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Abstract. Automated algorithm configuration methods have proven to
be instrumental in deriving high-performing algorithms and such meth-
ods are increasingly often used to configure evolutionary algorithms.
One major challenge in devising automatic algorithm configuration tech-
niques is to handle the inherent stochasticity in the configuration prob-
lems. This article analyses a post-selection mechanism that can also be
used for this task. The central idea of the post-selection mechanism is to
generate in a first phase a set of high-quality candidate algorithm con-
figurations and then to select in a second phase from this candidate set
the (statistically) best configuration. Our analysis of this mechanism in-
dicates its high potential and suggests that it may be helpful to improve
automatic algorithm configuration methods.

1 Introduction

The performance of many optimization algorithms depends on their parameter
settings. Obtaining high performance requires that the parameters are appro-
priately set. In the last few years, it has been shown that the off-line config-
uration of algorithm parameters can effectively been done by automatic algo-
rithm configuration techniques such as ParamILS [1], F-Race [2] and iterated
racing approaches [3], gender-based genetic algorithm [4], or model-based search
approaches [5]. These aforementioned methods can be applied to general con-
figuration tasks that include the setting of categorical, ordinal and numerical
algorithm parameters. If only numerical parameters require to be determined,
these methods remain applicable but they may be sidelined by methods from
numerical optimization [6], estimation of distribution algorithms [7] or methods
based on classical experimental designs such as CALIBRA [8]. Whatever the
configuration task, these methods not only free humans from a tedious, manual
trial-and-error process, but they often result in parameter configurations that
substantially improve over default configurations proposed by the algorithm’s
designers.
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In this paper, we focus on offline configuration [9], i.e. on finding a good pa-
rameter configuration before the algorithm is actually applied, a typical situation
in algorithm design. The task in offline configuration is to identify an algorithm
parameter configuration based on a set of training instances, such that the best-
found configuration performs well on future, unseen problem instances. Offline
configuration involves two sub-tasks, namely generation and evaluation. The
first sub-task, the generation of candidate algorithm configurations, is typically
done by search algorithms including, e.g. direct search methods [1, 3], model-
based search methods [10, 11, 5], or modern continuous optimizers [6], etc. The
second sub-task requires evaluating candidate algorithm configurations and at
some point selecting the one with the best evaluation. This second sub-task is
stochastic due to two main sources of randomness [9]: first, the algorithm to be
configured may be a stochastic algorithm—this is always the case if randomized
decisions are taken during the algorithm execution; second, the stochasticity due
to estimating algorithm performance of candidate algorithm configurations by
different training instances—these instances may be seen as drawn from some
random distribution of problem instances. Most work on configuration problem
focuses on the first sub-task, while the second sub-task is less discussed and
studied.

In this paper, we extend the analysis of post-selection [6], which is a promising
mechanism designed to address the second sub-task in the offline configuration,
the evaluation and selection of candidate configurations. The basic idea of the
post-selection mechanism is to divide the configuration process into two phases:
in the initial elite qualification phase, a number of elite algorithm configurations
are identified; then, in the subsequent elite selection phase, the best of these
elite algorithm configurations is carefully selected using, for example, a racing
method. Initial results [6] indicated that with a careful elite selection in the final
phase, the post-selection mechanism allows to use a more coarse evaluation of
the candidate configurations in the elite qualification phase (that is, evaluat-
ing most of the candidate configurations on less training instances) As a result,
more candidate configurations may be generated and, thus, potentially better
configurations may be found. In the empirical study in this paper, we extend the
analysis of the post-selection method in [6] to (i) study the impact of the maxi-
mum number of algorithm runs (called configuration budget) on the con gurator
performance; (ii) examine the impact of using a very small number of training
instances in the elite qualification phase; (iii) consider more search methods for
generating the elite candidate configurations; (iv) empirically investigate some
new settings of post-selection and derive a new high-performing configurator for
setting numerical parameters.

The article is structured as follows. Section 2 reviews automatic algorithm
configuration and Section 3 describes the experimental setup. Section 4 studies
post-selection before we compare our post-selection configurators to iterated F-
Race and ParamILS in Sections 5 and 6, respectively.
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2 Configuration Algorithms

A configuration algorithm (or configurator) typically combines a search method
that generates candidate algorithm configurations and a mechanism for han-
dling stochasticity through evaluating the configurations and selecting the most
promising. In this article, we examine post-selection, a recent mechanism for
combining search and evaluation methods. Here, we introduce briefly the search
methods and the evaluation methods we consider for comparisons.

