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et de Développements en Intelligence Artificielle
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Abstract

In this work, we study behavioral specialization in a swarm of autonomous robots. In the studied swarm, robots have to carry
out tasks of different types that appear stochastically in time and space in a given environment. We consider a setting in which
a robot working repeatedly on tasks of the same type improves its performance on them due to learning. Robots can exploit
learning by adapting their task selection behavior, that is, by selecting with higher probability tasks of the type on which they have
improved their performance. This adaptation of behavior is called behavioral specialization. We employ a simple task allocation
strategy that allows a swarm of robots to behaviorally specialize. We study the influence of different environmental parameters on
the performance of the swarm and show that the swarm can exploit learning successfully. However, there is a trade-off between
the benefits and the costs of specialization. We study this trade-off in multiple experiments using different swarm sizes. Our
experimental results indicate that spatiality has a major influence on the costs and benefits of specialization.

Keywords: specialization, task allocation, swarm robotics, swarm intelligence, self-organization, division of labor

1. Introduction

Division of labor is a concept that is common in the organi-
zation of large groups of individuals such as humans or social
insects [1, 2]. In division of labor, as defined for social insects
by Beshers and Fewell, “(a) each worker specializes in a sub-
set of the complete repertoire of task types performed by the
colony, and (b) this subset varies across individual workers in
the colony” [1]. In artificial systems, a common way to obtain
division of labor is to let individuals adapt their behavior so
that they predominantly work on a subset of the available task
types—this is called behavioral specialization [3]. Behavioral
specialization is known to increase the overall performance of
an individual because of different reasons, one of them being
learning. In some types of learning, an individual can ac-
quire experience by repeatedly performing a task, which may
improve the efficiency of the individual for tasks of the same
type [4]. The individual can exploit this increased efficiency by
adapting its task selection behavior, that is, by selecting with
higher probability tasks of the type for which it has improved
its performance.

In this work, which is an extension of [5], we study the
costs and benefits of behavioral specialization in a swarm of
autonomous robots. The robots of the swarm must perform two
types of tasks. The tasks appear stochastically in time and in
space and have to be carried out by the robots at the location
where they appear. The spatial and temporal distributions of
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the tasks and their types are unknown to the robots. The robots
can improve their performance on a certain type of task by re-
peatedly working on tasks of the same type (i.e., they learn).
Learning is implemented using a simplified model that captures
the relevant aspect of learning: robots get better in task per-
formance upon repetition. This simplified model allows us to
draw general conclusions on behavioral specialization without
implementing a specific learning technique.

The robots of the swarm should adapt their behavior to
work predominantly on a single type of task for two reasons:
first, to learn to perform it more efficiently, and second, to
fully exploit the resulting performance improvement. However,
even though the exploitation of the performance improvement
achieved through learning is clearly a benefit, specialization
also entails certain costs [4]. An example of such costs is the
time a specialized robot spends searching for a suitable task.
For example, a fully specialized robot will work predominantly
on tasks of a single type. An unspecialized robot, on the other
hand, can work on the first task it encounters. In this example,
depending on the amount of tasks of each type that are avail-
able in the environment, the specialized robot might spend more
time searching for a suitable task than the unspecialized robot.
Consequently, specialized robots can be less efficient than un-
specialized robots when the tasks of the type in which they are
specialized appear rarely. Therefore, specialization might be
less advantageous in environments where the amount of tasks
of each type and their spatial distribution frequently change.

In this work, robots face a task allocation problem: a robot
must decide whether to engage in a task that it encounters in the
environment. We employ two different strategies for task allo-
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cation. Robots using the selective strategy behaviorally special-
ize by selectively working on a specific type of task, thereby
exploiting the performance improvement achievable through
learning. Robots using the greedy strategy work on any task
they encounter. We study the trade-off between costs and bene-
fits of specialization by comparing the performance of the two
strategies.

This article is organized as follows. In Section 2, we review
related work. In Section 3, we describe how we model learning
in the studied system. In Section 4, we describe the two differ-
ent task allocation strategies that we use to study the costs and
benefits of specialization. In Section 5, we describe the experi-
mental setup that we use in our study. In Section 6, we describe
the experiments and we report and discuss the results. In Sec-
tion 7, we summarize the contributions of this work and present
some directions for future research.

2. Related work

Specialization can be observed in many animals [6, 7]. Es-
pecially animals that live in large groups, such as social insects,
depend on specialization to efficiently organize the individu-
als of the group [1, 6]. Most works that study specialization
in social insects focus almost exclusively on specialization as a
means of increasing task performance by reducing costs that are
not directly related to the task execution itself, such as traveling
between tasks [4]. In most of these works, individuals repeat-
edly perform a subset of tasks without improving in the actual
execution of the tasks [7].

Specialization is widely studied using models that do not
model embodiment, that is, the interactions between the phys-
ical body of the individuals and the environment. Such mod-
els are commonly used when studying the behavior of insect
colonies [7, 4]. Diwold et al. [8] studied the effect of the spa-
tial organization of tasks on specialization by using agent-based
models. In their work, they use reinforced response thresholds
to attain specialization of individuals. The authors found that
the studied systems achieve best performance when tasks are
spatially separated. Note that the simplified model employed by
the authors neither models spatial relationships between agents
nor the cost of movement, that is, the model does not con-
sider either losses of performance due to interference among
multiple robots or losses due to time spent for traveling be-
tween tasks. Recently, Richardson et al. [9] studied a similar,
threshold-based system that models spatiality using a statisti-
cal mechanics approach. The authors report that the more un-
equally labor is distributed among individuals, the higher is the
resilience of the colony to external shocks.

A way of improving task performance, other than by re-
ducing costs not directly related to the task execution itself,
is learning. Higher vertebrates are known to exploit this type
of improvement by behavioral specialization [10]. On the other
hand, it is disputed if improvements of this kind can be observed
in social insects [11]. In robotics, improving performance by
learning is certainly possible, albeit complex to implement. See
Panait and Luke [12] for a survey of works on learning in multi-
agent systems.

Even though some works exist that study specialization in
terms of adapting behavior, few actually model or simulate spa-
tiality and costs of specialization. Li et al. [13] studied division
of labor and specialization in an initially homogeneous swarm,
using a microscopic model that represents robots as separate
probabilistic finite-state machines. In their work, robots be-
haviorally differentiate by assuming different roles in a stick-
pulling experiment. The study confirms the observation that,
in social insect colonies, specialization usually does not occur
if the number of tasks is larger than the number of individu-
als. Hsieh et al. [14] extended the work of Li et al. by study-
ing the system using a macroscopic analytical model based on
continuous-time differential equations. Their results show that
specialization might not be advantageous if the task-related pa-
rameters of the problem, such as the number of tasks in the en-
vironment, are known. If, on the other hand, there exists some
uncertainty about these parameters, specialization is advanta-
geous. Jones and Matarić [15] studied a foraging problem in
which each individual specializes in foraging for one of two
possible food types. The study shows that after a transition pe-
riod the ratio of individuals specialized on either of the two food
types matches the ratio of the food types in the environment.
Murciano et al. [16] studied a system in which agents can spe-
cialize in foraging for one of two types of objects by learning
an affinity for these types. The work uses reinforcement learn-
ing for adapting the behavior of the robots so that the ratio of
robots specialized in foraging for either type of object matches
the ratio of object types present in the environment.

