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Abstract. We present a novel method to analyse swarm robotics sys-
tems based on Bio-PEPA. Bio-PEPA is a process algebraic language
originally developed to analyse biochemical systems. Its main advantage
is that it allows different kinds of analyses of a swarm robotics system
starting from a single description. In general, to carry out different kinds
of analysis, it is necessary to develop multiple models, raising issues of
mutual consistency. With Bio-PEPA, instead, it is possible to perform
stochastic simulation, fluid flow analysis and statistical model checking
based on the same system specification. This reduces the complexity of
the analysis and ensures consistency between analysis results. Bio-PEPA
is well suited for swarm robotics systems, because it lends itself well to
modelling distributed scalable systems and their space-time characteris-
tics. We demonstrate the validity of Bio-PEPA by modelling collective
decision-making in a swarm robotics system and we evaluate the result
of different analyses.

1 Introduction

Swarm robotics is a novel approach to multi-robots systems. Swarm robotics
systems (SRSs) are composed by tens or hundreds of robots which cooperate to
perform a task, without a centralized controller or global knowledge. The goal
of swarm robotics is to develop systems that are robust, scalable and flexible [1].

Analysing large and complex SRSs using physics-based simulations or directly
with robots is often difficult and time consuming. For this reason, a common
way to study these systems is by using models [2]. Models allow the developer
to abstract from the complexity of a system and its implementation details and
focus on the aspects that are relevant for the analysis. Different approaches
are available to model a SRS. Macroscopic modelling [2] is commonly used for
describing the collective behaviour of a system. Another approach, namely mi-
croscopic modelling [3], focuses instead on the behaviour of individual robots.
Finally, model-checking has been used to verify formal properties of a SRS [4].
These approaches allow a developer to obtain different “views” of the system



behaviour. However, for each of these views, a different model is necessary. Pro-
ducing different models greatly increases the complexity of the analysis process.
Moreover, when dealing with different models, the issue of mutual consistency
must be addressed.

In this paper we present a novel approach to model SRSs based on Bio-
PEPA [5] which allows to obtain different consistent views of a system from
the same formal specification. Bio-PEPA is a process algebraic language for bio-
chemical and distributed systems. It has also been used1 to analyse emergency
egress [6] and crowd dynamics [7] which are systems characterized by a high
number of individuals and lack of a centralized controller, aspects common also
to SRSs. Bio-PEPA is well suited to analyse and develop SRSs; it provides for
a clear specification at the microscopic level while providing also primitives for
spatial description (e.g. locations) and for composition of individual robots (e.g
cooperation operator). Moreover, Bio-PEPA allows to easily define species, which
can be used to characterize groups of robots with specific attributes and actions;
for instance, they can be used to differentiate between groups of robots perform-
ing different tasks at the same location. We use Bio-PEPA to develop a formal
specification and analyse a collective decision-making behaviour which has been
extensively studied in [8, 9]. The case study consists of a swarm of robots that
have to collectively identify the shortest path between two possible choices. We
validate our results against those presented in [8].

The outline of the paper is as follows. In Section 2, we present related work.
In Section 3, we give a brief presentation of Bio-PEPA. In Section 4, we present
the case study and its Bio-PEPA specification. In Section 5, we present and
validate our results. Some conclusions are drawn in Section 6.

2 Related work

The most common approaches to modelling in swarm robotics are based on mi-
croscopic and macroscopic models. The main advantage of microscopic modelling
is that it allows to study in detail the robot-to-robot and robot-to-environment
interactions that are the key components of any SRS. Microscopic modelling,
through stochastic simulation, can be used to analyse a system both in its equi-
librium and far-from-equilibrium states. An example of a microscopic model of
a SRS can be found in [10]. Macroscopic modelling, instead, considers only the
swarm and its time evolution, ignoring the individual behaviour of the robots
composing it. For this reason, it can be used to analyse systems composed by
thousands of robots using fluid flow (Ordinary Differential Equations) approxi-
mation. However, the focus of macroscopic modelling is on the equilibrium analy-
sis and thus it can be problematic to analyse a system in its far-from-equilibrium
states or to understand specific problematic situations that could arise. A review
on macroscopic modelling in swarm robotics can be found in [2]. A comparison
between the microscopic and macroscopic models of a swarm robotics system is
presented in [11].
1 See http://www.biopepa.org for a complete list of publications.



