
The irace Package:

Iterated Racing for

Automatic Algorithm Configuration

Manuel López-Ibáñez, Jérémie Dubois-Lacoste,
Thomas Stützle, and Mauro Birattari

IRIDIA – Technical Report Series

Technical Report No.

TR/IRIDIA/2011-004

February 2011
Last revision: January 2013



IRIDIA – Technical Report Series
ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Université Libre de Bruxelles
Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2011-004

Revision history:

TR/IRIDIA/2011-004.001 February 2011
TR/IRIDIA/2011-004.002 February 2012
TR/IRIDIA/2011-004.003 January 2013

The information provided is the sole responsibility of the authors and does not necessarily
reflect the opinion of the members of IRIDIA. The authors take full responsibility for
any copyright breaches that may result from publication of this paper in the IRIDIA –
Technical Report Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.



The irace Package:

Iterated Racing for

Automatic Algorithm Configuration

Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle and Mauro Birattari
IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium

Abstract

The irace package implements the iterated racing procedure, which is an extension
of Iterated F-race (I/F-Race). The main use of irace is the automatic configuration of
optimization algorithms, that is, finding the most appropriate settings of an optimization
algorithm given a set of instances of an optimization problem. It builds upon the race
package by Birattari and it is implemented in R. This paper describes irace version 1.0.
The irace package is available from CRAN. More information about irace is available at
http://iridia.ulb.ac.be/irace.

Keywords: automatic algorithm configuration, racing, parameter tuning, R.

1. Introduction

The irace package implements the iterated racing procedure, which is an extension of Iter-
ated F-race (I/F-Race) proposed by Balaprakash, Birattari, and Stützle (2007) and further
developed by Birattari, Yuan, Balaprakash, and Stützle (2010). irace is implemented as an
R package (R Development Core Team 2008) and it builds upon the race package by Birat-
tari (2003). The main purpose of irace is to automatically configure optimization algorithms
by finding the most appropriate settings given a set of tuning instances of an optimization
problem. For example, tuning a computer program for logistic routing of trucks such that
cost is minimized. Nonetheless, automatic configuration methods are also applicable to any
system that has a number of configurable parameters, and whose performance on a particular
problem often depends on the particular settings of these parameters. An example could be
the tuning of an industrial process.

We are particularly interested in the tuning of metaheuristics, that is, general-purpose opti-
mization algorithms such as evolutionary algorithms (Goldberg 1989), ant colony optimiza-
tion (Dorigo and Stützle 2004), and other stochastic local search methods (Hoos and Stützle
2005). Automatic configuration methods may also be used for designing complex algorithms,
by finding a particular configuration of a framework composed by alternative design choices
and complementary algorithmic components (KhudaBukhsh, Xu, Hoos, and Leyton-Brown
2009; López-Ibáñez and Stützle 2012).

The scenario that irace addresses is usually described as offline configuration (Birattari 2009),
that is, there are two clearly delimited phases. In a primary tuning phase, an algorithm



2 The irace Package: Iterated Racing for Automatic Algorithm Configuration

configuration is chosen, given a set of tuning instances representative of a particular problem.
In a secondary production (or testing) phase, the chosen algorithm configuration is used to
solve unseen instances of the same problem. The goal is to find, during the tuning phase, an
algorithm configuration that minimizes some cost measure over the set of instances that will
be seen during the production phase. In other words, the ultimate purpose is that the high-
quality configuration of the algorithm found during the tuning phase generalizes to similar
but unseen instances.

Offline configuration is frequently performed ad-hoc by algorithm designers as a result of
trial-and-error runs of candidate algorithms they consider. Computational methods for offline
configuration involve the use of experimental design techniques (Coy, Golden, Runger, and
Wasil 2001; Adenso-Dı́az and Laguna 2006), evolutionary algorithms (Nannen and Eiben
2006; Ansótegui, Sellmann, and Tierney 2009), local search (Hutter, Hoos, Leyton-Brown,
and Stützle 2009) or regression models (Hutter, Hoos, and Leyton-Brown 2011). Another
notable example is sequential parameter optimization (SPO) (Bartz-Beielstein 2006), and the
associated SPOT package (Bartz-Beielstein, Lasarczyk, and Preuss 2010; Bartz-Beielstein,
Ziegenhirt, Konen, Flasch, Koch, and Zaefferer 2011). SPOT uses statistical models for
finding optimal parameters of optimization algorithms. The main differences between SPOT
and irace are that the former is more oriented towards analyzing the impact and interactions
of parameters when applying an algorithm to a single instance or function, whereas the goal
of irace is to find parameter configurations that perform well over a large set of instances.

Birattari, Stützle, Paquete, and Varrentrapp (2002); Birattari (2004, 2009) proposed an
automatic configuration approach, F-Race, based on racing (Maron and Moore 1997) and
Friedman’s non-parametric two-way analysis of variance by ranks. This proposal was later
improved by sampling configurations from the parameter space, and refining the sampling
distribution by means of repeated applications of F-Race. The resulting automatic config-
uration approach was called Iterated F-race (I/F-Race) (Balaprakash et al. 2007; Birattari
et al. 2010). Although a formal description of the I/F-Race procedure is given in the original
publications, no implementation of it has been made publicly available. The irace package
implements a general iterated racing procedure, which includes I/F-Race as a special case.
It also implements several extensions already described by Birattari (2004, 2009), such as
the use of the paired t test instead of Friedman’s test. We have also added several original
contributions, such as a new soft-restart mechanism that prevents premature convergence.