A task frequently considered in studies on division of labor
and specialization in a multi-robot system is foraging for en-
ergy. A common scenario is the study of two opposing be-
haviors: resting and foraging. The behaviors exhibit different
costs and benefits in terms of energy: resting consumes little en-
ergy and does not yield energy, while foraging consumes large
amounts of energy but can possibly yield energy by harvest-
ing food items. The robots have to adapt their behavior in or-
der to optimize their collective energy level. Labella et al. [17]
found that, in their system, robots effectively divide into active
and passive foragers. Liu et al. [18] studied a similar system
that employs four different foraging strategies. Also this sys-
tem exhibits an effective division of labor. Recently, Ikemoto
et al. [19] proposed an adaptive mechanism for division of la-
bor in a swarm of robots. The mechanism proposed divides
the swarm into distinct groups that behaviorally specialize in a
certain task.

3. Model of tasks, learning, and forgetting

In this section, we describe the type of tasks that must be
executed by the robots of the swarm, and the effect that learning
has on the performance of the robots.

We consider an instance of the single task/single robot task
allocation problem [20]. That is, a task is carried out by a single
robot, and a robot can work on a single task at a time. Also,
robots can carry out tasks independently of each other.

The experimental environment that we consider consists of
an arena that can be explored by the robots. A certain num-
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ber of tasks are situated in specific locations within the arena.
Robots can carry out a task when they are at the location of
the task. Tasks appear stochastically with spatial and tempo-
ral distributions that are unknown to the robots. The goal of the
swarm is to maximize its performance, measured as the number
of tasks completed in a given period of time.

More specifically, we consider an environment in which
robots can choose between two tasks: blue tasks and green
tasks, denoted by τx with x ∈ {b, g}. To carry out a task, a
robot has to reach the location of the task and stay there for a
given amount of time, after which the task is completed.

While carrying out tasks, robots learn. To implement learn-
ing, we use a simple model that captures its most relevant ef-
fect on the performance of the robots: a robot that repeatedly
performs a task of a certain type will become more efficient in
performing other tasks of the same type. This simple model
allows us to draw general conclusions on behavioral specializa-
tion without implementing any specific learning technique.

We also implement a form of forgetting: if a robot has im-
proved its performance on a given task, and then either starts to
work on another type of task or does not work on any task for
some time, it loses part of its performance improvement for the
first task type.

It is important to note that even though we refer to learning
and forgetting with terms borrowed from studies of memory
in humans or other animals, learning and forgetting can result
from other processes. Examples are the morphological adap-
tation caused by muscle growth and loss (hypertrophy and at-
rophy) or the acquisition or loss of specialized tools. We keep
our model of learning and forgetting deliberately coarse so that
it can be used to describe any process that can cause improve-
ment or degradation of task performance.

3.1. Learning

In our system, each time a robot executes a task, the robot im-
proves its performance on that type of task by a given amount.
This amount is not constant. We model the improvement in
task performance analogously to what can be observed in natu-
ral systems: it increases rapidly for the first repeated executions
of tasks of the same type, and reaches a plateau with further rep-
etitions [11]. The improvement in task performance consists of
a reduction of the task completion time wx, that is, the time it
takes to complete a task of type τx:

wx(nx) =


wstd if nx = 0

wstd − wstd

k (1 + e−nx+c)
if 0 < nx ≤ nmax

(1)

with x ∈ {b, g}. The meaning and effect of the parameter k and
the constant c will be explained in the following. The counter nx

is incremented on the completion of a task of type τx, while, at
the same time, the opposing counter ny for task type τy, with y ,
x, is decremented (this is a form of forgetting; it is explained in
detail in Section 3.2). Both counters are limited to the interval
[0, nmax]. For example, if a robot has exclusively worked on
tasks of type τb its counters are nb = nmax and ng = 0.
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Figure 1: The graph shows the effect of learning on the task completion time
wx for different values of the parameter k. Learning takes effect when a robot
repeatedly works on the same type of task. Here, the standard task completion
time in the unlearned state wstd is 120 s. The parameter k influences the time
gain of learning. The values k = {1.25, 1.67, 2.5, 5} shown here correspond to
20%, 40%, 60% and 80% of wstd at nmax, respectively.

The standard task completion time is denoted with wstd; it is
the time a robot takes to perform a task τx, when its nx = 0.
Note that in this work we use the same wstd for both task types
in order to reduce the number of parameters of the system.

The factor k is used to vary the maximal time gain attainable
through learning. This gain of learning is reached after a robot
has successively completed nmax tasks of the same type. For
convenience, we refer to the resulting minimal task completion
time attainable by a fully learned robot as wmin = wx(nmax).
Note that the parameter k is independent of wstd, for example,
k = 1.25 always results in a maximal time gain of 80%.

The constant c = nmax/2 renders the function wx(nx) point-
symmetric on the median of the interval [0, nmax], that is, a robot
reaches 50% of the time gain attainable through learning after
performing nx = nmax/2 tasks of type τx.

Fig. 1 shows a graphical representation of the learning model.

In the rest of the article, we refer to a specific setting of nb

and ng as the learning state of a robot. The learning state thus
designates the state of learning of a robot with respect to the
two task types. Furthermore, we refer to the state nx = nmax as
the maximal learning state for tasks of type τx (i.e., the robot
has learned the best task execution possible), and to the state
nx = 0 as the unlearned state for tasks of type τx (i.e., the robot
has not learned anything for this task type). In this article, we
assume that the robots of the swarm are homogeneous at the
beginning of the experiment with nb = ng = 0, that is, all robots
are initialized to the unlearned state.

3.2. Forgetting
In our learning model we also include the degradation of task

performance, which we call forgetting. We implement forget-
ting as follows. First, when improving its performance on a
certain type of task τx due to learning, a robot forgets what it
learned previously about the other task type, that is, upon incre-
menting nx, we decrement ny, with y , x. Second, a robot that
keeps searching for tasks of a certain type gradually decreases
its performance for both task types, that is, upon traveling for
a distance d f , the counters nb and ng are both decremented by
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1 (to a minimum of 0). This mechanism causes the robots to
return to an unlearned state over time.

Forgetting can be observed in many natural systems, as it
can improve the efficiency of individuals. Individuals have to
spend energy in order to maintain adaptations, be it muscle- or
memory-based. In case these adaptations are not advantageous
in the current situation of the individual, it is beneficial for the
individual to discard them to save energy. It has been shown
that forgetting can also improve the performance of artificial
systems such as robotic swarms [21].