A further way to model a SRS models is through mathematical logic. Mod-
els developed through mathematical logic can be used to formally verify given
properties of a SRS by automated model checking (e.g. [12]). Up to now this ap-
proach has not been explored extensively in swarm robotics. Examples of model
checking in swarm robotics can be found in [4, 13].

To perform stochastic simulation, fluid flow (ODE) approximation and model
checking different models of a system are necessary. Our approach, instead, re-
quires only a single Bio-PEPA specification permitting different kinds of system
analyses.

3 Bio-PEPA

Bio-PEPA [5] is a process algebraic language that originally was developed for
the stochastic analysis of biochemical systems. Bio-PEPA specifications consist
of two main kinds of components. The first kind is called the “species” com-
ponent, specifying the behaviour of individual entities. The second kind is the
model component, specifying the interactions between the various species. In
the context of this paper, the individual entities are the robots, and the model
component defines how they interact.

The syntax of Bio-PEPA components is defined as:

S ::= (α, κ) op S | S + S | C with op = ↓ | ↑ | ⊕ | 	 | � and P ::= P ��
L P | S(x)

where S is a species component and P is a model component.
The prefix combinator “op” in the prefix term (α, κ) op S represents the im-

pact that action α has on species S. Specifically, ↓ indicates that the number of
entities of species S reduces when α occurs, and ↑ indicates that this number in-
creases. The amount of the change is defined by the coefficient κ. This coefficient
captures the multiples of an entity involved in an occurring action. We will see
an example of its use in the next section. The default value of κ is 1, in which
case we simply write α instead of (α, κ). Action durations are assumed to be
random variables with negative exponential distributions, characterised by their
rates. The rate of action α is defined by a so called functional rate or kinetics
rate. Action rates are defined in the context section of a Bio-PEPA specification.

The symbol ⊕ denotes an activator, 	 an inhibitor and � a generic modifier,
all of which play a role in an action without being produced or consumed and
have a defined meaning in the biochemical context. The operator “+” expresses
the choice between possible actions, and the constant C is defined by the equa-
tion C=S. The process P ��

L Q denotes synchronisation between components P
and Q, the set L determines those actions on which the components P and Q
are forced to synchronise. The shorthand P ��∗ Q denotes synchronisation on all
actions that P and Q have in common. In S(x), the parameter x ∈ IR represents
the initial amount of the species. A Bio-PEPA system with locations consists of
a set of species components, a model component, and a context containing defi-
nitions of locations, functional/kinetics rates, parameters, etc.. The prefix term
(α, κ) op S@l is used to specify that the action is performed by S in location l.



Bio-PEPA is given a formal operational semantics [5] which is based on Con-
tinuous Time Markov Chains (CTMCs). It is supported by a suite of software
tools which automatically process Bio-PEPA models and generate internal rep-
resentations suitable for different types of analysis [5, 14]. These tools include
mappings from Bio-PEPA to differential equations (ODE) supporting a fluid flow
approximation [15], stochastic simulation models [16], CTMCs with levels [17]
and PRISM models [18] amenable to statistical model-checking. Consistency of
the analyses is supported by a rich theory including process algebra, and the
relationships between CTMCs and ODE.

4 Collective decision-making: a Bio-PEPA specification

In this paper, we analyse a collective decision-making system originally proposed
by Montes de Oca et al. [8]. The task of the robots is to transport objects from
a start area to a goal area. The objects to transport are too heavy for a single
robot, thus the robots have to form groups of three in order to transport a single
object. There are two possible paths between the start and the goal area and the
robots can choose between the two. This is similar to what ants do in the well
known double bridge experiment with the difference that ants use pheromones
while in our setup robots use voting.