The irace package presented here has already been extensively tested in several research
projects. Dubois-Lacoste, López-Ibáñez, and Stützle (2011b,a) used irace for tuning the pa-
rameters of several iterated greedy (IG) variants for various objectives in the permutation
flow-shop problem (PFSP), outperforming the state-of-the-art. López-Ibáñez and Stützle
(2010) automatically configured a flexible ant colony optimization framework for the bi-
objective travelling salesman problem (bTSP). Montes de Oca, Aydin, and Stützle (2011)
designed an incremental particle swarm optimization algorithm for large-scale continuous op-
timization problems by means of automatic configuration. F-Race, the precursor of I/F-Race,
was used to configure an algorithm for the timetabling competition (Chiarandini, Birattari,
Socha, and Rossi-Doria 2006). Other automatic configuration methods have been used in
the literature to configure new state-of-the-art algorithms. For example, FocusedILS (Hutter
et al. 2009) was used to automatically configure a highly parameterized tree search (Hutter,
Babić, Hoos, and Hu 2007), and a framework of SAT solvers (KhudaBukhsh et al. 2009)
that won several prizes in the International SAT competition; as well as tuning the commer-



Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, Mauro Birattari 3

cial mixed-integer programming solver CPLEX, and obtaining a significant speedup over the
default settings (Hutter, Hoos, and Leyton-Brown 2010). These examples demonstrate the
potential of automatic configuration of algorithms, and the profound impact it will have on
the way optimization algorithms are designed and evaluated in the future.

2. Automatic configuration

2.1. Configurable algorithms

Many algorithms for computationally hard optimization problems are configurable, that is,
they have a number of parameters that may be set by the user. As an example, evolutionary
algorithms (EAs) (Goldberg 1989) often require the user to specify settings like the mutation
rate, the recombination operator and the population size. Another example is CPLEX, a
mixed-integer programming solver, that has more than 76 configurable parameters affecting
the main algorithm used internally by CPLEX, e.g., one can select among different branching
strategies.

The reason these parameters are configurable is that there is no single optimal setting for every
possible application of the algorithm, and, in fact, the optimal setting of these parameters
depends on the problem being tackled (Adenso-Dı́az and Laguna 2006; Birattari 2009).

There are two main classes of parameters: categorical and numerical parameters. Categorical
parameters represent discrete values without any implicit order or sensible distance measure.
An example is the different recombination operators in EAs. Numerical parameters have an
implicit order of their values. Examples are the population size and the mutation rate in EAs.
There are also seemingly categorical parameters but with an implicit order of their values.
An example would be a parameter with three values {low, medium, high}. Such parameters
are called ordinal, and we handle them as numerical parameters. Finally, parameters may
be subordinate to other parameters, that is, they are only relevant for particular values of
other parameters. For example, in a genetic algorithm there may be a parameter that de-
fines the selection operator. More concretely, the selection operator could take the values
roulette_wheel or tournament. The value roulette_wheel does not have any specific ad-
ditional parameters, whereas the value tournament requires to specify the value of parameter
“tournament size”. In this case, the parameter “tournament size” is subordinate to the fact
that the selection operator takes the value tournament. Subordinate parameters are not the
same as constraints on the values of parameters. For example, given parameters a and b,
a constraint may be that a < b. Such constraints limit the range of values that a certain
parameter can take in dependence of other parameters, whereas subordinate parameters are
either disabled or they have a value according to a predefined range. In some cases, parameter
constraints may be modeled by replacing one of the parameters by a surrogate parameter,
e.g., a′ ∈ (0, 1), such that a = a′ · b.

2.2. The algorithm configuration problem

In the following, we briefly introduce the algorithm configuration problem, a formal definition
is given by Birattari (2009). Let us assume that we have a parametrized algorithm withNparam

parameters, Xd, d = 1, . . . , Nparam, and each of them may take different values (settings). A



4 The irace Package: Iterated Racing for Automatic Algorithm Configuration

configuration of the algorithm θ = {x1, . . . , xNparam} is a unique assignment of values to
parameters, and Θ denotes the possibly infinite set of all configurations of the algorithm.

When considering a problem to be solved by this parametrized algorithm, the set of possible
instances of the problem may be seen as a random variable I from which instances to be
solved are sampled. We are also given a cost measure C(θ, i) that assigns a value to each
configuration when applied to a single problem instance i, which is a realization of I. Since
the algorithm may be stochastic, this cost measure is often a random variable and the value
c(θ, i) is a realization of the random variable C(θ, i). The cost value may be the best objective
function value found within a given computation time, or, perhaps, the deviation from the
optimum value if the latter is known. In the case of decision problems, it may correspond to the
computation time required to reach a decision, possibly bounded by a maximum cut-off time.
In any case, the cost measure assigns a cost value to one run of a particular configuration on a
particular instance. The criterion that we want to optimize when configuring an algorithm for
a problem is a function cθ of the cost of a configuration θ with respect to the distribution of
the random variable I. The goal of automatic configuration is finding the best configuration
θ∗ that minimizes cθ.

A usual definition of cθ is the expected cost of θ. The definition of cθ determines how to
rank the configurations over a set of instances. If the cost values over different instances are
incommensurable, the median or the sum of ranks may be more meaningful. The precise
value of cθ is generally unknown, and it can only be estimated by sampling. This sampling is
performed in practice by obtaining realizations c(θ, i) of the random variable C(θ, i). In other
words, by evaluating an algorithm configuration on instances sampled from I. Since most
algorithms of practical interest are sufficiently complex to preclude an analytical approach,
the configuration of such algorithms follows an experimental approach, where each experiment
is a run of an implementation of the algorithm under specific experimental conditions (Bartz-
Beielstein 2006).

3. Iterated racing

3.1. An overview of iterated racing

The irace package that we propose in this paper is an implementation of iterated racing, of
which I/F-Race (Balaprakash et al. 2007; Birattari et al. 2010) is a special case that uses the
Friedman’s non-parametric two-way analysis of variance by ranks.