4. Task allocation strategies

In this section, we explain the two strategies that are used by
the robots of the swarm for allocating tasks. Robots using the
selective strategy select among the tasks they encounter. This
allows the robots to specialize in a certain type of task in or-
der to exploit the performance improvement available through
learning (see Section 3). Robots using the greedy strategy do
not select among the tasks but work on any task they encounter.

4.1. Selective strategy
Robots using behavioral specialization adapt their behavior

so that they work selectively on a certain type of task. Behav-
ioral specialization therefore depends on the strategy used by
the robots to allocate tasks. In this work, the robots employ
a simple stochastic strategy to decide whether to accept a task
they encounter in the environment. The strategy is fully dis-
tributed and requires no communication between robots, as it
depends only on the robots’ memory of the previously com-
pleted tasks. In the following, pg denotes the probability that a
robot accepts a task of type τg upon encountering it. The robot
computes pg as a function of the memory counter m of previ-
ously completed tasks:

pg(m) =
1

1 + e−γm , (2)

with γ being a parameter that defines the steepness of the prob-
ability curve, referred to as task acceptance modifier. As the
name indicates, γ influences the probability with which a robot
accepts tasks of the same type: higher values of γ require a
lower amount of tasks to be completed in order to reach the
maximum probability, that is, the function pg(m) approximates
a step function. The memory counter m of completed tasks is
initialized to 0 at the beginning of the experiment. The robot
increments m upon the execution of a task of type τg, and decre-
ments it upon the execution of a task of type τb. The value of m
is limited to the interval [−10, 10]; therefore, a robot has to per-
form 20 tasks of type τb to change from being fully specialized
in τg (m = 10) to being fully specialized in τb (m = −10).

Note that, because in this article we only consider two differ-
ent types of tasks, we can compute the probability of the robot
to work on tasks of type τb as pb = 1 − pg. As a result, robots
that worked repeatedly on one type of task adapt their behav-
ior so that they reject with an increasing probability tasks of
the other type. A robot reaching a state in which it works ex-
clusively on a single task type τx is called a specialist for τx

(i.e., px ' 1 and py ' 0, with y , x). Analogously, a robot
that has no behavioral preference in task acceptance is called a
generalist (i.e., pb = pg ' 0.5).

If a robot does not accept to work on a task it encounters, it
continues searching for tasks by performing a random walk. In
order to prevent dead-locks in the form of robots specialized in
a type of task that is not available in the environment, robots for-
get their behavioral specialization while searching. This func-
tionality is implemented by decreasing |m| whenever the robot
traveled for a distance d̂ f . More specifically, m is decremented
by 1 in case of m > 0 and incremented by 1 in case of m < 0.
As a result, the probability px of a robot approaches 0.5 for
both tasks, that is, the robot returns to a generalist behavior
while searching for tasks. In order to reduce the number of pa-
rameters of the system, we set the forgetting distance d̂ f of the
selective strategy to the forgetting distance d f of the learning
model.

The function described in Eq. 2 leads to the specialization of
the robot to a specific task as follows. By performing a task
of type τx, a robot increases its probability px to execute again
tasks of this type. This causes the robot to repeatedly work
on tasks of the same type (if available), thereby becoming a
specialist for this type of task. Conversely, if a robot travels for
a distance d̂ f without performing any task or if it performs tasks
of the other type τy, with y , x, the probability of accepting
tasks of type τx decreases.

4.2. Greedy strategy

Robots using the greedy strategy start to work on any task
they encounter. Therefore, they do not behaviorally specialize
on any of the task types and do not exploit the performance im-
provement available through learning. When a robots uses the
greedy strategy, the probability to accept tasks is pb = pg = 1.
Note however that, even though task allocation in the greedy
strategy is random, robots can still improve their performance
by learning; this is the case when a robot happens to work pre-
dominantly on tasks of the same type.

The greedy strategy provides a performance reference for
comparison with the selective strategy. As robots using the
greedy strategy do not specialize behaviorally, the direct com-
parison between the results of swarms using the two strategies
allows us to evaluate the performance improvement available
through behavioral specialization.

5. Experimental setup

In this section, we describe the setup of the experiments that
we use to evaluate the costs and benefits of behavioral special-
ization. In the following, we describe the robots we use for the
experiments, as well as the method used to represent the tasks
that have to be performed by the robots. We assume the model
of learning and forgetting presented in Section 3. Additionally,
we present details about the simulation environment, the con-
troller of the robots, and the arena employed in the experiments.
Finally, we discuss the metrics we use for measuring diversity
and specialization in the swarm.
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Proximity sensors (8)

Wheel actuators
(max. 8 cm/s)

Color camera

IR rays

Figure 2: The e-puck robot. Left: A picture of the real robot. Right: The e-puck
as represented in simulation.

Light barrier

RGB LEDs

E-puck robot
entering a TAM

TAM

Figure 3: A device, called task allocation module (TAM), used for abstracting
the tasks that have to be performed by the robots. Left: A photo of the real de-
vice. Right: Functional schematics of a TAM. The light barrier detects a robot
entering into the TAM. Upon the detection of a robot, the TAM reacts by chang-
ing the color of its LEDs following a user defined logic. In our experiments,
the different task types are encoded by the LED color of the TAM.

5.1. Robot

In the experiments presented in this paper, we simulate
the commercial robot called e-puck1. The e-puck is a small
wheeled robot, designed to be a research and educational tool
for university students [22]. The e-puck features 8 infra-
red proximity sensors that can also be used as light sen-
sors, a forward-facing color camera (with a resolution of
640×480 pixels), 8 red LEDs and the wheel actuators. In the
experiments presented in this article, we employ the wheel actu-
ators (with a maximum speed of smax = 8 cm/s), the proximity
sensors for obstacle avoidance, and the camera for the detection
of tasks. Note that the e-puck does not have any manipulation
capabilities.

5.2. Task abstraction

In order to overcome the lack of manipulation capabilities of
the e-puck, we abstract the tasks that the robots can perform
with a device called task allocation module (TAM) [23]. Fig. 3
illustrates the basic functionality of a TAM. Each TAM features
a light barrier and two RGB LEDs. The LEDs can be perceived
by a robot using its color camera. The robot can navigate to the
TAM and enter it. The presence of a robot can be detected by
the TAM using its light barrier. Upon the detection of a robot,
the TAM reacts by changing the color of its LEDs following a
user defined logic. TAMs can represent the interaction between
the e-puck robot and the environment in many different settings,
for example tasks that need to be executed by the robots [5] or
material that needs to be transported [24].

