to the distance

readings of the omnidirectional camera. At each simulation step, a uniform random

value between -5% and 5% of the reading is added to the measures of the ground,

light, and proximity sensors.

In simulation we model object gripping using 80 time samples collected with

six real foot-bots performing foraging in a W = 6.7 m by L = 4.5 m arena.

Each sample records the time spent by a robot for gripping an object (i.e., the

time from the moment the object was perceived to the moment it was gripped).

Figure 10 reports the empirical distribution of the grip time samples. The samples

are utilized in simulation to model the time spent by a robot to grip an object. Each

time a robot grips an object, a random value is selected from the set of samples.

The robot waits in place for a time corresponding to the selected value, before it

can undertake the following action. This solution allows us to model in a simple

but realistic way the variability that can be observed with the real foot-bots in the

chttp://iridia.ulb.ac.be/argos
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time needed for gripping objects.

0 10 20 30 40 50 60

Grip time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

P

Fig. 10. Empirical distribution function (P) of the 80 samples utilized to simulate the object
gripping time. The samples have been collected with a group of 6 foot-bots performing foraging.

The odometry noise plays an important role in our experimental setup since

it defines how successful the robots are in finding objects when returning to the

source. The model of the odometry noise that we use in simulation is the same

that we originally proposed in [Pini et al., 2012c]* The model is built on the basis TODO:
Change
from
tech report
to journal,
if it ever
will be pub-
lished - FIX
BIB
ENTRY

of odometry error samples collected with real foot-bots performing foraging. The

setup of the experiments is as follows: a group of six robots performs foraging in

the 6.7 m by 4.5 m rectangular arena represented in Figure 6. The objects source is

located at a distance of D = 4 m from the nest. Upon gripping an object from the

source, a robot travels all the way to the nest (i.e., task partitioning is not utilized).

When the robot reaches the nest, it releases the object and it returns to the source

using odometry.

The data upon which the odometry noise model is built was sampled from

video recordings of the experiment described. A total of 61 error samples were

collected from the videos, using the tiles on the floor as a reference to calculate the

odometry error. These measures include effects such as collisions, wheel slippage,

and avoidance as they are in the experiment at hand.

Figure 11 reports the 61 error samples collected from the videos. The origin

of the axes in the plot represents the position in which an object is gripped by a

robot. A point in the plot reports the X,Y error between the position at which the

object was gripped, and the final position reached by the robot when returning to

the source using odometry.

Algorithm 1 reports the pseudo-code that describes how the odometry noise

is implemented in simulation. The drift towards the left-hand side is obtained by

modifying the actuated values of the two wheel speeds (lines 2 to 7): the speed of

the right wheel is incremented when the actuated value is positive, the speed of
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Fig. 11. Odometry error samples collected in experiments performed with the foot-bots (61 sam-

ples). Each sample reports the X,Y estimation error at the end of a trip from source to nest and
back. The light gray rectangle marks the position of the nest.

Algorithm 1 Pseudo-code for the odometry noise model

1: actuatedRightWheelSpeed, actuatedLeftWheelSpeed← ControllerStep()

2: if actuatedRightWheelSpeed > 0 then

3: rightWheelSpeed =

actuatedRightWheelSpeed+ µnoise ∗ actuatedRightWheelSpeed

4: end if

5: if actuatedLeftWheelSpeed < 0 then

6: leftWheelSpeed =

actuatedLeftWheelSpeed− µnoise ∗ actuatedLeftWheelSpeed

7: end if

8: if Object gripped then

9: µnoise = RAY LEIGH(σ)

10: end if

the left wheel is decremented when the actuated value is negative. The robot is not

aware of the drift: the odometry is computed using actuatedRightWheelSpeed and

actuatedLeftWheelSpeed. The parameter µnoise represents the percentage by which

the wheel speed is increased or decreased. The value of µnoise changes each time a

robot grips an object. The new value is sampled from a Rayleigh distribution with

parameter σ (lines 8 to 10). The same distribution is used to randomly initialize

µnoise.
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The value of the parameter σ characterizes the noise of the robots: the higher its

value, the higher the expected value of µnoise, and the larger the odometry error of a

robot. The value of the parameter σ was fitted through a set of targeted experiments.

The default value of σ, indicated as σ̄, was set to 0.0134. The same value has been

utilized in all the experiments presented in our previous work (see [Pini et al.,

2012c]). σ̄ allows to replicate in simulation a pattern similar to the one reported in

Fig. 11. To test the impact of noise on our system, in the experiments presented in

this work we vary the value of the parameter σ. We express the value of σ used in

an experiment as a fraction of σ̄. Figure 12 reports error points (70 in each plot)

collected in simulation for the different noise conditions tested in the experiments.