Each individual robot has a preferred path. When a group of three robots
is formed in the start area, the robots choose the path that is preferred by the
majority of them. The chosen path becomes the preferred one for all the robots
in the group. More details are given in Sections 4.1. An analysis of the system
is presented in Montes de Oca et al. [8] and in Scheidler [9].

This collective decision-making system is a good benchmark for testing Bio-
PEPA since it displays two important aspects of swarm robotics: cooperation and
space-time characteristics. Cooperation can be direct and indirect: the robots
cooperate directly to transport the objects, and indirectly to select a path via
the dynamics of their preferences. Space-time characteristics are displayed in the
voting process itself, as it involves only the robots that are in the start area at a
given time, and in the fact that the collective decision-making process depends
on the time taken to navigate over the two different paths.

4.1 The Bio-PEPA specification

In the remaining part of this section we present the Bio-PEPA specification of the
system. As shown in Fig. 1, the system is described by eight Bio-PEPA locations:
two boundary locations, start and goal; two choice locations, A and B, where
the robots decide which path to take; and two locations for each path, L1 and
L2 for the long path and S1 and S2 for the short one. We also define a set of
Bio-PEPA species to specify the behaviour of the robots. For example in start
we distinguish two species of robots: those that last time returned via the short
path, denoted as Robo start fromS , and those that returned via the long path,
denoted as Robo start fromL. In the sequel we will refer to these two groups also
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Fig. 1. Locations and transitions of robots in the Bio-PEPA specification.

as the S-population and the L-population, respectively. Similarly, other locations
contain populations of teams of robots that move in the direction from the start
area to the goal area and those that move in the opposite direction. For example,
in location S1 we can have Teams S1 StoG and Teams S1 GtoS , where StoG
denotes the direction from the start area to the goal area and GtoS the opposite
direction.

The Bio-PEPA fragment below specifies the behaviour of a robot. Robots
leave the start area in groups of three. Each group is randomly composed by
either three robots from the S-population, three from the L-population or two
from S and one from L or two from L and one from S. These combinations are
modelled as four different actions: allS , allL, S2L1 and S1L2 . In Bio-PEPA the
formation of teams of robots is modelled by the coefficient that indicates how
many entities are involved in an action. For example, upon action allS three
robots of the S-population leave start (indicated by (allS , 3)↓), to form an
additional team of robots in choice point A (indicated by (allS , 1)↑ in Teams A S )
which is ready to take the short path when the team continues its journey towards
the goal area (population Teams A S@A). Since action allS is shared between
the species components Robo start fromS and Teams A S this movement occurs
simultaneously with the rate of action allS that will be defined later on.

Robo start fromS = (allS , 3)↓Robo start fromS@start+
(S2L1, 2)↓Robo start fromS@start+
(S1L2, 1)↓Robo start fromS@start+
(go S1 start , 3)↑Robo start fromS@start ;

Teams A S = (allS, 1)↑Teams A S@A+
(S2L1, 1)↑Teams A S@A+
go A S1↓Teams A S@A;

In a similar way, upon action S2L1, which is present in three components
(Robo start fromS , Teams A S and Robo start fromL, the latter is not shown),
all three components synchronize, resulting in two robots from the S-population
and one from the L-population leaving the start area and forming at the same
time 1 new team in choice point A in the population Teams A S . The synchro-
nization pattern of the components is given by the model component shown later



on. The excerpt above only shows the behaviour of teams voting for the short
path. The behaviour of those voting for the long path is similar and omitted
for reasons of space. For the same reason also the behaviour of teams moving
between different locations is not shown.

The actions denoting groups of robots leaving the start area need to occur
with appropriate rates. For example, a group of three robots all from the S-
population has a probability of (RSS)

(RSS)+(RSL) ∗ (RSS−1)
(RSS−1)+(RSL) ∗ (RSS−2)

(RSS−2)+(RSL)

times the rate of leaving the start area, where RSL (RSS resp.) abbreviates
Robo start fromL@start (Robo start fromS@start resp.). A similar probability
can be defined for a group of three from the L-population.