1http://www.e-puck.org/

In our experiments, each TAM represents one of the two types
of tasks, τb and τg. The type of the task is encoded by the color
of the LEDs of the TAM. Thus, a robot can perceive which type
of task a TAM represents. If a robot enters a TAM, it is con-
sidered to work on the corresponding task. The TAM acknowl-
edges the robot’s presence by temporarily changing the color of
its LEDs to red. The robot remains inside the TAM for the time
wx required to complete the task. This time is, in general, dif-
ferent from robot to robot, as it depends on the robot’s learning
state, regulated by the learning model explained in Section 3.
After the robot has completed the task and has left, the TAM
stochastically selects the type of the next task (i.e., the color).
Thus, a TAM is always representing a task, that is, there are no
idle TAMs.

We can change the distribution of task types in the environ-
ment by modifying the probability with which a TAM selects
the type of a new task. Note that a change of this probability
affects the distribution of the tasks only after a certain amount
of time has elapsed, as a TAM only generates a new task af-
ter the previous task has been completed. We refer to the ratio
of the blue tasks in the environment as task ratio, defined as
r = |τb|/T with T = |τb| + |τg| being the total number of TAMs,
which equals the total number of tasks concurrently available
in the environment.

5.3. Simulation tools

In the following we describe the tools we employ to simu-
late a swarm of e-puck robots and the tasks represented by the
TAMs. More specifically, we describe the simulation framework
used, the controller of the robots, and the arena.

5.3.1. Simulation framework
The work presented here has been carried out using the

ARGoS simulation framework [25]. ARGoS is a discrete-
time physics-based simulation framework developed within the
Swarmanoid project [26].2 ARGoS is open source and can be
freely used for other research projects.3 It can simulate various
robots at different levels of detail. The experiments presented in
this work are carried out in a 2-dimensional kinematics-based
simulation. ARGoS simulates the whole set of sensors and ac-
tuators available on the e-puck. The TAM, including its sensors
and actuators, is also simulated in ARGoS.

5.3.2. Robot controller
In our experiments, the two task types τb and τg are repre-

sented by the TAMs using blue or green LEDs, respectively.
The robots can perceive tasks within a limited distance using
their camera, and recognize their type by their color. Fig. 4
shows the behavior of the robots when using the selective strat-
egy. A robot performs a random walk to search the environment
for tasks that need to be executed. In case the robot encounters
another robot or static obstacles, it performs an obstacle avoid-
ance maneuver (the corresponding state has been omitted from

2http://www.swarmanoid.org/
3http://iridia.ulb.ac.be/argos/
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Figure 4: Finite state machine describing the behavior of the robots when using
the selective strategy. Light rectangles represent actions executed by the robot,
dark rectangles show the effect of learning and forgetting on the robot. A robot
accepts a task it encounters with probability px (see Eq. 2).

Fig. 4). When a robot perceives a task τx, it applies its associ-
ated task allocation strategy as described in Section 4. In case
the robot uses the selective strategy, it has an associated prob-
ability px to start to work on the perceived task (see Eq. 2). In
case the robot uses the greedy strategy, it starts to work on any
task it perceives. Each robot is subject to the learning and for-
getting mechanisms described in Section 3. The controller is
behavior-based, that is, it is composed of several modules, each
of which controls a distinct behavior of the robot. All the robots
of the swarm use an instance of the same controller and start in
an unlearned state (see Section 3).

5.3.3. Environment
The environment consists of an obstacle free, hexagonal

arena (see Fig. 5). The tasks to be performed are represented
by TAMs at the boundaries of the arena. Each of the six sides
of the arena consists of 4 TAMs, for a total of T = 24 tasks con-
currently available in the environment. The distance between a
TAM and the one facing it on the opposite side of the arena is
104 cm. This distance is such that a robot that leaves a TAM
cannot directly perceive the tasks of the TAM situated diamet-
rically. This guarantees that a robot has to spend some time
searching before encountering another task.

5.4. Measures of diversity and specialization
In the following we describe the measures we use for evalu-

ating diversity and specialization in the swarm.

5.4.1. Diversity in the learning states
In the context of this article, we define the diversity of a

swarm in terms of the diversification of the learning states
among the robots of the swarm (see Section 3.1). This allows
us to compare the diversity of a swarm using the selective strat-
egy, that exploits the improvements available through learning,
to the diversity of a swarm using the greedy strategy, that does
not exploit the improvements available through learning. In or-
der to measure the diversity in the swarm, we use the hierarchic

1
0

4
 c

m

60
 c

m

Figure 5: Representation of the arena with e-pucks at random initial positions.
Tasks are represented by the TAMs which are located at the boundaries of the
arena, with a total of T = 24 tasks concurrently available in the environment.
Each TAM stochastically selects which type of task it represents, that is, task
types appear stochastically in time and space.

social entropy, as initially proposed by Balch [27]. The hierar-
chic social entropy is based on hierarchical clustering of the
robots and the simple social entropy, which in turn is based on
Shannon’s information entropy [28].

The simple social entropy H measures the diversity of a
swarm depending on a classification of the robots. Let Ch be
a given classification of a swarm R of N robots into M pos-
sibly overlapping subsets ci, with h being a parameter of the
classification method, which is explained in the following. The
simple social entropy H for the classification Ch can be com-
puted as follows. Let the proportion of robots in the ith subset
be pi = |ci|/N. We compute H (i.e., the Shannon index) of the
classification Ch as

H(Ch) = −
M∑

i=1

pi log pi . (3)

The value of the simple social entropy H depends on the clas-
sification Ch and therefore on the method used to derive this
classification. We employ a method that classifies the robots on
the basis of a distance, computed using a given distance metric.
We consider two robots to belong to the same classification Ch

if the distance between them is smaller than a threshold distance
h.

In this article it is relevant to cluster robots according to their
learning state as defined in Section 3.1. Therefore, the distance
metric should reflect the diversity between two robots of the
swarm. To this end, we define the distance metric d as the Eu-
clidean distance between the learning state of two robots ρ1 and
ρ2:

d(ρ1, ρ2) =

√
(nb1 − nb2 )2 + (ng1 − ng2 )2 , (4)

with nb and ng being, for both robots, the number of tasks, per-
formed in the last nmax executions, of type τb and τg, respec-
tively.
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Table 1: Examples for the value of the F measure for different tasks sequences

Task sequence F Interpretation

τgτgτgτgτgτgτgτg 1 Fully specialized robot
τgτbτgτbτgτbτgτb ∼ −1 Systematic switching
τbτbτgτbτgτgτgτb 0 Random task allocation

As mentioned above, H(Ch) is the simple social entropy for
a classification of robots derived using the parameter h. In or-
der to remove the dependency of the simple social entropy on
this parameter, we can integrate over it and obtain the so-called
hierarchic social entropy:

D(R) =

∫ ∞
0

H(Ch) dh . (5)

The value of the hierarchic social entropy D(R) measures the
diversity of a swarm, with higher values designating a higher
diversity and D(R) = 0 indicating a swarm that is completely
homogeneous. See [27] for more detailed information about the
hierarchic social entropy.