In the figure, plots from left to right correspond to increasing values of the odometry

noise.
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Fig. 12. Odometry error samples collected in simulation for different noise conditions.

The presented noise model does not take into account internal aspects of the real

foot-bot. For our simulation this is acceptable, because we only aim at reproducing

the observable behavior of the foot-bot with a sufficient degree of accuracy.
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Table 1. Default experimental settings

Parameter Value

Experiment duration (simulated time) 20 hours

Swarm size 4, 10, 20

Size of the environment W = 6.7 m by L = 4.5 m

Source-to-nest distance D = 4 m

Number of repetitions 20

Default noise parameter σ σ̄ = 0.0134

5. Experiments and Results

In this section, we describe the simulation-based experiments that we carried out to

test our approach for autonomous task partitioning. The experiments are divided

into five sets, each aiming to test different aspects. When not differently specified,

the experimental parameters are set as follows (see Table 1). The experimental

environment measures 6.7 m in width and 4.5 m in length (see Fig. 6). Source and

nest are placed at a distance D = 4 m from each other. Each experimental run

lasts a total of 20 simulated hours. At the beginning of each run, the robots are

positioned inside the nest, with a random orientation. We test three different swarm

sizes: 4, 10, and 20 robots. For each experimental condition we run 20 randomly

seeded simulations.

The rest of this section is organized as follows. In Section 5.1 we present a set of

experiments that have the goal of evaluating the basic properties of the system, and

selecting the values of the parameters α and ε, used in the cost-based partitioning

algorithm. In Section 5.2 we present experiments in which we test whether our

approach is able to cope with environments of different size. In Section 5.3 we

describe experiments that aim to evaluate the behavior of the system in relation

to different values of the source-to-nest distance D. In Section 5.4, we describe

experiments in which we study the effect of heterogeneity within the swarm. Finally,

in Section 5.5, we evaluate a case in which the environmental conditions vary in

time, and discuss the exploitation vs. exploration trade-off.

5.1. Experimental set 1: Basic Properties

The first set of experiments has two main goals. The first goal is to assess the best

way of partitioning the transportation task in relation to the size of the swarm and

the amount of noise in the odometry system. We perform experiments in which

we test the reference algorithms with swarms of different sizes (4,6,8,10,15, and 20

robots) and for different values of σ (0.0, 0.2σ̄, 0.5σ̄, σ̄, 1.2σ̄). The second goal of

the experiments is to select a value for the parameters of the cost-based partition-

ing algorithm, and to compare the algorithm to the reference algorithms. We test
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Table 2. Best performing fixed algorithm for different values of the odometry noise parameter σ

and different swarm sizes.

σ = 0.0 σ = 0.2 σ = 0.5 σ = 1.0 σ = 1.2

4 robots 2.5 m 2.5 m 2.0 m 1.5 m 1.5 m

6 robots 2.5 m 2.5 m 2.0 m 1.5 m 1.5 m

8 robots 2.5 m 2.5 m 2.0 m 1.5 m 1.5 m

10 robots 2.5 m 2.5 m 2.0 m 1.5 m 1.5 m

15 robots 2.0 m 2.0 m 1.5 m 1.5 m 1.5 m

20 robots 1.5 m 1.5 m 1.5 m 1.5 m 1.0 m

different versions of the cost-based partitioning algorithm, that vary for what con-

cerns the value of the parameter α, used for computing cost estimates according to

Equation 3, and ε of the ε-greedy algorithm. The parameter α is selected from the

set {0.001, 0.1, 0.25, 0.9, 1.0}, while ε from the set {0.0, 0.05, 0.15, 0.25, 0.5}. The

remaining experimental conditions are as reported in Table 1.

The performance of the fixed algorithms in relation to the size of the swarm and

the amount of noise provides insights about the basic properties of the system. We

refer to the performance of an algorithm as the total number of objects transported

to the nest by the robots when that algorithm is employed.

Table 2 reports, for the different values of σ and the different swarm sizes, the

partition length value of the best performing fixed algorithm in the corresponding

setting. The complete results of these experiments can be found with the online sup-

plementary material [Pini et al., 2012b]. The results reported in the table highlight

two aspects. First, they confirm that the higher the noise, the more task partition-

ing becomes advantageous. In fact, for a given swarm size (i.e., a given table row),

which fixed algorithm performs best varies in relation to the value of the odometry

noise: the higher the noise, the smaller the partition length of the best performing

fixed algorithm. In other words, if the value of the noise is high, the number of

sub-tasks should be increased and their length decreased. Conversely, for low values

of noise it is preferable to use few, long sub-tasks. These results confirm that task

partitioning is beneficial to reduce the negative impact of the odometry noise.