Iterated racing is a method for automatic configuration that consists of three steps: (1)
sampling new configurations according to a particular distribution, (2) selecting the best
configurations from the newly sampled ones by means of racing, and (3) updating the sampling
distribution in order to bias the sampling towards the best configurations. These three steps
are repeated until a termination criterion is met.

In iterated racing, each configurable parameter has an independent sampling distribution,
which is either a normal distribution for numerical parameters, or a discrete distribution for
categorical parameters. The update of the distributions consists of modifying the sampling
distributions, the mean and standard deviation in the case of the normal distribution, or the
discrete probability values of the discrete distributions. The update biases the distributions
to increase the probability of sampling, in future iterations, the parameter values in the best



Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, Mauro Birattari 5

Algorithm 1 Iterated Racing

Require: I = {I1, I2, . . . } ∼ I,
parameter space: X,
cost measure: C(θ, i) ∈ R,
tuning budget: B

1: Θ1 ∼ SampleUniform(X)
2: Θelite := Race(Θ1, B1)
3: j := 2
4: while Bused ≤ B do
5: Θnew ∼ Sample(X,Θelite)
6: Θj := Θnew ∪Θelite

7: Θelite := Race(Θj , Bj)
8: j := j + 1
9: end while

10: Output: Θelite

configurations found.

After new configurations are sampled, the best configurations are selected by means of rac-
ing. Racing was first proposed in machine learning to deal with the problem of model selec-
tion (Maron and Moore 1997). Birattari et al. (2002) adapted the procedure for the configu-
ration of optimization algorithms. A race starts with a finite set of candidate configurations.
At each step of the race, the candidate configurations are evaluated on a single instance. After
each step, those candidate configurations that perform statistically worse than at least an-
other one are discarded, and the race continues with the remaining surviving configurations.
This procedure continues until reaching a minimum number of surviving configurations, a
maximum number of instances that have been used or a pre-defined computational budget.
This computational budget may be an overall computation time or a number of experiments,
where an experiment is the application of a configuration to an instance.

The next subsection (Section 3.2) gives a complete description of the iterated racing algo-
rithm as implemented in the irace package. We mostly follow the description of the original
papers (Balaprakash et al. 2007; Birattari et al. 2010), adding some details that were not ex-
plicitly given there. Later in Section 4, we mention several extensions that were not proposed
in the original publications.

3.2. The iterated racing algorithm in the irace package

In this section, we describe the implementation of iterated racing as proposed in the irace
package. The setup of the irace package itself is given in Section 5.

An outline of the iterated racing algorithm is given in Algorithm 1. Iterated racing requires
as input: a set of instances I sampled from I, a parameter space (X), a cost function (C),
and a tuning budget (B).

Iterated racing requires an estimation of the number of iterations N iter (races) that it will
execute. The default setting of N iter depends on the number of parameters with N iter =
b2 + log2N

paramc. Each iteration performs one race with a limited computation budget
Bj = (B − Bused)/(N iter − j + 1), where j = 1, . . . , N iter. Each race starts from a set



6 The irace Package: Iterated Racing for Automatic Algorithm Configuration

of candidate configurations Θj . The number of candidate configurations is calculated as
|Θj | = Nj = bBj/(µ + min(5, j))c. Thus, the number of candidate configurations decreases
with the number of iterations, which means that more evaluations per configuration will be
performed in later iterations. The parameter µ allows the user to influence the ratio between
budget and number of configurations, which also depends on the iteration number j. The idea
behind this setting is that configurations generated in later iterations will be more similar,
and, hence, more evaluations will be necessary to identify the best ones. On the other hand,
we do not consider for computing this setting more than five iterations, in order to avoid
having too few configurations in a single race.

In the first iteration, the initial set of candidate configurations is generated by uniformly
sampling the parameter space X. When a race starts, each configuration is evaluated on the
first instance by means of the cost measure C. Configurations are iteratively evaluated on
subsequent instances until a number of instances have been seen (T first). Then, a statistical
test is performed on the results. If there is enough statistical evidence to identify some
candidate configurations as performing worse than at least another configuration, the worst
configurations are removed from the race, while the others, the surviving candidates, are run
on the next instance.

There are several alternatives for selecting which configurations should be discarded during
the race. The F-Race algorithm (Birattari et al. 2002; Birattari 2009) relies on the non-
parametric Friedman’s two-way analysis of variance by ranks, the Friedman test, and its
associated post-hoc test, as described by Conover (Conover 1999). Nonetheless, the race
package (Birattari 2003) implements various alternatives based on the paired t test with and
without p value correction for multiple comparisons, which are also available in the proposed
irace package.

A new statistical test is performed every T each instances. By default T each = 1, but in some
situations it may be helpful to only perform each test after the configurations have been
evaluated on a number of instances. The race continues until the budget of the current
iteration is not enough to test all remaining candidate configurations on a new instance
(Bj < N surv

j ), or when at most Nmin configurations remain, N surv
j ≤ Nmin.

At the end of a race, the surviving configurations are assigned a rank rz according to the sum
of ranks or the mean cost, depending on which statistical test is used during the race. The
N elite
j = min(N surv

j , Nmin) configurations with the lowest rank are selected as the set of elite

configurations Θelite.

In the next iteration, before a race, a number of Nnew
j = Nj −N elite

j−1 new candidate configu-
rations are generated. For generating a new configuration, first one parent configuration θz
is sampled from the set of elite configurations Θelite with a probability:

pz =
N elite
j−1 − rz + 1

N elite
j−1 · (N elite

j−1 + 1)/2
, (1)

which is proportional to its rank rz. Hence, higher ranked configurations have a higher
probability of being selected as parents.