5.4.2. Specialization
As behavioral specialization in the swarm is not covered by

the hierarchic social entropy, we require another measure in or-
der to quantify the change in behavior of the robots. We define
two measures that differ in the way they measure the behavior
of the robots. The first one measures specialization in terms of
transitions in the sequence of tasks performed by a robot, while
the second one measures specialization in terms of the internal
task acceptance probability of a robot. The former is referred
to as F measure, and the latter is referred to as P measure.

The F measure is based on the frequency of switches be-
tween task types in the sequence of tasks completed by a robot.
It has been developed by Gautrais et al. in their study of spe-
cialization in insect colonies [7]. The individual measure Fi is
a value in the range [−1, 1], representing the degree of special-
ization of a robot i. For a sequence of Ni tasks, it is computed
as Fi = 1 − (2S i/Ni), where S i is the number of times the robot
i switched between task types. The value of Fi is 1 for a fully
specialized robot, 0 for random task allocation, and -1 for sys-
tematic switching between task types. F is the average over the
values of Fi of all robots of the swarm. Table 1 reports some
examples of task sequences, the corresponding value of F, and
the interpretation of this value. The F measure allows one to
compare the behavior of the robots depending on the sequence
of tasks performed. It is independent of the underlying mech-
anism used by the robots to select the type of the next task to
tackle.

The P measure is based on the internal probability of a robot
to accept a task when encountering it. We consider a robot to be
specialized in a task of type τx if its probability px of accepting
a task of this type, as defined by Eq. 2, is greater or equal to
0.95. P(τx) is the number of robots specialized in task type
τx according to this definition. As the P measure depends on

the internal probability of a robot to accept a task, it is only
applicable to the selective strategy.

Previous works have used measures of specialization differ-
ent from the ones described above. Li et al. define specialization
as positive diversity, that is, diversity that increases the perfor-
mance of the swarm [13]. They base their specialization mea-
sure on the hierarchic social entropy by correlating it with the
global performance of the swarm. This measure cannot cope
with a) the whole swarm specializing in the same task and b)
specialization leading to reduction in performance. O’Donnell
and Jeanne also measure specialization using the Shannon in-
dex [28], but base it on the proportion of the tasks executed by
an agent over the whole set of tasks available [29]. They define
specialization as diversity in task acceptance, similarly to Li et
al., but do not correlate diversity to performance. The measure
cannot detect differences in the order of task acceptance as the
one proposed by Gautrais et al. [7], that is, it cannot distinguish
between the case of a robot switching constantly and a robot
working exclusively first on one, and then on another task. The
shortcomings of the measures used in [13] and [29] and their
different focus led us to use the F measure proposed by Gau-
trais et al. in conjunction with the P measure for quantifying
the behavioral specialization of the robots using the selective
strategy.

6. Experiments

In this section, we describe the experiments that we per-
formed to study the costs and benefits of behavioral specializa-
tion. Additionally, we present and discuss the results of these
experiments.

For our experiments, we use the following parameter set-
tings. For each experimental condition we conduct 20 randomly
seeded runs, for a duration of tmax = 10,000 simulated seconds
each. In general, we measure time t in seconds. The ratio r of
blue tasks is 0.5 unless mentioned otherwise, that is, there is an
equal probability of encountering one of the two types of tasks.
The standard task completion time wstd is set to 120 s for both
task types. The gain parameter of the learning model (Eq. 1) is
set to k = 1.25, with wmin = 24 s. This results in a 80% gain
in task completion time at the maximal learning state, which is
reached after nmax = 12 consecutive executions of the same task
type. The forgetting distance is d f = 300 cm.

The swarm is composed of N = 18 e-pucks, randomly posi-
tioned in the arena at the beginning of each experimental run.
The maximum speed smax of the robots is set to 8 cm/sec. The
robots use the controller described in Section 5.3.2 and one of
the two possible strategies described in Section 4. In case of
the selective strategy, the task acceptance probabilities pg and
pb are both initialized to 0.5, respectively; thus, all robots start
in the unlearned state. The task acceptance modifier of Eq. 2 has
been determined by trial and error in preliminary experiments
and is set to γ = 1 (see on-line supplementary material [30]).

In general, we give a non-parametric description of data by
reporting median and interquartile range (IQR) in the plots. In
case we give numerical results in the text, we report the quar-
tiles of the distribution in the format 25%/50%/75%. In case

7



Table 2: Default parameters of the experiments

Param. Meaning Value

N number of robots 18
T number of concurrent tasks 24
r task ratio 0.5
e number of experimental runs 20

tmax experiment duration 10,000 s

wstd completion time if unlearned 120 s
wmin completion time if fully learned 24 s
nmax tasks required to be fully learned 12

k learning curve parameter (gain) 1.25
d f forgetting distance 300 cm

smax maximum wheel speed 8 cm/sec
p̂g, p̂b initial task acceptance probabilities 0.5

m memory counter of completed tasks [−10, 10]
γ task acceptance modifier 1
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Figure 6: Performance, defined as the total number of tasks completed in the
preceding 1,000 s, shown for each strategy over time. Performance is measured
every 1,000 s. Data collected over 20 experimental runs.

the observations are normally distributed, we provide a para-
metric description by reporting mean and standard deviation. In
this case, and when it is necessary to determine if the difference
between two values is statistically significant, we additionally
report the results of a Welch’s t-test. Table 2 summarizes all pa-
rameters of the environment, the learning model, and the robots.

6.1. Static environment
In the first set of experiments we employ a static environ-

ment, that is, the task ratio remains constant throughout this set.
We use this set to study the basic properties of the system: How
do the two strategies perform, and does specialization occur?

To answer these questions, we first assess if the selective task
allocation strategy presented in Section 4.1 successfully ex-
ploits the performance improvement available through learning.
To do so, we compare the performance of the selective strategy
to the performance of the greedy strategy. Performance is de-
fined as the amount of tasks completed in the preceding 1,000 s;
and we measure it every 1,000 s. Fig. 6 shows the evolution of

Selective strategy
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Figure 7: Histograms reporting, for both strategies, the number of times robots
have completed a task in wx seconds, collected at the steady state (5,000 s ≤
t ≤ 10,000 s). Data collected over 20 experimental runs. Top: almost all robots
using the selective strategy complete their task at the minimal task completion
time, wmin = 24. Bottom: robots using the greedy strategy mostly complete
tasks at high task completion times.

the performance of each strategy over time. In the plot, we re-
port the median of the observation and the interquartile range
(IQR). As it can be seen, after an initial period in which the
swarm specializes, the selective strategy performs better than
the greedy strategy. The observation of the performance for
a given value of t is distributed normally (see supplementary
on-line material [30]); in the following we therefore report the
mean(std). The performance at the end of the experiment is
296.3(10.0) and 146.9(7.8), in case of the selective strategy and
of the greedy strategy, respectively. The performance of the
two strategies is significantly different starting from t = 2,000
(Welch’s t-test with α = 0.05).