2.1 Black-box search methods

A search mechanism in a configurator iteratively generates candidate algorithm
configurations. In this article, the algorithm to be configured use mainly nu-
merical parameters, in which case we refer to the configuration problem also as
tuning problem. For these numerical parameters, including continuous or quasi-
continuous (e.g. integer, for which rounding may be applied) parameters, we
consider the following (black-box) continuous optimizers as search methods:
Bound Optimization BY Quadratic Approximation (BOBYQA). BOBYQA [12]
is a model-based trust-region continuous optimizer that iteratively builds and
refines a quadratic model based on which the trial points are sampled.
Covariance Matrix Adaptation Evolution Strategy (CMA-ES). CMA-
ES [13] is a (µ, λ)-evolutionary strategy. It iteratively samples candidate solu-
tions from a multivariate Gaussian distribution, with a sample mean as a linear
combination of µ elite parents and a covariance matrix automatically adapted
based on the search trajectory.
Mesh Adaptive Direct Search (MADS). MADS [14] is an extension of
generalized pattern search algorithms. It is a mesh-based search method that
systematically adapts the mesh coarseness, search radius, and search direction.

For discrete parameter configurations, an iterated local search method un-
derlying ParamILS is considered in Sec. 6.

2.2 Evaluation method

Configurators typically have a limited evaluation budget B, which can be a max-
imum number of times the algorithm to be configured can be run on training
instances. The evaluation method needs to determine how good candidate config-
urations are and select the one that performs best. How to allocate the available
budget for evaluation is an important topic in the study of configuration al-
gorithms, since on one side the evaluation budget is limited due to the high
computational cost of each evaluation, but on the other side the evaluation error
of a candidate reduces with the number of evaluations. A good compromise is
to allocate more budget to promising candidates, so that they can be evaluated
more carefully. The evaluation methods considered in this article include:
Repeated evaluation. It evaluates each candidate configuration by the same,
fixed number of algorithm runs.
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Racing. A racing method [15, 2, 9] evaluates candidate configurations instance
by instance and eliminates inferior ones as soon as statistical evidence is gath-
ered against them. Thus, better candidate also receive more evaluations. Racing
methods differ in the statistical tests that are used to detect inferior candidates;
e.g., F-Race adopts the Friedman and its post-hoc tests, and t-Race uses Stu-
dent’s t-test.
Intensification. Intensification mechanisms are used in methods such as Fo-
cusedILS [1], SPO+ [11], ROAR or SMAC [5]. It is used to compare a newly
generated configuration to the incumbent, i.e. the best configuration found so
far, and eliminate a new configuration as soon as it is worse than the incum-
bent in the sequence of instances the incumbent was already evaluated on; if a
new candidate is not eliminated, its number of evaluations increases by, e.g. one,
and compares with the incumbent again, until it reaches the same number of
evaluations as the incumbent, then a new incumbent is determined.

2.3 Combination of search and evaluation

Given a search method and an evaluation method, a configurator essentially
consists of an efficient, non-trivial combination of the two. We discuss two pos-
sibilities below, the second being the mechanism studied here.
Iterated selection. Iterated selection we call the approach where two distinc-
tive phases are iterated: first new candidate configurations are generated, and
then evaluated by an evaluation method, possibly updating the incumbent. Most
of the established configurators are based on some form of iterated selection, in-
cluding SPO [10] and SPO+ [11], iterated racing techniques such as iterated
F-Race [16, 3], MADS/F-Race [17], and CMA-ES/F-Race [6], or FocusedILS [1].
These methods include the incumbent from iteration to iteration. Some of them
consider using an intensification mechanism to preserve the incumbent (e.g. Fo-
cusedILS and SPO+). The possible drawbacks of iterated selection are that an
incumbent may be lost if no specific mechanism for incumbent preservation is
used, while if an incumbent preservation mechanism is used, it may be too aggres-
sive in eliminating potentially promising new candidates, leading to stagnation
as observed occasionally in FocusedILS [1].
Post-selection. The basic idea of the post-selection mechanism is to divide the
configuration process into two phases: a first elite qualification phase and a second
elite selection phase. During the qualification phase, a number of elite configura-
tions are identified by running a configurator. These elite configurations can be
collected by, for example, enforcing quick convergence of the configurator and
then taking the best configuration in each independent restart. Alternatively,
different configurators may be run simultaneously and the best configurations
returned by various configurators may be qualified as elites. In the elite selection
phase, an evaluation method is applied to select the best from these elite config-
urations. See Algo. 1 for a summary of the post-selection mechanism. A number
of configurators are devised following the post-selection approach and investi-
gated in the following sections. We also compare post-selection configurators to
iterated racing techniques and FocusedILS.
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Algorithm 1 Post-selection