When considering mixed groups also the order in which the elements are
extracted from the population in the start area is of influence. This is particularly
true when relatively small populations of robots are considered. For example, the
probability to extract two robots from the S-population in the start area and
then one from the L-population is:

pSSL = (RSS)
(RSS)+(RSL)

∗ (RSS−1)
(RSS−1)+(RSL)

∗ (RSL)
(RSS−2)+(RSL)

Similarly we define probabilities for pSLS, pLSS, pLLS, pLSL and pSLL. The
rates of actions S2L1 and S1L2 can now be defined as (pSSL+pSLS+pLSS)∗
move and (pSLL + pLSL + pLLS) ∗ move, respectively. Note that the sum of
these six probabilities and the probability of the combination of three S or three
L is 1. So the total rate at which groups of robots leave the start area is constant
and given by the parameter ‘move’. The rate at which groups move from A to
S1 and to L1 is also dependent on the number of groups present in A and are
walk normal ∗ Teams A S@A and walk normal ∗ Teams A L@A, respectively.
The rate parameter walk normal specifies the time it takes a group of robots to
move from choice-point A to the first section of a path.

Finally, the overall system definition shows the initial size of robot popula-
tions in each location. The overall robot behaviour is defined using multi-part
synchronization on shared actions:

Robo start fromS@start(SS) ��∗ Robo start fromL@start(SL) ��∗
Teams A S@A(0) ��∗ Teams A L@A(0) ��∗
Teams S1 StoG@S1 (0) ��∗ Teams S1 GtoS@S1 (0) ��∗
Teams S2 StoG@S2 (0) ��∗ Teams S2 GtoS@S2 (0) ��∗
Teams L1 StoG@L1 (0) ��∗ Teams L1 GtoS@L1 (0) ��∗
Teams L2 StoG@L2 (0) ��∗ Teams L2 GtoS@L2 (0) ��∗
Teams goal fromS@goal(0) ��∗ Teams goal fromL@goal(0) ��∗
Teams B fromS@B(0) ��∗ Teams B fromL@B(0)

where SS (resp. SL) is the initial size of the S (resp. L)-population in the start
area. There is a further issue to consider which is the way to model the length
of the paths. This can be done in two ways. The first is to model each path by
two sections, as illustrated above, and vary the time it takes teams to traverse
these sections by choosing a different rate for the movement between sections
on the short and the long path. However, as also discussed in [8], this model



has the disadvantage that the duration of path traversal is essentially modelled
by a short series of exponential distributions which in general approximates the
average duration well, but not the variability. It therefore does not reflect very
well realistic robot behaviour.

An alternative is to choose the same rate for each section and to vary the
number of sections on each path to model their difference in length. This way
the traversal time of a path is modelled by a sequence of say m exponentially
distributed random variables with rate λ, also known as an Erlang distribution,
using the well-known method of stages [19] (p. 119).2 We model the two paths
of the environment with 8 S-sections and 15 L-sections. Each section takes, on
average, ten time units to traverse. This is modelled in the system by defining
the rate walk normal = 0.1. Considering also the movements from the choice
points to the path and those from the path to the start area and the goal area, in
this way the short path takes on average 100 time units to traverse, and the long
one 170. This is comparable to the latency periods used in [8] (end of Section 4).

5 Analysis

For the analysis in this section we consider a Bio-PEPA voting specification
with a population of 32 robots. In [8] the analysis results make reference to the
number of teams, k, that are active in the system at any time. We specify this in
Bio-PEPA by making sure that at any time at least min start robots are in the
start area, corresponding to k = (32−min start)/3.3 We furthermore consider
the following parameters for the specification: N = 32, of which initially SS = 16
and SL = 16, move = 0.28, walk normal = 0.1.

In the following we illustrate three different forms of analysis of the same Bio-
PEPA specification and validate their results with those from the literature [8].