Next, we study to which degree the robots learn to work on a
certain type of task. Fig. 7 reports, for both strategies, the num-
ber of times robots have completed a task in wx seconds, col-
lected at the steady state (5,000 s ≤ t ≤ 10,000 s). As the time
wx robots spend working on a task decreases with learning, a
high amount of low task completion times indicates a high de-
gree of learning in the swarm. Fig. 7 (top) shows that for robots
using the selective strategy, most tasks have been completed at
the minimal task completion time, wmin = 24. This indicates
that most robots work at the maximal learning state for one of
the two task type, that is, the robots exploit learning to the full
extent. Fig. 7 (bottom) shows that robots using the greedy strat-
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Figure 8: Scatter plot of the total number of completed tasks per type for each
robot, collected during the course of 20 experimental runs. Top: a swarm using
the selective strategy effectively separates into two behaviorally distinct groups:
one working mostly on τb, and another working mostly on τg. Bottom: The
behavior of the greedy strategy is more homogeneous: the variability of the
number of completed tasks of both types is much smaller than for the selective
strategy. D indicates the value of the hierarchic social entropy; higher values of
D indicate higher differentiation among the learning state of the robots of the
swarm.

egy mostly complete tasks at high task completion times. This
indicates that there is poor or no learning in the swarm. As
task allocation is random when using the greedy strategy, some
robots happen to improve their performance temporarily by re-
peatedly working on the same task type, thereby completing
their tasks in shorter time. Nevertheless, as this behavior is not
systematic, the greedy strategy cannot exploit the advantages
offered by learning in a consistent manner.

Additionally, we study to which degree the robots behav-
iorally specialize in one of the two tasks. Fig. 8 shows a scat-
ter plot of the total number of completed tasks per type for
each robot during the course of the experiment. We also re-
port the value of the hierarchic social entropy D as defined
in Section 5.4. Fig. 8 (top) shows that when using the selec-
tive strategy, the swarm effectively separates into two behav-
iorally distinct groups: one working mostly on τb, and another
working mostly on τg. Fig. 8 (bottom), on the other hand,
shows that the behavior of the swarm using the greedy strategy
is more uniform: the variability of the number of completed
tasks of both types is much smaller than for the selective strat-
egy. Comparing the hierarchic social entropy D, the robots us-
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Figure 9: Performance, defined as the total number of tasks completed in the
preceding 1,000 s, shown for each strategy over time. Performance is measured
every 1,000 s. Data collected over 20 experimental runs. The initial task ratio
is r = 0.5, and is changed to 0.2 at t = 5,000 s (gray vertical line).

ing the selective strategy have a low hierarchic social entropy
than the robots using the greedy strategy, which have a much
higher hierarchic social entropy (D = 4.22/22.18/47.22 and
D = 155.30/190.65/238.25, respectively). This reflects the de-
gree of learning in the swarm as shown in Fig. 7: In case of the
selective strategy, the robots fall into two distinct groups; dif-
ferently, in case of the greedy strategy, random task allocation
results in diverse learning states in the swarm.

Fig. 7 and Fig. 8 highlight the diversity and specialization
observed in the swarm. The results explain the difference in
performance observed in Fig. 6: even though all robots equally
benefit from the advantages of learning, only the strategy that
behaviorally specializes can successfully exploit these advan-
tages.

6.2. Time-variant environment

In the second set of experiments we assess whether the ben-
efits of behavioral specialization are affected by changes in the
task ratio. To this end, we use an environment in which the task
ratio changes over time. The initial task ratio is r = 0.5; when
the experiment reaches half of its total duration, the task ratio
is changed to r = 0.2, that is, tasks of type τg are predominant.

Again, we compare the performance of the selective strategy
to the performance of the greedy strategy. Performance is de-
fined as the amount of tasks completed in the preceding 1,000 s;
and we measure it every 1,000 s. Fig. 9 shows the evolution of
the performance of each strategy over time. In the plot, we re-
port the median of the observation and the interquartile range
(IQR). The observation of the performance for a given value of
t is again distributed normally (see supplementary on-line ma-
terial [30]); in the following we therefore report the mean(std).
Comparing the performance of the two strategies, we can make
the following observations. At t = 5,000 s, the performance
is 279.0(14.8) and 137.4(5.1) for the selective and the greedy
strategy, respectively. This clearly replicates the results of the
first experimental set. At the end of the experiment, on the
other hand, the performance of the two strategies is 290.6(14.4)
and 248.5(7.2), again for the selective and the greedy strategy,
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Figure 10: Specialization in the swarm. Top: F measure for both strategies.
Bottom: P measure for the selective strategy only. Both measures are computed
every 1,000 s for the preceding 1,000 s. Data collected over 20 experimental
runs. The initial task ratio is r = 0.5, and is changed to 0.2 at t = 5,000 s (gray
vertical line).

respectively. The results show that, at the end of the exper-
iment, the selective strategy reaches a performance compara-
ble to its performance before the change of the ratio, while the
greedy strategy almost doubles its performance. In all cases
with t ≥ 2,000, the performance of the two strategies is sig-
nificantly different in favor of the selective strategy (Welch’s
t-test with α = 0.05). We speculate that the increase in perfor-
mance of the greedy strategy is due to the fact that one type of
task is predominant in the environment. If a single task type is
predominant in the environment, it is more likely that a robot
working on random tasks works more often on the same type of
task, thereby benefiting from the effect of learning.

In order to study the cause of the observed changes in per-
formance, we evaluate the results by using the metrics F and
P. Both measures are computed every 1,000 s for the preced-
ing 1,000 s. The measures are not normally distributed (see
on-line supplementary material [30]); we therefore report the
interquartile range (IQR).

Fig. 10 (top) reports the specialization measure F for both
strategies. The F measure confirms that robots using the se-
lective strategy specialize well, as the value of F is close to 1
before the change of the task ratio. Note that F never reaches
1, which would be the case if there were no transitions at all.
This is due to the fact that the selective strategy is based on a

stochastic rule. Therefore, a robot may perform a task of one
type even if it is fully specialized in the other. After t = 5,000 s
the value of F changes: it decreases as the number of transi-
tions per robot increases. This indicates that some of the robots
using the selective strategy de-specialize from their current task
type and specialize in the other type. At the end of the experi-
ment, the swarm reaches again a high degree of specialization.
Differently, the greedy strategy does not lead to specialization
of the robots; the value of F is ∼0 for the first part of the ex-
periment, that is, task allocation is random. The higher value of
F for the greedy strategy in the second part of the experiment
reflects the higher availability of tasks of type τg in the envi-
ronment. As robots are more likely to encounter tasks of type
τg, the number of transitions in the task sequence of a robot de-
creases, and the value of F increases in turn. This confirms our
speculation above: the performance of the greedy strategy ob-
served in Fig. 9 is a result of the reduced number of transitions,
which lets the robots benefit more frequently from the effect of
learning.