Next, a new value is sampled for each parameter Xd, d = 1, . . . , Nparam, according to a
distribution that its associated to each parameter of θz. Parameters are considered in the
order determined by the dependency graph of conditions, that is, non-subordinate parameters
are sampled first, those parameters that are subordinate to them are sampled next if the



Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, Mauro Birattari 7

condition is satisfied, and so on. Moreover, if a subordinate parameter that was disabled in
the parent configuration becomes enabled in the new configuration, then the parameter is
sampled uniformly, as in the initialization phase.

If Xd is a numerical parameter defined within the range [xd, xd], then a new value is sampled
from the truncated normal distribution N (xzd, σ

j
d), such that the new value is within the given

range.1 The mean of the distribution xzd is the value of parameter d in elite configuration θz.

The parameter σjd is initially set to (xd − xd)/2, and it is decreased at each iteration before
sampling:

σjd := σj−1
d ·

(
1

Nnew
j

)1/Nparam

(2)

By reducing σjd in this manner at each iteration, the sampled values are increasingly closer to
the value of the parent configuration, focusing the search around the best parameter settings
found as the iteration counter increases. Roughly speaking, the multi-dimensional volume of
the sampling region is reduced by a constant factor at each iteration, but the reduction factor
is higher when sampling a larger number of new candidate configurations (Nnew

j ).

If the numerical parameter is of integer type, we round the sampled value to the nearest
integer. The sampling is adjusted to avoid the bias against the extremes introduced by
rounding after sampling from a truncated distribution.

If Xd is a categorical parameter with levels Xd ∈ {x1, x2, . . . , xnd
}, then a new value is sampled

from a discrete probability distribution Pj,z(Xd). In the first iteration (j = 1), P1,z(Xd) is
uniformly distributed over the domain of Xd. In subsequent iterations, it is updated before
sampling as follows:

Pj,z(Xd = xj) := Pj−1,z(Xd = xj) ·
(

1− j − 1

N iter

)
+ ∆P (3)

where

∆P =





j − 1

N iter
if xj = xz

0 otherwise
(4)

Finally, the new configurations generated after sampling inherit the probability distributions
from their parents, and a new race is launched with the union of the new configurations and
the elite configurations.

The algorithm stops if the budget is exhausted (Bused > B) or if the number of candidate
configurations to be evaluated at the start of an iteration is not greater than the number
of elites (Nj ≤ N elite

j−1 ), since in that case no new configurations would be generated. If the

iteration counter j reaches the estimated number of iterations N iter but there is still enough
remaining budget to perform a new race, we simply increase N iter and continue the algorithm.

4. Extensions

We have implemented several extensions that were not proposed in the original publications.

1For sampling from a truncated normal distribution, we use the msm package (Jackson 2011).



8 The irace Package: Iterated Racing for Automatic Algorithm Configuration

4.1. Initial configurations

We can seed the iterated race procedure with a set of initial configurations. In that case, only
enough configurations are sampled to reach N1 in total.

4.2. Soft-restart

Our implementation incorporates a “soft-restart” mechanism to avoid premature convergence.
In the original I/F-Race proposal (Balaprakash et al. 2007), the standard deviation, in the
case of numerical parameters, or the discrete probability of unselected parameter settings,
in the case of categorical ones, decreases at every iteration. Diversity is introduced by the
variability of the sampled configurations. However, if the tuning converges to a few, very
similar elite configurations in few iterations, the diversity is lost and newly generated candidate
configurations will not be very different from the ones already tested. Such a premature
convergence wastes the remaining budget on repeatedly evaluating minor variations of the
same configurations, without exploring new alternatives.

We implemented a “soft-restart” mechanism that checks for premature convergence after gen-
erating each new set of candidate configurations. We consider that there is premature con-
vergence when the “distance” between two candidate configurations is zero. The distance
between two configurations is defined as the maximum distance between their parameter
settings, which is defined as follows:

• If the parameter is subordinate and disabled in both configurations, the distance is zero;

• if it is disabled in one configuration but enabled in the other, the distance is one;

• if the parameter is enabled in both configurations (or it is not subordinate), then:

– in the case of numerical parameters (integral or real), the distance is the absolute
normalized difference between their values;

– in the case of ordinal and categorical parameters, the distance is one if the values
are different and zero otherwise.

When premature convergence is detected, a “soft-restart” is applied by partially reinitializing
the sampling distribution. This reinitialization is applied only to the elite configurations
that were used to generate the candidate configurations with zero distance. The other elite
configurations do not suffer from premature convergence, thus they may still lead to new
configurations, whereas reinitializing their sampling distribution would mean to lose all the
knowledge accumulated on them.

In the case of categorical parameters, the discrete sampling distribution of elite configuration
z, Pj,z(Xd), is adjusted by modifying each individual probability value p ∈ Pj,z(Xd) with
respect to the maximum value pmax = max{Pj,z(Xd)} as follows:

p :=
0.9 · p+ 0.1 · pmax∑

p′∈Pj,z(Xd) 0.9 · p′ + 0.1 · pmax
.

For numerical and ordinal parameters, the standard deviation of elite configuration z, σj,zd , is
“brought back” two iterations, with a maximum limit of its value in the second iteration, as



Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, Mauro Birattari 9

follows:

σj,zd := min



σ

j,z
d /

(
1

Nnew
j

)2/Nparam

,
xd − xd

2
·
(

1

Nnew
j

)1/Nparam




After adjusting the sampling distribution of all affected elite configurations, the set of candi-
date configurations that triggered the soft-restart is discarded and a new set of Nnew config-
urations is sampled from the elite configurations. This procedure is applied at most once per
iteration.

5. The irace package

We provide here a brief summary of the irace package. The full documentation is available
together with the package.

The scheme in Fig. 1 describes how the different parts of irace interact with each other. The
program irace requires three main inputs:

1. A description of the parameter space X, that is, the parameters to configure, their
types, ranges and constraints. Section 5.2 summarizes how to define a parameter space
in irace.