5.1 Stochastic simulation

The first kind of analysis uses stochastic simulation to check the average number
of active teams in the system over time for different assumptions on the minimal
number of robots that remain in the start area. Fig. 2 presents two stochastic
simulation results (average over 10 simulation runs) for min start = 5 (Fig. 2
left) and min start = 2 (Fig. 2 right). The figure shows that the number of
active teams on the paths quickly increases to 9 (resp. 10) and then stabilizes
at that level. This means that the rate at which robots leave the start area, i.e.
move = 0.28, is sufficiently high to quickly reach a situation with the desired
2 For m going to infinite, an Erlang distribution [m,λ] converges to a normal distribu-

tion with mean m/λ and variance m/λ2. So, in general, the larger is m, the better
the Erlang distribution [m,λ] approximates a normal distribution.

3 In Bio-PEPA, one can make use of a predefined function H which takes a rate as
argument. If the rate is zero, H returns zero, otherwise it returns 1. To guarantee a
minimum number,min start, in the start area, the rate of, e.g., action S2L1 can then
be defined as: S2L1 = (pSSL+pSLS+pLSS)∗move∗H((RSS+RSL)−min start).



0 1000 2000 3000 4000
Time

0

5

10

15

20

25

Po
pu

la
tio

n 
si

ze
Robo_start_fromL@start
Robo_start_fromS@start
Teams on path L
Teams on path S
Total teams on paths

0 1000 2000 3000 4000
Time

0

5

10

15

20

25

Po
pu

la
tio

n 
si

ze

Robo_start_fromL@start
Robo_start_fromS@start
Teams on path L
Teams on path S
Total teams on paths

Fig. 2. Number of active teams for min start = 5 (left) and min start = 2 (right).

number of active teams. This makes it possible to compare the results of this
analysis with the results obtained with the physics-based simulation and Monte
Carlo simulation as reported in [8] which will be discussed later on. The figures
show the number of robots present in the start area over time, both those in the
S-population and in the L-population, and the number of teams on each path.

5.2 Statistical model checking

Another way to analyse the system is via statistical model checking provided, for
example, by the model-checker PRISM [18]. In particular, the Bio-PEPA speci-
fication can be exported automatically to the PRISM input language. Statistical
model checking is an analysis method in which a logical formula, formalizing a
particular property of the system, can be automatically checked against a set of
randomly generated simulation runs of a model of the system via statistical anal-
ysis. For example, if we denote convergence on the short path by the shorthand
“Convergence on S”, and convergence on the long path by “Convergence on L”,
the statement “what is the probability that the system did not converge on the
long path until it converges on the short path” can be expressed in the logic
CSL [20, 12] as:

P =? [!“Convergence on L′′ U “Convergence on S ′′] (1)

where P =? is used to compute a probability, ! stands for negation and U reads
as “until”. “Convergence on S” can be defined as the situation in which all the
32 robots are either in a team on the short path or in the S-population in the
start area or at the goal area. “Convergence on L” can be defined similarly, but
requiring that the above sum is equal to 0 instead of 32.

In a similar way, the model can be analysed to obtain the expected number
of team formations and the expected time until convergence. For the number of
team formations, one needs to count the number of times the actions ‘go A S1’
and ‘go A L1’ occur until convergence happens. Let us assume that the vari-
able teams accumulates the number of teams formed until convergence, and the
variable total time the total time that passed until convergence in the various
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simulation runs.4 The question “what is the expected number of teams formed
until eventually convergence has taken place on the short or the long path” can
then be answered by statistical model-checking with the logical reward formula:

R{“teams”} =? [F (“ Convergence on S”|“ Convergence on L”)] (2)

where F reads as “eventually”, | denotes logical disjunction and R =? is used
to compute the expected value, commonly called ‘reward’, of specific events. A
similar analysis using the same formula, but substituting teams with total time,
gives the expected time until convergence.

The following analyses have been based on 100 random samples and a confi-
dence level of 99%, except where explicitly indicated. In the figures the confidence
intervals are shown as error-bars.