The second aspect highlighted by the experiments is that, given certain noise

conditions (i.e., a given column in Table 2), in large swarms it is preferable to

partition the given task into many, short sub-tasks. This comes from the fact that

physical interference is higher in large swarms than in small ones. Task partitioning

distributes the robots along the path between source and nest, thus diminishing the

interference among robots.

As mentioned, in addition to evaluating the effect of the odometry noise and of

the swarm size, the experiments of the first set were also used to select the values

of the parameters ε and α. Figure 13 summarizes the effect of the parameters ε

and α on the performance of the cost-based partitioning algorithm, for the case in
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Fig. 13. Effect of the parameter α (left) and ε (right), for σ = σ̄. The data reported in the plots is
computed as follows. We calculate the average performance PN , computed over all the values of ε

and α, for each swarm size N . The value PN is used to normalize the performance values recorded

for swarms of size N . Each box in the left-hand side plot aggregates the normalized performance
for different swarm sizes and values of ε, for a given value of α. Analogously, in the right-hand

side plot the boxes aggregate the normalized performance for different swarm sizes and values of

α, for a given value of ε.

which σ = σ̄. The complete results of the experiments are reported with the online

supplementary material [Pini et al., 2012b].

The data reported in the Fig. 13 is computed as follows. First, we calculate the

average performance PN , computed over all the values of ε and α, for each swarm

size N . Each box in the plots of Fig. 13 aggregates the performance of swarms

of different size, divided by the corresponding value PN . The left-hand side plot

of Fig. 13 reports the data for different values of α (i.e., each bar aggregates all

the values of ε and swarm size N). Analogously, the plot on the right-hand side

of Fig. 13 reports the data for different values of ε. The plot on the left-hand side

shows the overall effect of α, the one on the right-hand side the overall effect of ε.

The plots show that the highest levels of performance are obtained for α = 0.25

and ε = 0. We select these values and utilize them in all the experiments presented

in the paper, with the exception of the ones presented in Section 5.5.

The value 0 for the parameter ε corresponds to a purely exploiting version of

the ε-greedy algorithm: the algorithm always selects the partition length Li associ-

ated to the minimal cost estimate Ĉi. This is not surprising given the nature of the

experiments of the first set. In fact, the only variations occurring in the system are

those introduced by the robots dropping objects along the path from source to nest.

The remaining conditions, such as the number of robots, the noise on the odom-

etry system, the size of the environment, etc. do not vary in time. Consequently,

no exploration is needed and a pure exploiting version of the ε-greedy algorithm

performs well. Further considerations about the trade-off between exploration and
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exploitation are presented in Section 5.5.

Figure 14 reports the performance of the cost-based partitioning algorithm and

of three reference algorithms for swarms of 4, 10, and 20 robots. The top plot reports

the results for a low value of noise (σ = 0.2 σ̄), the bottom plot for σ = σ̄.

For clarity, we did not report the performance of all the reference algorithms. For a

given experimental setting (i.e., odometry noise and swarm size), the fixed algorithm

reported in the figure is the one performing the best in the corresponding setting.

The performance of the fixed algorithm is an upper bound for the performance

of a swarm that uses task partitioning. In general to reach such a performance

the swarm needs prior knowledge about the environment. If the robots do not have

such knowledge, they have to utilize other partitioning algorithms which, in general,

perform worse than the fixed algorithm.

The results reported in Figure 14 highlight several aspects. The performance

of all the algorithms decreases with an increasing noise. The lower the noise, the

smaller the odometry error and the frequency at which the robots find the objects

source when performing neighborhood exploration. As the noise increases, the per-

formance of each algorithm decreases. The never partitioning algorithm performs

well when the noise is low and the swarm is composed of few robots. For increasing

swarm sizes, the algorithms that utilize task partitioning become more advanta-

geous. As pointed out, this is due to interference: the robots employing the never

partitioning algorithm travel all the way from source to nest and interfere with

each other’s paths. The negative effect of interference on the algorithms increases

for a decreasing odometry noise: the robots get lost few times and the traffic along

the path between source and nest is high. The cost-based partitioning algorithm

performs well in the majority of the tested conditions, which indicates that the

partitioning strategy utilized by the swarm suits the specific conditions in which

the robots operate.

Figure 15 reports the partition length values selected in time by robots em-

ploying the cost-based partitioning algorithm, for σ = σ̄. The plot reports the

percentage of times each value Li was selected by the robots. The percentages are

computed across the 20 experimental runs. The sequence of plots in each row re-

ports the data collected with swarms of different size, from top to bottom: 4, 10,

and 20 robots. Each column reports the data relative to a time period of 5 hours,

corresponding to a quarter of the duration of each experimental run.