2. The set of tuning instances {I1, I2, . . . }, which in practice is a finite, representative
sample of I. The particular options for specifying the set of tuning instances are given
in Section 5.1.

3. The configuration of irace itself, which is defined by a number of options. Table 1 maps
the description of iterated racing in Section 3.2 to the configuration options in irace.
The complete list of options is available in the software documentation.

In addition, irace requires a function (or an auxiliary program) called hookRun, which is re-
sponsible of applying a particular configuration to an instance and returning the corresponding
cost value.

The irace package is designed to be used either from within R, or from the command-line by
means of a wrapper. We illustrate these two usage modes by means of simple examples in
Section 6.

5.1. Tuning instances

The set of tuning instances {I1, I2, . . . } may be given explicitly as a configuration option of
irace. Alternatively, the instances may be read from an instance file (instanceFile). The
string given by option instanceDir will be prefixed to them. If the option instanceFile is
not set, then irace considers all files found in instanceDir, and recursively in its subdirecto-
ries, as tuning instances. The order in which instances are considered by irace is randomized
if the option sampleInstances is enabled. Otherwise, the order is the same as given in
instanceFile if this option is set or in alphabetical order if there is no instanceFile.



10 The irace Package: Iterated Racing for Automatic Algorithm Configuration

iraceirace

Instances
Parameter

space
Configuration

of irace

hookRun

calls with i,θ returns c(i,θ)

Figure 1: Scheme of irace flow of information.

Iterated racing parameter irace configuration option

B maxExperiments

C (cost measure) hookRun

µ mu

Nmin minNbSurvival

T first firstTest

T each eachTest

Statistical test testType

Table 1: Configuration options of irace corresponding to the description of iterated racing
given in Section 3.2. The full list of options is available in the complete documentation.

5.2. Parameter space

For simplicity, the description of the parameters space is given as a table. Each line of the
table defines a configurable parameter:

<name> <label> <type> <range> [ | <condition> ]

where each field is defined as follows:



Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, Mauro Birattari 11

<name> The name of the parameter as an unquoted alphanumeric string, for in-
stance: ‘ants’.

<label> A label for this parameter. This is a string that will be passed together
with the parameter to hookRun. In the default hookRun provided with the
package (Section 5.3), this is the command-line switch used to pass the
value of this parameter, for instance ‘"--ants "’.

<type> The type of the parameter, either integer, real, ordinal or categorical, given
as a single letter: ‘i’, ‘r’, ‘o’ or ‘c’.

<range> The range or set of values of the parameter.

<condition> An optional condition that determines whether the parameter is enabled
or disabled, thus making the parameter subordinate. If the condition eval-
uates to false, then no value is assigned to this parameter, and neither the
parameter value nor the corresponding label are passed to hookRun. The
condition must be a valid R logical expression. The condition may contain
the name of other parameters as long as the dependency graph does not
contain any cycle. Otherwise, irace will detect the cycle and stop with an
error.

Parameter types and range. Parameters can be of four types:

• Real parameters are numerical parameters that can take any floating-point values within
a given range. The range is specified as an interval ‘(<lower bound>,<upper bound>)’.
This interval is closed, that is, the parameter value may eventually be one of the bounds.
The possible values are rounded to a number of decimal places specified by option
digits. For example, given the default number of digits of 4, the values 0.12345 and
0.12341 are both rounded to 0.1234.

• Integer parameters are numerical parameters that can take only integer values within
the given range. The range is specified as for real parameters.

• Categorical parameters are defined by a set of possible values specified as ‘(<value
1>, ..., <value n>)’. The values are quoted or unquoted character strings. Empty
strings and strings containing commas or spaces must be quoted.

• Ordinal parameters are defined by an ordered set of possible values in the same format
as for categorical parameters. They are handled internally as integer parameters, where
the integers correspond to the indexes of the values.

Section 6 shows examples on how to read the parameters table either from a string literal or
from a file.

5.3. hookRun

The evaluation of a candidate configuration is done by means of a user-given function or,
alternatively, a user-given auxiliary program. The function (or program name) is specified by
the option hookRun.

When hookRun is an R function, then it is invoked for each candidate configuration as:



12 The irace Package: Iterated Racing for Automatic Algorithm Configuration

hookRun(instance, candidate, extra.params, config)

where instance is a single instance, extra.params is a user-defined value associated to this
instance, config is the configuration of irace, and candidate is a list with three components:
(1) $index, which is a numeric value identifying this candidate; (2) $values, which is a one-
row data frame with one column per parameter value; and (3) $labels, which is a list of the
labels of each parameter. The function hookRun must return a numerical value corresponding
to the cost measure of the candidate configuration on the given instance.

When hookRun is an auxiliary executable program, then it is invoked for each candidate
configuration, passing as arguments: the instance, a numeric identifier, and the command-
line parameters of the candidate configuration. The numeric identifier uniquely identifies a
configuration within a race (but not across the races in a single iterated race). The command
line is constructed by appending to each parameter label (switch), without separator, the value
of the parameter, following the order given in the parameter table. The program hookRun

must print (only) a real number, which corresponds to the cost measure of the candidate
configuration for the given instance. The working directory of hookRun is set to the execution
directory specified by the option execDir. This allows the user to execute several runs of
irace in parallel without the runs interfering with each other.

6. Examples of tuning scenarios

The next two sections (Sections 6.1 and 6.2) illustrate two different ways of using irace. The
first example shows how to set up and use the irace package by means of R programming.
The second example shows how to tune an external program via the command-line options
of the irace stand-alone program provided with the package.

6.1. Tuning optim() from R

In this illustrative example, our goal is to tune the parameters of the simulated annealing
algorithm (SANN) provided by the optim() function in the R base package. In particular,
let’s say we are interested in optimizing instances of the following family of functions:

f(x) = λ · fRastrigin(x) + (1− λ) · fRosenbrock(x) (5)

where λ follows a normal distribution N (0.9, 0.02), and fRastrigin and fRosenbrock are the well-
known Rastrigin and Rosenbrock benchmark functions. We use the implementation of these
functions provided by the package cmaes (Trautmann, Mersmann, and Arnu 2011).