Phase 1: elite qualification. Run configurator and collect the best configurations
as elite configurations. Each elite configuration θe is stored in Θe. A budget of Rn

(n = |Θe|) depending on the number of elite configurations is reserved for Phase 2.
Go to Phase 2 when the budget for qualification phase finishes.
Phase 2: elite selection. Use an evaluation method, e.g. racing, to select the best
θ∗ from Θe.

Table 1. The range of MMAS parameters.

param. α β ρ m
range [0.0, 5.0] [0.0, 10.0] [0.0, 1.00] [1, 1200]

param. γ nn q0

range [0.01, 5.00] [5, 100] [0.0, 1.0]

3 Experimental Setup

In this article, we focus on one configuration domain, where the algorithm to
be configured is MAX–MIN Ant System (MMAS) [18] applied to the trav-
eling salesman problem (TSP). The numerical parameters in MMAS that are
considered in this study include: α and β, the relative importance of pheromone
trail and heuristic information; ρ, the proportion of the pheromone evaporated
after each iteration; m, the number of ants; γ, which controls the gap between
the minimum and maximum pheromone trail limits in MMAS; nn, the size
of the nearest neighbor candidate list in the solution construction; and q0, the
probability with which an ant selects deterministically the best possible choice at
each construction step. The range of the values considered for these parameters
is listed in Table 1. In the configuration process, each search algorithm generates
the parameter space with a precision of two significant digits.

From these seven numerical parameters we extracted a number of case stud-
ies, where a subset of parameters is to be set while the others assume their default
values. More in detail, we extracted three case studies for d ∈ {2, 3, 4, 5, 6} pa-
rameters to be set, resulting in 3 × 5 = 15 case studies. These case studies are
listed in Table 2.

The instances are uniformly randomly distributed Euclidean TSP instances.
Two sets of instances are considered in this article: the homogeneous (hom) set
consists of uni-size instances of 750 nodes, 1 000 instances for the training phase,
and 300 for the testing phase; the heterogeneous (het) set consists of instances
ranging from 100 nodes to 1 200 nodes, 900 instances for training and 300 for
testing. The computation time for MMAS is 5 seconds. The MMAS imple-
mentation is based on the ACOTSP software [19] with minor extensions to allow
the usage of the parameter γ.

In each case study, seven budget levels are considered. The minimum level of
the configuration budget is chosen to be B1 = 5·(2d+2), which results in a budget
B1 = 30 when d = 2 and in a budget B1 = 70 for d = 6. The other six levels of
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Table 2. The 15 case studies of configuring 2 to 6 parameters (each with 3 case studies)
of MMAS.

n.param. case 1 case 2 case 3

2 α β; ρ m; γ nn;
3 α β m; β ρ nn; ρ γ nn;
4 α β ρ m; α β γ nn; ρ m γ nn;
5 α β ρ m nn; α β ρ m γ; α β m γ nn;
6 α β ρ m γ nn; α β ρ m γ q0; α β ρ m nn q0;

the configuration budget are Bi = 2i−1 · B1, i = 2, 3, 4, 5, 6, 7, which doubles the
budget for each next level. Each budget level of each case study is considered
as one test domain, resulting, thus, in 7 × 15 = 105 test domains. For each test
domain, 10 trials were run. To reduce experimental variance, in each trial, the
same random order of training instances is used for running each configurator,
and each instance is evaluated with a common random seed. The instance order
and random seed change from trial to trial. In each trial, an archive is used
in order to prevent the same parameter configuration being evaluated twice on
the same instance; in such case, the evaluation is read from the archive without
consuming configuration budget.