Each sequence of plots shows that there is an initial phase (see plots in the first

column) during which the robots sample the values Li. In time (plots from left to

right), the robots converge towards certain values of the partition length. The values

selected the most by the robots in the final part of the experiment depend on the

size of the swarm: the larger the swarm, the lower the partition length values that

are selected by the robots (compare the plots in the last column). Therefore, the

cost-based partitioning algorithm responds to a growing swarm size by reducing the

length of the sub-tasks. The results obtained by the fixed algorithms demonstrate
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Fig. 14. Objects collected by the swarm when different partitioning algorithms are employed. Each

group of bar reports data collected with a swarm of a given size (see top axis). The plot on top

reports the data for a noise σ = 0.2 σ̄, the plot at the bottom for a noise σ = σ̄. The fixed
algorithms reported in figure are the ones performing the best in the corresponding setting. The

performance of the fixed algorithm is an upper bound for the performance of a swarm that uses

task partitioning.

that this is advantageous to diminish physical interference.

Analogously, Figure 16 reports the partition length values selected by the robots

in time when the cost-based partitioning algorithm is employed, for σ = 0.5 σ̄.

The plots confirm the trends observed previously: in large swarms the robots select

lower values of the partition length. Comparing to the case reported in Figure 15

however, the overall choice of the robots is oriented towards higher values of the

partition length. This is due to the lower noise in the odometry system, compared
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Fig. 15. Partition length values selected by the robots in time, when the cost-based partitioning
algorithm is employed. The plots report data collected for σ = σ̄. Each plot reports the percentage

of selection of each value Li in a time window of 5 hours (see labels on top).

to the previous case.

These results confirm that the robots employing the cost-based partitioning al-

gorithm decide how to partition the transportation task autonomously, on the basis

of the environmental conditions (odometry noise and physical interference). Recall

that the robots do not take direct measures of the frequency at which they get lost,

the odometry error, or the perceived interference. Instead, they only estimate costs

linked to performing sub-tasks. The strategy employed by the robots to partition

the transportation task varies with the environmental conditions in a self-organized

manner, due to the impact of such conditions on the cost estimates.

The plots reported in Figure 17 show the evolution of throughput in time for

swarms composed of 4 (Fig. 17 a), 10 (Fig. 17 b), and 20 (Fig. 17 c) robots. The

throughput is measured as the number of objects delivered to the nest in one hour.

The values reported in each plot are the medians computed over 20 experimental

runs, for σ = σ̄. The throughput of the cost-based partitioning algorithm and of

three reference algorithms is reported in each plot.

The results reported in Figure 17 show that the throughput of the reference

algorithms rapidly stabilizes around a given value. The throughput obtained by the

robots employing the cost-based partitioning algorithm, on the other hand, grows

slowly in time as an effect of the convergence of the robots to a certain value of

partition length (refer to the results reported in Figure 15).

We speculate that the low growth speed is due to the fact that the actions
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Fig. 16. Partition length values selected by the robots in time, when the cost-based partitioning
algorithm is employed. The plots report data collected for σ = 0.5 σ̄. Each plot reports the

percentage of selection of each value Li in a time window of 5 hours (see labels on top).
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Fig. 17. Evolution in time of the throughput obtained with different algorithms. The throughput

is computed as objects delivered to the nest in an hour of experiment. Each curve reports the
median value, computed over 20 experimental runs.

performed by each robot influence the cost estimation process of the other robots.

For example, a robot r that finds objects on the way between source and nest (i.e.,
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not at the objects source) needs another robot r′ constantly delivering objects there.

If the robot r′ gets lost, the robot r may not be able to find objects anymore. As

a consequence, the robot r is likely to assign a high cost to the selected value of

the partition length, therefore penalizing its selection for the future. This influence

on each other’s selection process requires the robots to sample the environment for

a longer time in order to rule out the side effect of cost estimation errors and to

coordinate their actions. On the contrary, the selection of the partition length done

by the reference algorithms is not based upon cost estimates. Therefore, the robots

do not interfere with each other’s selection process and the swarm rapidly reaches

a steady throughput.

To summarize, the results presented in this section confirm that task partition-

ing limits the negative impact of the odometry noise and of physical interference

on the foraging performance. The results also show that the cost-based partitioning

algorithm obtains a good performance across all the tested conditions. This is con-

sequence of the fact that the way the overall task is partitioned by the robots using

the cost-based partitioning algorithm varies in relation to the noise conditions and

the swarm size. On the other hand, each of the reference algorithms performs well

only in a limited sub-set of the tested conditions. We pointed out that the through-

put of the cost-based partitioning algorithms grows slowly in time, compared to the

reference algorithms.