R> f_rosenbrock <- function (x) {

+ d <- length(x)

+ z <- x + 1

+ hz <- z[1:(d - 1)]

+ tz <- z[2:d]

+ s <- sum(100 * (hz^2 - tz)^2 + (hz - 1)^2)

+ return(s)

+ }



Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, Mauro Birattari 13

+ f_rastrigin <- function (x) {

+ sum(x * x - 10 * cos(2 * pi * x) + 10)

+ }

In this scenario, different instances are given by different values of λ. Hence, we first generate
200 instances as follows:

R> weights <- rnorm(200, mean = 0.9, sd = 0.02)

We are interested in optimizing two parameters of the SANN algorithm: tmax and temp. We
setup the parameter space as follows:

R> parameters.table <- '
+ tmax "" i (1, 5000)

+ temp "" r (0, 100)

+ '

and we use the irace function readParameters to read this table:

R> library("irace")

R> parameters <- readParameters(text = parameters.table)

Next, we define the function that will evaluate each candidate configuration on a single in-
stance. For simplicity, we restrict to three-dimensional functions and we set the maximum
number of iterations of SANN to 5000.

R> hook.run <- function(instance, candidate, extra.params = NULL,

+ config = list())

+ {

+ D <- 3

+ par <- runif(D, min = -1, max = 1)

+ fn <- function(x) {

+ weight <- instance

+ return(weight * f_rastrigin(x) + (1 - weight) * f_rosenbrock(x))

+ }

+ res <- optim(par, fn, method = "SANN",

+ control = list(maxit = 5000

+ , tmax = as.numeric(candidate$values[["tmax"]])

+ , temp = as.numeric(candidate$values[["temp"]])

+ ))

+ return(res$value)

+ }

We are now ready to launch irace. We do it by means of the irace function by setting
hookRun to the function define above, instances to the first 100 random weights, and a
maximum budget of 1000 calls to hookRun.



14 The irace Package: Iterated Racing for Automatic Algorithm Configuration

R> result <- irace(tunerConfig = list(

+ hookRun = hook.run,

+ instances = weights[1:100],

+ maxExperiments = 1000),

+ parameters = parameters)

The function irace will print information about its progress. We can print the best configu-
rations found as follows:

R> candidates.print(result)

tmax temp

118 3501 0.8984

126 3487 1.1865

103 3441 0.3150

We could now evaluate the cost of the best configuration found by irace versus the default
configuration of SANN on the other 100 instances previously generated and not used during
training.

R> default <- sapply(weights[101:200], hook.run,

+ candidate = list(values = list(tmax = 10, temp = 10)))

R> result.list <- as.list(removeCandidatesMetaData(result[1,]))

R> tuned <- sapply(weights[101:200], hook.run,

+ candidate = list(values = result.list))

R> boxplot(list(default = default, tuned = tuned))

The resulting plot is given in Figure 2. The boxplot clearly shows that the tuned configuration
is able to find better solutions than the default configuration of SANN. This small example
is included in the documentation of the irace package and can be run with the command:

R> example(irace)

6.2. Tuning ACOTSP

ACOTSP (Stützle 2002) is a software package that implements various ant optimization al-
gorithms to tackle the symmetric traveling salesman problem (TSP). The example proposed
here concerns the automatic configuration of all its 11 parameters. The goal is to find a con-
figuration of ACOTSP that obtains the lowest solution cost in TSP instances within a given
computation time limit. The setup of the tuning procedure is defined through various files.

First, we define a parameter file (parameters.txt, Fig. 3) that describes the parameter space.
We also create a configuration file (tune-conf, Fig. 4) to overwrite some default options of
irace. In particular, we set an execution directory (e.g., ./tuning/) where temporary files



Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, Mauro Birattari 15

default tuned

0
5

10
15

20

Figure 2: Boxplot of default vs. tuned configuration of SANN.

# name switch type values [| conditions (using R syntax)]

algorithm "--" c (as, mmas, eas, ras, acs)

localsearch "--localsearch " c (0, 1, 2, 3)

alpha "--alpha " r (0.01, 5.00)

beta "--beta " r (0.01, 10.00)

rho "--rho " r (0.00, 1.00)

ants "--ants " i (5, 100)

nnls "--nnls " i (5, 50) | localsearch %in% c(1, 2, 3)

q0 "--q0 " r (0.0, 1.0) | algorithm %in% c("acs")

dlb "--dlb " c (0, 1) | localsearch %in% c(1,2,3)

rasrank "--rasranks " i (1, 100) | algorithm %in% c("ras")

elitistants "--elitistants " i (1, 750) | algorithm %in% c("eas")

Figure 3: Parameter file (parameters.txt) for tuning ACOTSP.

execDir <- "./tuning/"

maxExperiments <- 1000

Figure 4: Configuration file (tune-conf) for tuning ACOTSP.



16 The irace Package: Iterated Racing for Automatic Algorithm Configuration

are stored, and we set the tuning budget to 1 000 runs of ACOTSP. Next, we place the
tuning instances in the subdirectory ./Instances/, which is the default value of the option
instanceDir. We create a basic hook-run script that simply runs the ACOTSP software for
20 seconds and prints the objective value of the best solution found.2 We can now launch the
tuning procedure as follows:

R> library("irace")

R> irace.cmdline()

The package provides a convenient command-line wrapper for Unix environments, called
irace, located in file.path(system.file(package="irace"), "bin"), that basically in-
vokes R and executes the commands above. The command-line wrapper also allows the user
to specify many options directly from the command-line.