When comparing testing results, we suppose every testing instance, large or
small, is of the same importance. Therefore, in each test domain, we perform a
standardized z-score normalization of the performance of configurations on each
testing instance, such that for any given instance, the distribution of performance
over tested configurations has mean zero and variance one. Whenever ranking
results are presented, each rank is based on the mean value of the normalized
performance in one test domain. Whenever results of statistical tests are reported
in the following, we use Wilcoxon’s signed-rank test with α = 0.05, and with
Holm’s method in case of multiple comparison.

4 Stochasticity handling using post-selection

In this section, we examine the impact post-selection has on the performance
and the behavior of various search methods with which it is combined. Before
the presentations of these details, we concisely show that, in general, there exist
interactions between the budget level and settings of the evaluation method used.
This sheds also some light on side-advantages of the post-selection mechanism,
namely to make the configurator more robust to specific parameter settings for
the evaluation method.

4.1 Repeated evaluation

The simplest evaluation method is probably repeated evaluation, where each
candidate configuration is evaluated nr times. We consider here values of nr ∈



7

1 2 3 4 5 6 7
1

2

3

4

5

6

Budget levels

R
an

ks

nr=1
nr=3

nr=5
nr=10

nr=20
nr=40

Fig. 1. Average ranks of six nr settings (nr ∈ {1, 3, 5, 10, 20, 40}) for repeated evalua-
tion over seven budget levels across 15 case studies of MMAS.

{1, 3, 5, 10, 20, 40} and evaluate their performance on the 105 test domains. To
illustrate the trade-offs incurred between the setting of nr and different config-
uration budgets, we use a uniform random search (we observed similar behavior
with other search methods). Fig. 1 shows the average ranks of the six settings
of nr. The relative performance of different nr settings depends strongly on the
configuration budget: while for the lowest budget levels B1 and B2 the setting
of nr = 1 appears to be best, the performance of low nr settings downgrades as
the configuration budget increases. The clearest example is the setting nr = 1,
which is the best for B1 and B2 but becomes the worst for the two highest bud-
gets B6 and B7. On the contrary, large nr settings are the worst for low budgets
but they improve as the configuration budget increases. Similar trade-offs were
also observed in [20].

4.2 Effectiveness of Post-selection

For the experiments with post-selection, we adopted whenever possible the set-
tings used in [6]: The budget reserved for elite selection phase is set to

Rn =

{
2 · n2 if n < 10
20 · n if n > 10

(1)

and the first Friedman test starts at fn = min{n + 2, 10}-th instance, where n
is the number of candidates for the elite selection. The first line in Equation 1
extends [6] to ensure reasonable settings for the low budget levels. In post-
selection, the default is that only restart-best configurations qualify as candidates
for the elite selection, where a restart-best solution is the best solution in one
independent restart of the algorithm–restarts are triggered by convergence of the
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Fig. 2. The rank distribution of 12 settings: repeated evaluation without post-selection
(the left six light-blue box-plots in each plot) or with post-selection (the right six yellow
box-plots dubbed with “P”), using nr ∈ {1, 3, 5, 10, 20, 40}. BOBYQA (top) and MADS
(bottom) are tested on eight case studies, each with budget levels from B4 to B7.

algorithm. Finally, each configuration generated in the elite qualification phase
is evaluated by nr same instances.

We present results with the search methods BOBYQA and MADS with either
repeated evaluation or post-selection. Each search method is restarted when it
stagnates. Stagnation can be detected, for example, if the search radius drops to
less than the degree of significant digits (two in this work). In earlier work [6],
post-selection was studied with nr ranging from 5 to 40, and it was shown that
post-selection is effective when nr is small. Here, we explore smaller settings
of nr equal to one and three on a subset of the test domains on the four high
budget levels from B4 to B7 and taken from eight of the case studies and the
homogeneous instance set. The box-plots for the ranking of each of the explored
settings are given in Figure 2.