5.2. Experimental set 2: Size of the Environment

The goal of the second experimental set is to test the behavior of the system in

environments of different size. A large environment requires more exploration, and

therefore the robots take longer, on average, to locate the object source at the

beginning of the experiment and in case they get lost (i.e., exploration is costly).

We test two environments: a W = 4.5 m by L = 4.5 m environment (small

environment) and a W = 6.7 m by L = 10.0 m environment (huge environment),

for σ = σ̄.d In both cases, the source-to-nest distance D is 4.0 m. The remaining

experimental parameters are as reported in Table 1.

Figure 18 reports the performance of the cost-based partitioning algorithm and

three reference algorithms for different swarm sizes. The top plot in Fig.18 reports

the results of the experiments performed in the small environment, the bottom plot

in Fig.18 reports the results of those performed in the huge environment. The results

of the experiment indicate that the cost-based partitioning algorithm performs well

across environments of different size.

Figure 19 reports the values of partition length selected by the robots in the

final quarter of the experiment (last 5 hours), for different swarm sizes and different

environments. Plots in the same row refer to the same environment: small envi-

dThe name and the size of the environments are the same used in our previous study [Pini et al.,
2012c].
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Fig. 18. Objects collected by the swarm when different partitioning algorithms are employed. Each

group of bar reports data collected with a swarm of a given size (see top axis). The plot on top

reports the data collected in the small environment, the plot at the bottom the data collected in
the huge environment.

ronment on top and huge environment at the bottom. Plots in the same column

report data for the same swarm size, from left to right: four, ten, and twenty robots.

The plots show a trend in the partition length values selected by the robots. For a

given swarm size, the selected values are influenced by the size of the environment:

the larger the environment, the lower the partition length values selected by the

robots. This indicates that the cost-based partitioning algorithm identifies the high

cost that derives from getting lost in larger environments and adapts the way the

task is partitioned accordingly, by reducing the distance traveled by the robots and

consequently the frequency at which they get lost.
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Fig. 19. Partition length values selected by the robots in time, when the cost-based partitioning
algorithm is employed. The plots report data collected for σ = σ̄. Each plot reports the percentage

of selection of each value Li in the final quarter of the experiments (last 5 hours).

5.3. Experimental set 3: Distance to the Source

The goal of the set of experiments presented in this section is to study the effect of a

different source-to-nest distance D (i.e., a different length of the overall task). The

experiments are carried out in the huge environment (W = 6.7 m by L = 10.0 m),

with σ = σ̄. The value of the source-to-nest distance D is set to 3.0 m and 6.0 m.

The values of the remaining experimental parameters are as reported in Table 1.

Figure 20 reports the performance of the cost-based partitioning algorithm and

three reference algorithms for the different swarm sizes. The top plot displays the

results for D = 3.0 m, the bottom plot for D = 6.0 m.

The performance obtained by a given algorithm for D = 3.0 m is higher than

the corresponding performance for D = 6.0 m. As the objects must be transported

for a longer distance, the throughput of the swarm is inferior. Additionally, in the

case of the never partitioning algorithm, the longer distance between source and

nest increases the probability that a robot gets lost, thus lowering the throughput.

For the remaining algorithms, all of which utilize task partitioning, a longer distance

corresponds to a higher number of sub-tasks and therefore higher overheads due to

object transfer.

Figure 20 shows that, for D = 3.0 m, the robots that use the cost-based par-

titioning algorithm perform well across all the values of noise and swarm sizes.

This is not the case for D = 6.0 m: the performance of the cost-based partitioning

algorithm is often close, or even inferior, to the performance of the random initializa-

tion algorithm. In the final part of the experiment the throughput of the cost-based

partitioning algorithm is higher than the throughput of the random initialization

algorithm. However, the throughput grows very slowly in time and this results in a
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Fig. 20. Objects collected by the swarm when different partitioning algorithms are employed. Each
group of bar reports data collected with a swarm of a given size (see top axis). The plot on top

reports the data for D = 3.0 m, the plot at the bottom for D = 6.0 m.

low performance. The plot reporting the throughput of the cost-based partitioning

algorithm is available with the online supplementary material [Pini et al., 2012b].