Most of the output is generated by the underlying race package, which prints a detailed
progress of each race. After each race finishes, the set of elite configurations are printed. At
the end, the best configurations found are printed as a table and as command-line parameters:

# Best candidates

algorithm localsearch alpha beta rho ants nnls q0 dlb rasrank elitistants

189 acs 3 1.268 6.0930 0.6846 20 17 0.2812 1 NA NA

332 acs 3 3.100 0.7011 0.4789 55 11 0.2630 1 NA NA

320 mmas 3 1.361 9.0390 0.6852 64 25 NA 1 NA NA

# Best candidates (as commandlines)

command

189 --acs --localsearch 3 --alpha 1.268 --beta 6.0930 --rho 0.6846 --ants 20 --nnls 17 \

--q0 0.2812 --dlb 1

332 --acs --localsearch 3 --alpha 3.100 --beta 0.7011 --rho 0.4789 --ants 55 --nnls 11 \

--q0 0.2630 --dlb 1

320 --mmas --localsearch 3 --alpha 1.361 --beta 9.0390 --rho 0.6852 --ants 64 --nnls 25 \

--dlb 1

In addition, irace saves an R dataset file, by default as irace.Rdata, which may be read
from R by means of the function load(). This dataset contains a list tunerResults, whose
elements are:

• tunerConfig: the configuration of irace.

• parameters: the parameter space.

• experiments: a matrix storing the result of all experiments performed across all it-
erations. Each entry is the result of evaluating one configuration on one instance at
a particular iteration. The first column (‘instance’) indicates the instance tested in
the experiments of the same row. The second column (‘iteration’) gives the iteration
(race) number in which the experiments in the same row where performed. The remain-
der of the columns represent configurations, and their column names correspond to their
IDs. Finally, ‘NA’ represents that for some reason the candidate was not evaluated on a
particular instance at that iteration, either because it did not exist yet or it was removed
earlier.

2The package includes an example of this hook-run script for Unix environments, which can be found at
file.path(system.file(package="irace"), "examples","acotsp").



Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, Mauro Birattari 17

• allCandidates: a data frame with all candidate configurations tested during the exe-
cution of irace.

7. Conclusion

This paper presents the irace package, which implements the iterated racing procedure for
automatic algorithm configuration. Iterated racing is a generalization of the iterated F-race
procedure. The primary purpose of irace is to automatize the arduous task of configuring the
parameters of an algorithm. However, it may also be used for determining good settings in
other computational systems. The irace package has been designed with simplicity and ease
of use in mind. Despite being implemented in R, no previous knowledge of R is required. In
GNU/Linux and MacOS X, a command-line wrapper makes the use of R completely trans-
parent to the user.

The irace package is available from CRAN. More information about irace is available at
http://iridia.ulb.ac.be/irace.

Acknowledgments

This work was supported by the META-X project, an Action de Recherche Concertée funded
by the Scientific Research Directorate of the French Community of Belgium, and by the
MIBISOC network, an Initial Training Network funded by the European Commission, grant
PITN–GA–2009–238819. Thomas Stützle, Mauro Birattari and Manuel López-Ibáñez ac-
knowledge support from the Belgian F.R.S.-FNRS, of which they are Research Associates
and Postdoctoral researcher, respectively. The authors also acknowledge support from the
FRFC project “Méthodes de recherche hybrides pour la résolution de problèmes complexes”.
The research leading to the results presented in this paper has received funding from the
European Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement n◦ 246939.

References

Adenso-Dı́az B, Laguna M (2006). “Fine-Tuning of Algorithms Using Fractional Experimental
Design and Local Search.” Operations Research, 54(1), 99–114.

Ansótegui C, Sellmann M, Tierney K (2009). “A Gender-Based Genetic Algorithm for the
Automatic Configuration of Algorithms.” In IP Gent (ed.), Principles and Practice of
Constraint Programming, CP 2009, volume 5732 of Lecture Notes in Computer Science,
pp. 142–157. Springer-Verlag, Heidelberg, Germany.

Balaprakash P, Birattari M, Stützle T (2007). “Improvement Strategies for the F-Race Al-
gorithm: Sampling Design and Iterative Refinement.” In T Bartz-Beielstein, MJ Blesa,
C Blum, B Naujoks, A Roli, G Rudolph, M Sampels (eds.), Hybrid Metaheuristics, vol-
ume 4771 of Lecture Notes in Computer Science, pp. 108–122. Springer-Verlag, Heidelberg,
Germany.



18 The irace Package: Iterated Racing for Automatic Algorithm Configuration

Bartz-Beielstein T (2006). Experimental Research in Evolutionary Computation: The New
Experimentalism. Springer-Verlag, Berlin, Germany.

Bartz-Beielstein T, Lasarczyk C, Preuss M (2010). “The Sequential Parameter Optimization
Toolbox.” In T Bartz-Beielstein, M Chiarandini, L Paquete, M Preuss (eds.), Experimental
Methods for the Analysis of Optimization Algorithms, pp. 337–360. Springer-Verlag, Berlin,
Germany.

Bartz-Beielstein T, Ziegenhirt J, Konen W, Flasch O, Koch P, Zaefferer M (2011). SPOT:
Sequential Parameter Optimization. R package, URL http://cran.r-project.org/

package=SPOT.

Birattari M (2003). “The race Package for R: Racing Methods for the Selection of the Best.”
Technical Report TR/IRIDIA/2003-037, IRIDIA, Université Libre de Bruxelles, Belgium.

Birattari M (2004). The Problem of Tuning Metaheuristics as Seen from a Machine Learning
Perspective. Ph.D. thesis, Université Libre de Bruxelles, Brussels, Belgium.

Birattari M (2009). Tuning Metaheuristics: A Machine Learning Perspective, volume 197 of
Studies in Computational Intelligence. Springer-Verlag, Berlin / Heidelberg.