Fig. 10 (bottom) reports, for the selective strategy only, the
number of robots specialized in the two types of tasks, using the
measure P. The plot shows that before the change of the task
ratio, approximately half of the swarm is specialized in one of
the two task types and the other half on the other task type,
which matches the task ratio. At time t = 5,000 s the task ratio
is changed to r = 0.2 in favor of τg. As it can be seen in the
plot, some of the robots de-specialize from τb and subsequently
specialize in τg. At the end of the experiment, the number of
robots specialized in τb and τg is 4 and 14 respectively, again
matching the task ratio.

In summary, we can say that the benefits of behavioral spe-
cialization depend on the distribution of the tasks in the envi-
ronment.

6.3. Periodically changing environments
The results presented above indicate that changes in task ra-

tio have a strong effect on the benefits of behavioral specializa-
tion. In the third experimental set, we therefore aim at studying
this effect more closely by periodically changing the ratio of
tasks as follows. Every ∆t seconds, we alternate the task ra-
tio between two values, r1 and r2. ∆t is taken from the set
{100, 1,200, 5,000} seconds, and the two ratios r1, r2 are taken
from the interval [0.1, 0.9] in steps of 0.1. We only evaluate
the cases in which r1 > r2; as we alternate between the two ra-
tios, cases in which r1 < r2 would give analogous results. We
conduct 20 experiments for each of the possible combinations
of the parameters ∆t, r1, and r2. Fig. 11 shows the result for
environments that change frequently (every ∆t = 100 s, left),
moderately often (every ∆t = 1,200 s, middle) and rarely (ev-
ery ∆t = 5,000 s, right).

Fig. 11 (left) shows that in case of frequent changes in task
ratio, the selective strategy performs significantly better than
the greedy strategy in all tested cases (Welch’s t-test with α =

0.05). This is due to the fact that the period between changes
of the task ratio is shorter than the standard task completion
time (∆t < wstd). This results in an environment that remains
effectively well-mixed: as changes in task ratio only have an
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which strategy is better and whether the difference is statistically significant or not (see symbols in the legend). Data collected over 20 experimental runs.

effect after a task has been completed, all types of tasks are
available in the environment at any given time. Thus, the robots
using the selective strategy can fully exploit learning.

Fig. 11 (middle) shows the case in which the ratio changes
every ∆t = 1,200 s = 10 wstd. This ensures that the ratio
changes after most robots using the selective strategy have be-
haviorally specialized in a given task type. Therefore, among
the three considered cases, this is the most difficult for the se-
lective strategy. The plot shows that differences in performance
between the selective strategy and the greedy strategy are gen-
erally smaller than in the case of ∆t = 100 s. In case one of
the two ratios is close to the extremes of task distribution (i.e.,
r = 0 or 1), the greedy strategy performs significantly better
than the selective strategy. This suggests that in environments
in which the task ratio can change abruptly from one extreme to
the other, strategies using specialization are not advantageous.

Fig. 11 (right) shows the case in which the ratio changes
every ∆t = 5,000 s, which is the setting we adopted in the
set of experiments presented in Section 6.1 (for r1 = 0.5 and
r2 = 0.8). The plot shows that the selective strategy is signifi-
cantly better than the greedy strategy across the whole range of
the ratio, excluding the extreme cases. This suggests that strate-
gies using specialization are advantageous in environments that
rarely change. This is consistent with the results presented in
Section 6.1.

Upon analyzing all three plots in Fig. 11, we notice that they
are approximately symmetric across the diagonal. This indi-
cates that the impact of the ratio change on the performance
of the selective strategy does not depend on the absolute value
of the two ratios, but rather on the difference between the two
ratios |r1 − r2|. This difference defines how many specialists
need to re-specialize after a change so that the distribution of
specialists matches again the distribution of tasks. The second
factor that influences the difference in performance is the abso-
lute distance of one of the ratios from the equal task distribution
(|r − 0.5|). Differently from what we might expect, this is not
due to an environment disadvantageous for the selective strat-
egy. Quite on the contrary, the difference in performance is
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Figure 12: Performance measured as the total number of tasks completed by
the end of the experiment, shown for each strategy for different swarm sizes
N ∈ [1, 40]. Data collected over 20 experimental runs.

smaller because the greedy strategy benefits from the effect of
learning in case one of the task types is more common than the
other. As mentioned above, this effect can also be observed in
Fig. 9.

In summary, we can conclude that behavioral specialization
is advantageous in most cases of time-variant task distributions.
Nevertheless, in the worst case, strategies employing behavioral
specialization can exhibit drastic changes in performance. This
confirms the speculation from our previous work [5] that behav-
ioral specialization might be sensitive to changes in task distri-
bution, and is prone to failure in the most extreme cases.

6.4. Scalability

In the next set of experiments we study whether a strategy
exploiting behavioral specialization scales well. To this end, we
run 20 experiments for each swarm size N ∈ [1, 40] (in steps of
1) without changing the size of the arena, again for a duration of
tmax = 10,000 simulated seconds each. Fig. 12 shows the total
number of tasks completed by the two strategies. The swarm
size has a strong impact on the performance of both strategies
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Figure 13: Specialization and diversity shown for each strategy for different
swarm sizes N ∈ [20, 30], collected over 20 experimental runs. Left: F mea-
sure, indicating the number of transitions in the task sequence of a single robots.
Right: hierarchic social entropy D, with higher values indicating higher diver-
sity among the robots of the swarm.

due to an effect commonly known as interference [31]: with
increasing robot density, the individual performance decreases
as robots increasingly interfere with each other. As a result, the
performance of both strategies in Fig. 12 plateaus for a large
number of individuals.

Additionally, the increasing number of robots of the swarm
has a strong effect on the performance of the selective strategy
even for smaller numbers of individuals. Fig. 12 shows that the
performance peaks around N = 20 and reduces to the perfor-
mance of the greedy strategy for swarm sizes N > 24. Con-
sidering that the total number of tasks concurrently available
in the environment is T = 24, we speculate that the advantage
of specialization depends on the relation between the swarm
size and the number of concurrent tasks. As we did not test
for different values of T , the evidence for such a dependency
is non-conclusive and warrants for further examination. A pos-
sible explanation for such a dependency could be competition
among robots: if competition for tasks is high, which is the case
when there are more robots than tasks available in the environ-
ment, robots might go without working on a task for a long
time, forgetting their behavioral specialization in the process.

The selective strategy fails gracefully because its worst per-
formance is comparable with the performance of the greedy
strategy. This result is in accordance with the finding presented
by Li et al. [13].