5.4. Experimental set 4: Heterogeneity in the Robot Swarm

The goal of the fourth experimental set is to assess whether heterogeneity in the

swarm has an impact on the cost-based partitioning algorithm. I this study, we

focus on heterogeneity impacting on the efficiency in performing a task. To this

end, we act upon the odometry system of the robots: the accuracy of the odometry

system varies from robot to robot. Therefore, different robots might be more or
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less successful in reaching the object source using odometry. Heterogeneity in the

odometry system of the robots is a realistic assumption. In our previous work, we

report results of experiments performed with real foot-bots in which we observed

that the success rate in finding the objects source varies from robot to robot (refer

to [Pini et al., 2012c] for more information).

Here, we simulate heterogeneity in the odometry system using different noise val-

ues across the swarm. We divide the swarm into two groups, one in which σ = 0.2σ̄

(we will refer to robots in this group as low-noise), the other in which σ = σ̄

(default-noise robots). We perform experiments using 10 robots, varying the per-

centage of low-noise robots in the swarm. We test two conditions: one in which there

are 2 low-noise robots in the swarm and one in which the low-noise robots are 8.

The remaining experimental parameters assume the values reported in Table 1.

Figure 21 reports the performance of the cost-based partitioning algorithm and

of four reference algorithms. The plot on the left-hand side reports the case in which

the low-noise robots are 2, the plot on the right-hand side the case in which the

low-noise robots are 8. The results reported in Figure 21 indicate that the cost-

based partitioning algorithm performs well in the tested conditions, showing that

it is robust with respect to heterogeneity within the swarm.
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Fig. 21. Objects collected by the swarm when different partitioning algorithms are employed. The
plot on the left-hand side reports the data for the case in which the low-noise robots are 2, the

plot on right-hand side for the case in which their number is 8.

Figure 22 reports the partition length values selected by the robots employ-

ing the cost-based partitioning algorithm in the final quarter of experiment (last

5 hours). Each plot reports the percentage of times, computed across 20 experimen-

tal runs, each value Li was selected by the robots. In the figure, plots on the same

column refer to the same number of low-noise robots in the swarm: 2 robots in the

plots on the left-hand side and 8 robots in the plots on the right-hand side. The

top plots report the partition length values selected by the low-noise robots, the
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bottom plots the values selected by the default-noise robots.
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Fig. 22. Partition length values selected by the robots in time, when the cost-based partitioning

algorithm is employed. Each plot reports the percentage of selection of each value Li in the final
quarter of experiment (last 5 hours). The plots in the first row report the values selected by the

low-noise robots, the plots in the second row the values selected by the default-noise robots. The

plots on the left-hand side report the data for the case in which the number of low-noise robots is
two, the plots on the right-hand side the data for the case in which their number is eight.

The results reported in Figure 22 show that the partition lengths selected by

the robots vary in relation to their odometry accuracy. The low-noise robots select

higher partition length values compared to the values selected by the standard-

noise robots. In other words, the way a robot partitions each task depends on the

characteristics of the robot itself.

5.5. Experimental set 5: Adaptivity to Variable Conditions

In all the experiments presented so far, the cost-based partitioning algorithm reaches

its best performance with a purely exploiting version of the ε-greedy algorithm (i.e.,

for ε = 0). This is due to the fact that, in all the experiments, we test static

conditions. The only dynamics are introduced by the robots depositing objects in

the environment. However, exploration may prove useful when properties of the

environment vary in time. Given the way the ε-greedy works, exploration may be

beneficial only if one of the costs Ĉi decreases and renders the associated value Li

advantageous over the partition length values that previously had the lowest cost

associated.

Suppose, for example, that the environmental conditions initially favor low val-

ues of the partition length Li and that the robots identified low values as a good
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choice. Suppose that a change occurs in the environment, that renders favorable

higher values of the partition length. If the effect of the change is to reduce the cost

associated to high values of partition length, without increasing the cost associated

to low values, a purely exploiting version of the ε-greedy algorithm is unable to de-

tect the change. In fact, as the robots constantly select low values of the partition

length, initially identified as the best option, they never sample again high values

and cannot detect that they are now preferable.

To test such a situation, we perform an experiment in which we introduce a

variation in the environmental conditions. The variation consists in incrementing

the distance at which the robots perceive the objects. A longer perception diminishes

the probability a robot gets lost: objects can be perceived from farther away and

therefore odometry errors have a smaller impact.

We perform the experiments with swarms of 10 and 20 robots. We vary the

perception range of the robots from the default value of 0.5 m to 1.2 m, when the

experimental run reaches half-time. The duration of a run is extended to 40 simu-

lated hours, to allow the cost-based partitioning algorithm to identify good partition

length values before the perception change is introduced. We test different versions

of the cost-based partitioning algorithm, that vary with respect to the value of the

parameter ε. The tested values for the parameter ε are {0, 0.3, 0.6}, corresponding

to progressively increasing degrees of exploration in the algorithm. The noise is set

to σ = 0.5 σ̄. We selected this value as it is the one that highlights the most the

effects of exploration and exploitation on the cost-based partitioning algorithm.