Birattari M, Stützle T, Paquete L, Varrentrapp K (2002). “A Racing Algorithm for Con-
figuring Metaheuristics.” In WB Langdon, et al. (eds.), Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2002, pp. 11–18. Morgan Kaufmann Pub-
lishers, San Francisco, CA.

Birattari M, Yuan Z, Balaprakash P, Stützle T (2010). “F-Race and Iterated F-Race: An
Overview.” In T Bartz-Beielstein, M Chiarandini, L Paquete, M Preuss (eds.), Experimental
Methods for the Analysis of Optimization Algorithms, pp. 311–336. Springer-Verlag, Berlin,
Germany.

Chiarandini M, Birattari M, Socha K, Rossi-Doria O (2006). “An Effective Hybrid Algorithm
for University Course Timetabling.” Journal of Scheduling, 9(5), 403–432.

Conover WJ (1999). Practical Nonparametric Statistics. Third edition. John Wiley & Sons,
New York, NY.

Coy SP, Golden BL, Runger GC, Wasil EA (2001). “Using Experimental Design to Find
Effective Parameter Settings for Heuristics.” Journal of Heuristics, 7(1), 77–97.

Dorigo M, Stützle T (2004). Ant Colony Optimization. MIT Press, Cambridge, MA.

Dubois-Lacoste J, López-Ibáñez M, Stützle T (2011a). “A Hybrid TP+PLS Algorithm for
Bi-objective Flow-Shop Scheduling Problems.” Computers & Operations Research, 38(8),
1219–1236.

Dubois-Lacoste J, López-Ibáñez M, Stützle T (2011b). “Improving the Anytime Behavior
of Two-Phase Local Search.” Annals of Mathematics and Artificial Intelligence, 61(2),
125–154.

Goldberg DE (1989). Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Boston, MA, USA.



Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, Mauro Birattari 19

Hoos HH, Stützle T (2005). Stochastic Local Search—Foundations and Applications. Morgan
Kaufmann Publishers, San Francisco, CA.

Hutter F, Babić D, Hoos HH, Hu AJ (2007). “Boosting Verification by Automatic Tuning of
Decision Procedures.” In FMCAD’07: Proceedings of the 7th International Conference For-
mal Methods in Computer Aided Design, pp. 27–34. IEEE Computer Society, Washington,
DC, USA.

Hutter F, Hoos HH, Leyton-Brown K (2010). “Automated Configuration of Mixed Integer
Programming Solvers.” In A Lodi, M Milano, P Toth (eds.), Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems, 7th In-
ternational Conference, CPAIOR 2010, volume 6140 of Lecture Notes in Computer Science,
pp. 186–202. Springer-Verlag, Heidelberg, Germany.

Hutter F, Hoos HH, Leyton-Brown K (2011). “Sequential Model-Based Optimization for Gen-
eral Algorithm Configuration.” In Learning and Intelligent Optimization, 5th International
Conference, LION 5, Lecture Notes in Computer Science. Springer-Verlag, Heidelberg,
Germany.

Hutter F, Hoos HH, Leyton-Brown K, Stützle T (2009). “ParamILS: An Automatic Algorithm
Configuration Framework.” Journal of Artificial Intelligence Research, 36, 267–306.

Jackson CH (2011). “Multi-State Models for Panel Data: The msm Package for R.” Journal
of Statistical Software, 38(8), 1–29.

KhudaBukhsh AR, Xu L, Hoos HH, Leyton-Brown K (2009). “SATenstein: Automatically
Building Local Search SAT Solvers from Components.” In C Boutilier (ed.), Proceedings of
the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09), pp.
517–524.

López-Ibáñez M, Stützle T (2010). “Automatic Configuration of Multi-Objective ACO Al-
gorithms.” In M Dorigo, et al. (eds.), Swarm Intelligence, 7th International Conference,
ANTS 2010, volume 6234 of Lecture Notes in Computer Science, pp. 95–106. Springer-
Verlag, Heidelberg, Germany.

López-Ibáñez M, Stützle T (2012). “The Automatic Design of Multi-Objective Ant Colony
Optimization Algorithms.” IEEE Transactions on Evolutionary Computation. Accepted.

Maron O, Moore AW (1997). “The Racing Algorithm: Model Selection for Lazy Learners.”
Artificial Intelligence Research, 11(1–5), 193–225.

Montes de Oca MA, Aydin D, Stützle T (2011). “An Incremental Particle Swarm for Large-
Scale Continuous Optimization Problems: An Example of Tuning-in-the-loop (Re)Design
of Optimization Algorithms.” Soft Computing, 15(11), 2233–2255.

Nannen V, Eiben ÁE (2006). “A Method for Parameter Calibration and Relevance Estimation
in Evolutionary Algorithms.” In M Cattolico, et al. (eds.), Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2006, pp. 183–190. ACM press, New York,
NY.



20 The irace Package: Iterated Racing for Automatic Algorithm Configuration

R Development Core Team (2008). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org.

Stützle T (2002). “ACOTSP: A Software Package of Various Ant Colony Optimization Al-
gorithms Applied to the Symmetric Traveling Salesman Problem.” URL http://www.

aco-metaheuristic.org/aco-code/.

Trautmann H, Mersmann O, Arnu D (2011). cmaes: Covariance Matrix Adapting Evolu-
tionary Strategy. R package, URL http://cran.r-project.org/package=cmaes.

Affiliation:

Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, Mauro Birattari
IRIDIA, CoDE,
Université Libre de Bruxelles (ULB)
1050 Brussels, Belgium

E-mail:

manuel.lopez-ibanez@ulb.ac.be

jeremie.dubois-lacoste@ulb.ac.be

stuetzle@ulb.ac.be

mbiro@ulb.ac.be