In order to study the range of swarm sizes around the peak
in performance more closely, Fig. 13 reports the F measure and
the hierarchic social entropy D for N ∈ [20, 30]. As we can see
in Fig. 13 (left), the value of F for robots using the selective
strategy decreases for increasing N until it reaches the level of
the greedy strategy. This indicates that the number of transi-
tions in the task sequence increases for robots of larger swarms.
This is most likely due to the fact that the robots forget experi-
ences previously learned while continuously searching for tasks
due to over-competition. This is confirmed by Fig. 13 (right):
The diversity of the robots using the selective strategy increases
around N = 25, which indicates that some of the robots can
maintain specialization, while others cannot. For larger swarm
sizes, the diversity of the robots using the selective strategy de-
creases again, as competition becomes so high that none of the

robots of the swarm can specialize in a specific type of task.

6.5. Costs and benefits of specialization

In the last set of experiments we study whether specializa-
tion, which clearly has benefits in terms of task performance,
entails costs that hinder the performance of the swarm. The as-
sumption is that a robot specialized for a certain task spends
more time searching for it. Thus, specialists might be less ef-
ficient than generalists, which spend less time searching for a
suitable task to perform. In order to study the trade-off be-
tween costs and benefits, we vary the costs (search time of
the robots) and benefits (the minimal task completion time in
the maximal learned state). We vary the search time of the
robots by changing the wheel speed s used while searching
from 10% to 100% of the maximum speed smax, in steps of
10%. This corresponds to changing the size of the environ-
ment and therefore the distance between tasks without affect-
ing robot density, which would entail changes in performance
due to interference [31]. We vary the minimal task completion
time wmin from a minimum of 10% to a maximum of 100%
of the standard task completion time wstd, in steps of 10%
(k = {10, 5, 3.34, 2.5, 2.0, 1.67, 1.43, 1.25, 1.11}).

The observation of the total number of completed tasks at
the end of the experiment is distributed normally (see supple-
mentary on-line material [30]). The standard deviation is < 5%
for all tested cases, therefore in the following we report only
the mean. Fig. 14 (left) reports the mean of the total number
of completed tasks, using the selective strategy (white surface)
and the greedy strategy (dark surface), for different values of
the search speed s and of the minimal task completion time
wmin. Fig. 14 (right) shows, for all combinations, the difference
between the mean number of tasks completed by the two strate-
gies by the end of the experiment (shades of gray), and if this
difference is statistically significant or not (see symbols in the
legend).

The plot on the left of Fig. 14 shows that the greedy strategy
is less affected by changes of the two parameters. The change
of the minimal task completion time has almost no effect on the
performance of the greedy strategy as it does not behaviorally
specialize and thus does not benefit from the effects of learn-
ing in a consistent manner. Moreover, the performance of the
greedy strategy is only slightly affected by the search speed as
the number of tasks concurrently available in the environment
remains constant and robots using this strategy accept every
task they encounter. The performance of the selective strategy,
on the other hand, varies considerably in relation to the value
of the two parameters, highlighting costs and benefits of spe-
cialization. The plot on the right shows that when the minimal
task completion time wmin is greater than 80% of the wstd or the
wheel speed s is 10% of the maximum speed smax, the greedy
strategy performs better than the selective strategy.

This confirms our assumption that robots specializing in a
certain task are prone to losing efficiency due to high costs of
behavioral specialization, for example, longer search times. Be-
havioral specialization is therefore not to be considered in terms
of benefits only, as it is affected by external factors such as task
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availability and the spatial distribution of the tasks, which might
lower its benefits considerably.

7. Conclusions

Behavioral specialization is common in the organization of
large groups of individuals such as humans or social insects, as
it has many advantages, an important one being that it allows
individuals to exploit improvements in task performance due to
learning. However, specialization can also entail costs: special-
ists may need to spend more time searching for their tasks than
generalists.

To study behavioral specialization, we considered a system
in which robots can perform two types of tasks, available in the
environment with spatial and temporal distributions that are un-
known to the robots. Robots improve their task performance
upon repetition: this simplified learning model allows us to
draw general conclusions on behavioral specialization without
the need of implementing an actual learning technique.

We employed two simple task allocation strategies to study
the system: a strategy in which robots select among the avail-
able tasks in order to exploit learning by behaviorally special-
izing in a certain type of task, and another strategy in which
task allocation is random. We studied the system in simulation-
based experiments, focusing on its response to changes in the
distribution of task types. Additionally, we studied its behav-
ior under various conditions that affect the costs and benefits
of specialization. Results indicate that spatial effects, such as
interference among robots, have a major influence on the costs
and benefits of specialization. We identified cases in which the
costs of specialization overcome its benefits. A task allocation
strategy that does not use specialization is preferable in these
cases. The results also suggest that behavioral specialization is
not advantageous in environments that are highly time-variant,

as specialists may not be fast enough to adapt to changes in the
distribution of tasks.

There are several possible directions for future research.
One is the study of specialization in swarms of heterogeneous
robots, where benefits and costs of specialization are linked to
morphological differences between robots. These differences
can be explicit (e.g., different capabilities or equipment) or im-
plicit (e.g., heterogeneity due to production tolerances of the
hardware [17]). Another direction is the implementation of
learning as an actual improvement of the task-related perfor-
mance of the robots as opposed to the modeling of the improve-
ment in an abstract way as presented in this paper. A third pos-
sibility for future research is to study the influence of different
characteristics of the task types on the benefits of specializa-
tion, such as tasks that exhibit dependency among them (e.g.,
task types that require a certain order of execution or task types
that require concurrent cooperation of multiple robots, similar
to the study presented by Li et al. [13]).
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A. Stranieri, T. Stützle, V. Trianni, E. Tuci, A. E. Turgut, F. Vaussard,
Swarmanoid: a novel concept for the study of heterogeneous robotic
swarms, IEEE Robotics & Automation Magazine (2012), in press.

[27] T. Balch, Hierarchic social entropy: An information theoretic measure of
robot group diversity, Autonomous Robots 8 (2000) 209–237.

[28] C. E. Shannon, The Mathematical Theory of Communication, University
of Illinois Press, Champaign, IL, 1949.

[29] S. O’Donnell, R. L. Jeanne, Forager specialization and the control of nest
repair in polybia occidentalis olivier (hymenoptera: Vespidae), Behav-
ioral Ecology and Sociobiology 27 (5) (1990) 359–364.

[30] A. Brutschy, N.-L. Tran, N. Baiboun, M. Frison, G. Pini, A. Roli,
M. Dorigo, M. Birattari, Costs and benefits of behavioral specialization
– Online supplementary material, http://iridia.ulb.ac.be/supp/
IridiaSupp2011-024/ (2011).

[31] G. Pini, A. Brutschy, M. Birattari, M. Dorigo, Task partitioning in
swarms of robots: reducing performance losses due to interference at
shared resources, in: J. A. Cetto, J. Filipe, J.-L. Ferrier (Eds.), Infor-
matics in Control, Automation and Robotics, Vol. 85 of LNEE, Springer,
Berlin/Heidelberg, Germany, 2011, pp. 217–228.

Arne Brutschy received a Diploma in computer science
from the University of Leipzig, Germany. He is cur-
rently a Ph.D. candidate in applied sciences at IRIDIA,
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