Figure 3 (a), (b) and (c) show the result of statistical model checking of the
above formulas for k active teams, where k = {1, 2, ..., 10}. In particular, Fig. 3(a)
4 In terms of Markov theory such ‘counting’ is defined by reward structures. In statisti-

cal model-checking these numbers are used in the statistical analysis of the generated
simulation runs.



shows the probability of convergence on the short path (i.e. Formula (1)). The
data are compared to those obtained via physics-based simulation and Monte
Carlo simulation of the same case-study reported in [8]. The latter are close to
the results obtained with the Bio-PEPA specification and well within the error-
margins. Fig. 3(b) shows results on the expected number of team formations
until convergence on the short or long path (i.e. Formula (2)). The data corre-
spond very well for k from 1 to 7, but diverge for higher values of k. Note that
the data obtained via statistical model checking in Fig. 3(b) is based on 1000
random samples and a confidence level of 99%. Fig. 3(c) shows the expected
convergence time. No data from the literature concerning this aspect is available
for comparison. The total model checking time to produce the data in Fig. 3(a)
was ca. 10 minutes, those in Fig. 3(b) ca. 48 minutes and those in Fig. 3(c) ca.
5 minutes. Due to space limits we limit our analysis to the shown properties.
However, many other interesting properties of the system could be analysed this
way. For example it can also be shown that for any value of k from 1 to 10 the
probability that convergence occurs is equal to 1.

5.3 Fluid flow analysis

The third kind of analysis is a fluid flow approximation or numerical analysis
of the ODE underlying the Bio-PEPA specification. Based on the Bio-PEPA
syntax, the underlying ODE model can be generated automatically and in a
systematic way [15]. This provides yet another view on the behavioural aspects
of the system. One can, for example, explore numerically the sensitivity of the
system to initial values and discover stationary points and other aspects related
to stability analysis. As an example, here we show the relation between stochastic
simulation and fluid approximation results.

In Fig. 3(d) a fluid flow analysis (ODE) is shown of the total fraction of
robots in the S-population over time, i.e. both those present in the start area and
those in the teams.5 Clearly, the fluid approximation predicts that the system
converges in 100% of the cases to the short path. Stochastic simulation over 100
independent runs (G100) shows that such convergence happens only in 85% of
the cases, which corresponds to what we found with statistical model checking
for a comparable value of k (see Fig. 3(a)). The difference can be explained
by the small size of the population. The point is that for small populations, the
probability that the system ‘accidentally’ converges on the long path is relatively
high. For large populations, such a probability tends to zero. In fact, it is well-
known that, when the specification satisfies certain scaling conditions, scaling the
population (and in this case also the rate at which robots leave the start area)

5 To avoid possible problems with discontinuities in the model, the fluid flow analyses
have been performed on a Bio-PEPA specification in which the construction with
the H-function was substituted by an appropriate value of the parameter move to
regulate the average number of teams. To approximate a situation with on average
k = 7, the rate at which robots leave the start area has been set to 0.03, i.e. move =
0.03.



with a large number, say 100,000, single stochastic simulation trajectories start
to approximate the deterministic ODE solution (see [21]). This phenomenon can
be observed in Fig. 3(d) from the curve labelled G1. This insight provides a way
to interpret results obtained with fluid approximation.

6 Conclusions

Bio-PEPA [5] is a process algebraic language originally developed for the stochas-
tic modelling and analysis of biochemical systems. In this paper we used Bio-
PEPA to specify and analyse a robot swarm decision-making behaviour, origi-
nally presented in [8]. We showed that with Bio-PEPA issues relevant to SRS
modelling can be addressed at the microscopic level. Among these issues are:
robot team-formation, voting, spatial and temporal aspects, species of robots
with particular behavioural characteristics, and direct and indirect interaction.
At the same time, a single microscopic Bio-PEPA specification of the system
lends itself to a variety of analyses methods such as stochastic simulation, fluid
flow (ODE) approximation and statistical (stochastic) model checking. This pro-
vides an efficient way to obtain different views of the system behaviour, while
preserving their mutual consistency. This consistency is due to the formal seman-
tics underlying the Bio-PEPA language and analysis framework. The results were
shown to be largely comparable with those obtained in [8] via physics-based sim-
ulation and Monte Carlo simulation of the same case study. In future work we
will extend Bio-PEPA with more sophisticated spatial concepts and facilities to
explore more easily non-linear behavioural aspects using numerical techniques.
Our goal is to extend Bio-PEPA to ease the modelling and analysis process of
SRS. We believe that this could facilitate the more widespread uptake of mod-
elling and analysis in swarm robotics.
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1. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application.
In: Swarm Robotics. Volume 3342 of LNCS. Springer, Heidelberg (2005) 10–20