Figure 23 reports the performance of the cost-based partitioning algorithm and

of three reference algorithms for swarms composed of 10 (top) and 20 robots (bot-

tom). In each plot, the group of boxes on the left-hand side reports the data col-

lected in the first half of the experiment, before the perception range is modified.

The group of boxes on the right-hand side of each plot reports the data collected in

the second half of the experiment, after the perception range has been modified.

The results show that initially the best performing algorithm is the fixed algo-

rithm with a partition length of 2.0 m. Among the different versions of the cost-based

partitioning algorithm, the best performing one is the non-exploring (ε = 0). The

other versions, which include some exploration, perform worse.

In the second half of experiment, the situation is different: the change in the

perception range of the robots makes the never partitioning algorithm preferable

to the fixed algorithm. However, for a swarm composed of 20 robots, the relative

performance gain of the never partitioning algorithm over the fixed algorithm is

limited, compared to the case of a swarm of ten robots. This is again an effect of

interference, which is the dominant factor in large swarms.

The results obtained by the different versions of the cost-based partitioning

algorithm indicate that exploration is beneficial. In the case of a swarm composed of

ten robots, the cost-based partitioning algorithm with ε = 0.3 performs better that

the non-exploring version. In the case of a swarm of twenty robots, the performance
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Fig. 23. Objects collected by the swarm when different partitioning algorithms are employed. In
each plot, the first group of bars refers to the first half of experiment, the second group to the

second half. The plot on top reports the results for a swarm of 10 robots, the plot at the bottom

for a swarm of 20 robots.

reached by the two versions is comparable. However, exploration is beneficial up to

a certain point: for ε = 0.6, performance is always inferior than for ε = 0.3 and

therefore exploration and exploitation should be balanced carefully.

Figure 24 reports the values of partition length selected in time by a swarm of

ten robots. Each row of plots corresponds to a value of ε. The plots in the first

column report the frequency at which each partition length value was selected in

the second quarter of the experiment (from t = 10 to t = 20 hours). The plot

in the second column reports analogous data, collected in the last quarter of the

experiment (from t = 30 to t = 40 hours). The plots highlight different behaviors

of the cost-based partitioning algorithm, depending on the value of ε.

The plots in the first column show that all the versions the cost-based par-

titioning algorithm mostly select values around 2.0 m. The effect of an increased

exploration can be observed in the plots (from top to bottom): the peaks flatten

and the selected values distribute more evenly. This behavior affects performance

negatively, as shown in Figure 23.

The effect of exploration is also visible in the second column of plots reported in

Figure 24. In case of ε = 0.3 and ε = 0.6, the peak moves from the value of 2.0 m to
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Fig. 24. Partition length values selected by the robots when different versions of the cost-based

partitioning algorithm are employed. The plots in the first column report the percentage of selection

of each value Li in the second quarter of experiment. The plots in the second column analogous
data collected in the final quarter. Each row of plots refer to a different version of the cost-based

partitioning algorithm (increasing exploration from top to bottom).

the value of 3.5 m. This indicates that the cost-based partitioning algorithm detects

the change occurring in the environment and reacts selecting a partitioning strategy

more suited for the new conditions. The non-exploring version of the cost-based

partitioning algorithm, on the other hand, continues to select values around 2.0 m.

However the value 3.5 m is selected more often compared to the second quarter

of experiment (Figure 24 top-left). This indicates that a form of exploration is

present in the studied system independently of the value of ε, most likely due to

stochasticity in the exploration time when the robots get lost, which introduces

variations in the cost estimates. This stochasticity may not be present in other

contexts and therefore explicit exploration is an option to consider, in general. The

degree of exploration must be selected carefully, since in some cases exploration can

hinder the performance of the system. For example, the plots for ε = 0.6 (Figure 24

bottom row) show that when exploration is too high, the behavior of the cost-based

partitioning algorithm approaches a random behavior. A dominant choice can still

be observed, but the cost-based partitioning algorithm does not exploit it efficiently
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and the performance is affected negatively.

6. Conclusion and Future Work

The capability of partitioning tasks into sub-tasks autonomously can result in an

increased flexibility of swarm robotics systems: robots with such a capability can

adapt the way tasks are performed to specific environmental conditions and goals

to be attained. So far, the methods proposed in the literature to implement task

partitioning are intertwined with the tasks the robots must perform. Therefore,

each method can only be utilized in limited contexts and to partition specific tasks.

Our long term research goal is developing a general task partitioning framework,

that can be applied to a multitude of tasks and in different contexts.