Considering the versions without post-selection (left six boxes in each plot),
the best setting of nr appears to be 5 or 10, in accordance to what was observed
in the previous section for uniform random sampling. However, for the versions
with post-selection (right six yellow boxes dubbed with “P” for post-selection),
the best setting is nr = 1, resulting in the best ranking improving also over the
a posterior best settings of nr for BOBYQA and MADS without post-selection.
Hence, the overall best performance with post-selection is obtained when during
the run of the search method each candidate configuration is evaluated on one
same instance. Saving evaluations allows to evaluate more configurations and to
obtain more restart-best configurations, which then are evaluated more carefully
in the elite selection phase.
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4.3 Advanced settings of post-selection

Next, we extended the study in Sec. 4.2 by considering also the low budget levels
B1, B2, and B3. Here, we empirically examine several advanced settings of post-
selection, including nr setting (Sec. 4.3), alternating instances (Sec. 4.3, dubbed
A in Figure 3), early qualification (Sec. 4.3, dubbed E in Figure 3), and iterated
selection hybrid (Sec. 4.3, dubbed IS in Figure 3).

nr setting As high nr settings perform poorly with post-selection (see Fig. 2),
here we consider only values of nr ∈ {1, 3, 5}. In Fig. 3(a-d), it can gener-
ally be observed that the best post-selection configurator in each plot uses
nr = 1. Considering the curves identified by “nr = 1, P”, “nr = 3, P”, and
“nr = 5, P” in Fig. 3(a-d), nr = 1 ranks either best or very well, and nr = 3, 5
rank slightly better only in the smallest budget levels of BOBYQA-based con-
figurators (Fig. 3(a,b)) and in high budget levels of CMA-ES-based configura-
tors (Fig. 3(d)). The reason for the latter is further discussed and addressed in
Sec. 4.3.

Alternating instances Note that in our basic setting each configurator restart
uses the same instances (or the same instance if nr = 1) and only in the final
elite selection phase different instances would be used. This may lead to poor
results especially on instance sets where instances are heterogeneous (as in our
het set—for this instance set good MMAS settings are known to depend on
instance size).

Here we consider a different variant, where we use alternating instances in-
stead of fixed instances; hence, each elite configuration is qualified through nr
different instances. We compared this approach empirically with the basic post-
selection using fixed instances, taking BOBYQA as case study across 105 test
domains of configuring MMAS in both homogeneous instance set (hom, see
Fig. 3(a)) and the heterogeneous instance set (het, see Fig. 3(b)). As nr = 1 is
the best nr setting for post-selection, we compared directly nr = 1 fixed instance
(“nr = 1, P” in Fig. 3(a, b)) with alternating instances (“nr = 1, P,A’). In hom,
using alternating instance performs as well as using a same, fixed instance and
no statistically significant difference was detected (p-value 0.3). However, in het,
using alternating instances leads to significant improvement. We included also
nr = 3 alternating instances (“nr = 3, P,A”) for het; it again performs signifi-
cantly better than using nr = 3 same instances (“nr = 3, P”), but significantly
worse than nr = 1 with alternating instance. To sum up, using alternating in-
stances results in better performance, especially when the target instance set is
heterogeneous.

Early qualification CMA-ES is the only of the three search methods, where
the setting nr = 1 does not perform as well as nr > 1 especially for higher
budget levels (see Fig. 3(d)). One reason is probably that CMA-ES is slower
than MADS and BOBYQA to converge and restart and in our basic setting



10

A
v
er

a
g
e

R
a
n
k

1 2 3 4 5 6 7
1.0

1.5

2.0

2.5

3.0

3.5

4.0 nr=1,P
nr=3,P

nr=5,P
nr=1,P,A

(a) BOBYQA on hom
1 2 3 4 5 6 7

1

2

3

4

5 nr=1,P
nr=3,P
nr=5,P

nr=1,P,A
nr=3,P,A

(b) BOBYQA on het

A
v
er

a
g
e

R
a
n
k

1 2 3 4 5 6 7
1.0

1.5

2.0

2.5

3.0

3.5

4.0 nr=1,P
nr=3,P

nr=5,P
IS,P

(c) MADS on hom
1 2 3 4 5 6 7

1

2

3

4

5 nr=1,P
nr=3,P
nr=5,P

nr=1,P,A,E
IS,P,E

(d) CMA-ES on hom

Fig. 3. Average ranks of different settings for post-selection. These settings include
nr values (Sec. 4.3), “P” for post-selection (Algo. 1), “A” for alternating instances
(Sec. 4.3), “E” for early qualification (Sec. 4.3), or “IS” for iterated selection hybrid
(Sec. 4.3). This study is done using three search methods as testbed, BOBYQA, MADS,
and CMA-ES, and each setting is tested on seven budget levels (shown in the X-axis)
for 15 case studies of MMAS with either homogeneous (hom) or heterogeneous (het)
instance sets.

only restart-best configurations qualify for the elite selection. However, one may
obtain more configurations for post-selection by qualifying configurations earlier,
as done, e.g., by picking all iteration-best configurations instead of only the
restart-best. Besides, as suggested in Sec. 4.3 for BOBYQA, each iteration may
use alternating instances for evaluation. This new setting “nr = 1, P,A, E” (E
for early qualification) of CMA-ES configurator is shown in Fig. 3(d) to be the
significantly best-performing configurator on all budget levels.