2. Lerman, K., Martinoli, A., Galstyan, A.: A review of probabilistic macroscopic
models for swarm robotic systems. In: Swarm robotics. Volume 3342 of LNCS.
Springer, Heidelberg (2005) 143–152

3. Dixon, C., Winfield, A., Fisher, M.: Towards temporal verification of emergent
behaviours in swarm robotic systems. In: Towards Autonomous Robotic Systems.
Volume 6856 of LNCS. Springer, Heidelberg (2011) 336–347



4. Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour via proba-
bilistic model checking. Robotics and Autonomous Systems 60(2) (2012) 199 –
213

5. Ciocchetta, F., Hillston, J.: Bio-PEPA: A framework for the modelling and analysis
of biological systems. TCS 410(33-34) (2009) 3065–3084

6. Massink, M., Latella, D., Bracciali, A., Harrison, M., Hillston, J.: Scalable context-
dependent analysis of emergency egress models. Formal Aspects of Computing
(2011) 1–36 In press.

7. Massink, M., Latella, D., Bracciali, A., Hillston, J.: Modelling non-linear crowd
dynamics in Bio-PEPA. In: Fundamental Approaches to Software Engineering.
Volume 6603 of LNCS. Springer, Heidelberg (2011) 96–110

8. Montes de Oca, M.A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M.,
Dorigo, M.: Majority-rule opinion dynamics with differential latency: A mechanism
for self-organized collective decision-making. Swarm Intelligence 5(3–4) (2011)
305–327

9. Scheidler, A.: Dynamics of majority rule with differential latencies. Phys. Rev. E
83 (Mar 2011) 031116

10. Ijspeert, A., Martinoli, A., Billard, A., Gambardella, L.M.: Collaboration through
the exploitation of local interactions in autonomous collective robotics: The stick
pulling experiment. Autonomous Robots 11 (2001) 149–171

11. Martinoli, A., Easton, K., Agassounon, W.: Modeling swarm robotic systems: a
case study in collaborative distributed manipulation. The International Journal of
Robotics Research 23(4-5) (2004) 415–436

12. Baier, C., Katoen, J.P., Hermanns, H.: Approximate Symbolic Model Checking of
Continuous-Time Markov Chains. In: Concur ’99. Volume 1664 of LNCS., Springer,
Berlin, Heidelberg (1999) 146–162

13. Brambilla, M., Pinciroli, C., Birattari, M., Dorigo, M.: Property-driven design for
swarm robotics. In: Proceedings of 11th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2012), IFAAMAS (2012) In press.

14. Ciocchetta, F., Duguid, A., Gilmore, S., Guerriero, M.L., J., H.: The Bio-PEPA
Tool Suite. In: Proceedings of the 6th International Conference on Quantitative
Evaluation of SysTems (QEST 2009), Washington, DC, USA, IEEE Computer
Society (2009) 309–310

15. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the 2th
International Conference on Quantitative Evaluation of SysTems (QEST 2005),
Washington, DC, USA, IEEE Computer Society (2005) 33–43

16. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry 81(25) (1977) 2340–2361

17. Ciocchetta, F., Hillston, J.: Bio-PEPA: An extension of the process algebra PEPA
for biochemical networks. ENTCS 194(3) (2008) 103–117

18. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Proc. 23rd International Conference on Computer Aided
Verification (CAV’11). Volume 6806 of LNCS., Springer, Heidelberg (2011) 585–
591

19. Kleinrock, L.: Queueing Systems. Volume 1: Theory. Wiley, New York, NY, USA
(1975)

20. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking Continuous Time
Markov Chains. ACM Transactions on Computational Logic 1(1) (2000) 162–170

21. Kurtz, T.: Solutions of ordinary differential equations as limits of pure jump
Markov processes. Journal of Applied Probability 7 (1970) 49–58