In this paper, we present a research work that makes the first steps in this

direction. We propose an approach that can be utilized to obtain autonomous task

partitioning in a foraging scenario. The approach is based on a mapping between

the amount of work a robot contributes with its sub-task and the resulting cost for

performing the overall task. This mapping is implemented using a cost function,

which is utilized by the robots to decide autonomously how to partition the object

transportation task. The philosophy behind our approach is decoupling the process

that implements task partitioning from the specific tasks performed by the robots.

This decoupling is obtained through the generic concepts of cost and cost function.

Costs can be used to measure the progress towards certain goals. For example, if

the task is the production of items, costs can be measured as quantity of material

required for producing an item, when the goal is minimizing material waste. If, on

the other hand, a delivery deadline must be met, the production can be carried out

at full speed regardless of material waste, and costs can be measured as time. Since

the task partitioning process depends on costs, it is implicitly driven towards the

goals to be attained. Moreover, if the goals or the impact of the environment on

costs change, the way tasks are partitioned changes automatically in response.

The way costs are expressed can be adapted to the specific context and goals

without modifying the underlying process that implements task partitioning. There-

fore, we are confident that our approach can directly be applied to a multitude of

contexts, by adapting the definition of the cost function to the specific case. In

general, the cost function depends on (possibly unknown) environmental conditions

and it can vary over time, therefore it cannot be given a priori to the robots. Instead,

it must be modeled by each robot on the basis of measures taken in the environ-

ment. Consequently, our approach requires the robots to be capable of taking such

measures and utilize them to estimate costs.

In this paper, we show the application of our approach to the proposed foraging

scenario. The goal of the robots is to collect objects from a location of the environ-

ment, the source, and transport them to a nest location. The robots use odometry

to maintain an estimate of the location of the source. In simulation-based experi-

ments we show that task partitioning can be more or less beneficial depending on
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the entity of the noise on the odometry system. We compare an algorithm based on

our approach to a set of reference algorithms in different contexts. We show that,

using our approach, the swarm performs well across the tested conditions. The par-

titioning strategy employed by the swarm varies in relation to different factors: the

accuracy of the odometry, the number of robots in the swarm, and the size of the

environment in which they operate. The robots do not take direct measures to esti-

mate any of these factors, yet the strategy employed to perform foraging is linked to

such factors. This result indicates that our approach can be utilized without mak-

ing a priori assumption about the phenomena determining the best way of utilizing

task partitioning.

We perform experiments showing that the approach is robust with respect to

heterogeneity within the swarm. In our experiments, heterogeneity consists in a

variable accuracy of the odometry system across different robots. The results show

that the partitioning strategy varies from robot to robot, in relation to the accuracy

of the odometry. Therefore the approach exploits differences between the robots of

the swarm, which can result in performance gains in many contexts.

We also study the trade-off between exploration ad exploitation in a setup in

which the environmental conditions change in time. The results show that a cer-

tain degree of exploration is present in the system at hand, as a consequence of

stochastic events happening in our scenario. However we also remark that built-in

exploration can be beneficial and therefore it should be taken into account when

the environmental conditions are not static.

Short term research aims to verify the applicability of the approach to other tasks

than transportation, for example patrolling or construction. A long term research

goal is integrating explicit communication in the studied system. We remarked

that the swarm is relatively slow in converging to a certain partitioning strategy.

Communication could improve this aspect of the system. For example, the robots

could directly exchange information and integrate their cost estimates with the

data received from other robots. This would reduce the negative impact of cost

estimation errors made by the robots. Additionally communication would allow the

decisions pertaining the length of the sub-tasks to be taken collectively, instead

of individually, with the result of an increased coordination between robots and

consequently a more responsive collective behavior.

Another direction of future work is verifying the applicability of the approach to

cases in which the robots must perform heterogeneous tasks. In this work, the robots

repeatedly perform the same task: transporting objects from the source to the nest.

The tasks are homogeneous since their length and characteristics (e.g., odometry

noise in our setup) do not vary from task to task. In general cases however, a

swarm of robots might have to carry out different types of tasks at the same time.

For example in the studied foraging scenario there could be multiple objects sources.

Different sources correspond to tasks of a different type: the length differ from one to

another. Characteristics of the environment may vary as well, for example different
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terrain configurations can affect the odometry estimates in a different ways. For

these reasons, the best partitioning strategy varies depending on the type of task.

Our approach can be applied to such situations with minor modifications: a cost

function must be assigned to each task type. The main implementation issue is that

the robots must be capable of discriminating tasks of different types. In our setup

this can be done, for example, on the basis of the odometry estimates of the robots.
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