Iterated selection with post-selection Instead of using a fixed number of nr
instances, one may apply iterated selection during the elite qualification phase.
Such examples include MADS/F-Race [6, 17] and CMA-ES/F-Race [6], where
F-Race is not only used in the elite selection phase to select the best of the
elite configurations, but also used within each iteration of the search method in
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the elite qualification phase to select the best among the incumbent and newly-
generated configurations.4 Besides, our CMA-ES/F-Race applies also the idea
of early qualification (Sec. 4.3), i.e. both iteration-best and restart-best configu-
rations are qualified as elites. However, this interesting hybrid, either MADS/F-
Race (“IS, P” in Fig. 3(c)) or CMA-ES/F-Race (“IS, P, E” in Fig. 3(d)), does
not perform well compared with the other post-selection variants derived in
this work. MADS/F-Race is significantly outperformed by post-selection with
nr ≤ 5, despite the better performance of MADS/F-Race over MADS with fixed
nr evaluations without post-selection [17]. CMA-ES/F-Race is also significantly
outperformed by post-selection CMA-ES with one alternating instance and early
qualification.

5 Post-selection vs. I/F-Race

We compare the best post-selection configurators with I/F-Race, a state-of-the-
art iterated selection configurator [3]. Additionally, we compare also to U/F-
Race, which generates configurations uniformly at random and then selects the
best by F-Race. As the best post-selection configurators we select the best setting
for each of the three search methods found in Sec. 4.3, including BOBYQA with
one alternating instances (“nr = 1, P, A” in Fig. 3(a,b)), CMA-ES with one
alternating instance and early qualification (“nr = 1, P,A, E” in Fig. 3(d)) and
MADS with nr = 1 (“nr = 1, P” in Fig. 3(c), only shown in hom).

Fig. 4 shows the comparison of these configurators in dependence of the bud-
get level (top row) and the number of parameters to be configured (bottom row)
on the homogeneous (left column) and the heterogeneous instance set (right col-
umn). The clear winner is the CMA-ES configurator: it significantly outperforms
all other configurators in almost every budget level and every number of param-
eters being configured. BOBYQA generally performs well in case studies with 2,
3, or 4 parameters being configured, but its performance declines in case studies
with 5 or 6 parameters, as shown in Fig. 4(c) and Fig. 4(d). I/F-Race is only
applicable in the four high budget levels due to its default parameter settings,
and it is outperformed by CMA-ES. MADS is not considered in the experiments
of het due to its unsatisfactory performance in hom. All the above-mentioned
configurators outperform U/F-Race.

6 Post-selection in ParamILS

For a final set of experiments we introduce post-selection into ParamILS with
the goal of comparing it to the intensification mechanism used in FocusedILS.
We adopted the version 2.3.5 of ParamILS [21], kept the search mechanism

4 Note that in BOBYQA, each configuration has to be evaluated on the same number
of instances due to the way its quadratic model is built; therefore, F-Race cannot be
combined with BOBYQA in the iterated selection manner.
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Fig. 4. Comparison of best post-selection configurators with I/F-Race U/F-Race for
configuring 15 case studies of MMAS with either homogeneous (hom) or heterogeneous
(het) instance sets.

(ILS), and adapted its intensification mechanism into a post-selection mecha-
nism in a straightforward manner. Since the best setting of post-selection found
in Sec. 4.2 is using nr = 1, alternating instance, BasicILS(1) is adopted for the
elite qualification phase of post-selection. The main question then is how to de-
fine configurations that qualify as elite. In this study, only the best configuration
found in each restart is qualified. We adopted three restart schemes.

Natural restart. We restart ParamILS either when it is naturally restarted as
triggered by the parameter prestart (set to 0.01 by default) or when the search
falls into a local optimum and perturbation starts. Post-selection ParamILS with
natural restart is denoted as PPn.

Fixed early restart. We enforce ParamILS to restart earlier so as to qualify
more elites. The simplest way to enforce early restart is to restrict the maxi-
mum number of evaluation Br for each run to a small value. Considering that
each ParamILS run evaluates 10 uniformly random initial configurations before
starting ILS, Br = 30 appears to be a setting that allows reasonable exploitation
while keeping reasonably frequent restarts. This version is denoted as PP30.
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Fig. 5. Average ranks of four ParamILS-based configurators over seven budget levels
for configuring six case studies of MMAS with either (a) homogeneous or (b) heteroge-
neous instance set. The four ParamILS versions include FocusedILS, and post-selection
variants PPn, PP30, and PPi.

Incremental early restart. Besides fixing Br, we also consider incrementing
Br by 10 from restart to restart, i.e. let Br = 10 in the first restart, increment Br

to 20 in the second restart, Br = 30 in the third, etc. Post-selection ParamILS
with incremental early restart is denoted as PPi.

We compared FocusedILS with the three versions of post-selection ParamILS,
PPn, PP30, and PPi on the six case studies of MMAS with five or six parameters
to be configured. Both homogeneous and heterogeneous instance sets are consid-
ered. Since ParamILS handles only discrete parameters, each parameter of our
case studies is discretized into 10 equi-distant values. ParamILS does not sup-
port standardized z-score normalization, and so we adopted the mean algorithm
performance as the objective measure. Accordingly, the post-selection applies a
t-Race without adjustment for multiple comparisons [9] instead of F-Race.

The results are presented in Fig. 5. They show that post-selection with early
restart, especially PP30, is clearly the best configurator in budget levels B1 to
B6. FocusedILS performs better than PP30 only in the highest budget level B7.
PPn doesn’t perform very well as expected, since it usually takes around 100 to
400 evaluations to reach a natural restart; this leads to very few elite configura-
tions, which greatly worsens the impact of post-selection. Enforcing early restart
in PP30 and PPi proves to be a more successful setting of post-selection than
natural restart. However, frequent restart may weaken the exploitation ability
in finding promising configurations during the elite qualification phase. A bet-
ter approach than enforcing early restart is to use early qualification as done
for CMA-ES in Sec. 4.3, qualifying elite configurations without interrupting the
search procedure. However, we leave this possibility for future research.
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7 Discussion and conclusions

Post-selection adopts two distinct phases in the automatic algorithm configura-
tion process. In the elite qualification phase, a number of elite configurations are
identified, for example, by independent runs of some algorithm configurator. The
subsequent elite selection phase tries to identify then the best of these elite con-
figurations, for example, by a racing method. In this paper, we have examined
in more detail such a post-selection mechanism, proposed earlier in [6], using
the example application of algorithm configurators for setting numerical param-
eters of MAX–MIN Ant System applied to the traveling salesperson problem
(TSP). Our analysis of post-selection showed that it is enough to evaluate can-
didate configurations on rather few instances during the elite qualification stage.
In our case studies only one instance was even enough, but we expect that on
other configuration tasks with more heterogeneous instances than in the TSP a
larger number of instances in the elite qualification stage may be better. If the
configurator in the elite qualification phase cannot gather many elite configura-
tions, enforcing early restarts or an early qualification mechanism, as proposed
in this paper, may be useful. Overall, our results showed that post-selection is a
promising approach that should receive further attention. In addition, we identi-
fied a post-selection CMA-ES configurator with alternating instances and early
qualification, as a high-performing configurator for setting numerical parameters.

In future work, we plan to test the effectiveness of post-selection on other
configuration tasks with more parameters and to explore complementing other
configuration methods with post-selection. The fact that with post-selection,
each run of automatic algorithm configuration method in the elite qualifica-
tion stage may use few same instances, makes post-selection also applicable to
model-based search methods such as SPO, which cannot easily be enhanced by
iterated selection methods that evaluate candidate configurations with different
numbers of instances (see BOBYQA in Sec. 4.3 as an example). Furthermore,
post-selection can be seen as a form of stochasticity handling and it may also be
useful for optimization problems with noise, e.g., it may be integrated into deter-
ministic algorithms for optimizing noisy functions such as those of the black-box
optimization benchmarking workshop series [22]. The positive results obtained
with post-selection in this paper indicate that the directions outlined above are
promising ideas to pursue.
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