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Abstract

This paper presents a method for assessing the reliability of a sensor
in a classification problem based on the transferable belief model. First,
we develop a method for the evaluation of the reliability of a sensor when
considered alone. The method is based on finding the discounting factor
minimizing the distance between the pignistic probabilities computed from
the discounted beliefs and the actual values of data. Next, we develop a
method for assessing the reliability of several sensors that are supposed to
work jointly and their readings are aggregated. The discounting factors
are computed on the basis of minimizing the distance between the pignistic
probabilities computed from the combined discounted belief functions and
the actual values of data.

1 Introduction

A multisensor data fusion system is an important component in many fields
dealing with pattern recognition, identification, diagnosis, etc. It is used with
the hope that the aggregation of several sensors achieves better results. In this
paper, we consider sensors delivering classification (categorical) readings. In
the simplest cases, each sensor reading is a set of classes containing the actual
class. In more complex cases, some or all sensors communicate several such sets,
each weighted by a measure of confidence. Some classical measures are based
on the possibility theory and the fuzzy set theory, on the probability theory
and on the belief function theory. This paper considers only the belief function
theory as understood in the transferable belief model (TBM) [8, 10, 12].

Our discussion of sensor fusion is also potentially applicable to related prob-
lems, such as collating expert opinions. Expert opinions are equivalent to sensor
readings, and pooling is equivalent to fusion [3]. Experts differ in their level
of expertise, some of them are more reliable than others due to their better
knowledge, training, experience, intelligence, etc. To express their opinions, ex-
perts may use different background, methodology and knowledge. Hence, the



necessity to consider the expert reliability and consequently their judgments
must be appropriately ‘discounted’. Similarly, sensors do not have the same
degree of reliability. This may be due not only to the same reasons as al-
ready mentioned for experts, but also to other factors more specific to sensors.
For instance, measurements can differ from one sensor to another in terms of
completeness, precision, and certainty. Additionally, the working environment
can also affect sensor reliability since some of them could be better adapted to
the conditions encountered in the considered environment than others. Thus,
sensor reliabilities must be assessed before using their readings.

The TBM provides a highly flexible model to manage the uncertainty en-
countered in the multisensor data fusion problems [1, 2, 5, 6]. The sensor
reading about the actual value of a variable is represented by a belief function.
The reliability of the sensor is represented by a discounting factor i.e., a coeffi-
cient that ‘weights’ the belief function produced by the sensor. Reliability and
discounting are linked, the smaller the reliability, the larger the discounting.
Methods for evaluating the experts discounting factors are presented in [4, 13].
In [13], the authors have introduced the idea of estimating discounting factors
by minimizing an error function, an idea which is the starting point of our pa-
per. In [13], each observation of the training set is seen, using our terminology,
as a ‘sensor’ which receives a discounting factor. This latter depends on some
distance between itself and the one to classify. The solution is different from
the one presented here.

Our paper develops methods to assess discounting factors to be applied to
sensor readings. In the first case, a sensor is considered alone. The method to
assess the discounting factor is based on the comparison of the discounted sensor
readings (represented by belief functions on the domain of the actual classes)
with what we know about the actual classes. In the second case, several sensors
are considered jointly. The assessment method is based on the comparison of
the combined discounted readings (also represented by belief functions) with
the actual classes. Section 2 recalls briefly the basics of the belief function
theory as interpreted in the TBM. Section 3 and 4 represent the major part of
this paper where the methods for the evaluation of the reliability of sensors will
be detailed. An illustrative example will be presented to explain the different
methods.

2 Belief Function Theory

In this section, we briefly recall some basics of the belief function theory as
explained in the transferable belief model (TBM). More details can be found in
7, 10, 12].

2.1 Basic concepts

Let © be a non empty finite set including all the elementary events related
to a given problem. These events are assumed to be exhaustive and mutually
exclusive. The set © is called the frame of discernment. A basic belief



assignment (bba) is a function m from 2© to [0, 1] satisfying:

Y m4) =1 (1)

ACO

The basic belief mass m(A), represents the part of belief exactly committed to
the subset A of © given a piece of evidence, or equivalently to the fact that all
we know is that A holds. When m(0)) = 0, m is called a normalized bba. When
m(0) =1, m is called a vacuous bba.

2.2 Combination

Combining bba’s induced from distinct pieces of evidence is achieved by the
conjunctive rule of combination. The bba obtained by the conjunctive combi-
nation rule applied to the bba’s m; and ms is denoted by mq(Q)ms and defined
for all A C © as:

(m1@me)(A) = > m1 (B)ma(C) (2)

B,CCO:BNC=A

2.3 Discounting

Reliability is expressed here by the user opinion about the ‘value’ of the sensor
reading. The idea is to weight most heavily the opinions of the best sensors
and conversely for the less reliable ones. The result is a discounting of the bba

m® produced by the sensor into the new bba m®® where:

mO(A) = (1 — a) mP(A), VAC ©,A# O ;
{mQ%@y=a+u—a)m%@) 8)

The coefficient (1 — ) can be regarded as the degree of ‘trust’, the strength of

reliability assigned to the sensor reading. The rule is justified in [9].

2.4 Pignistic Transformation

In the TBM, when a decision has to be made we build a probability function
BetP on O, called the pignistic probability function, by applying the pignistic
transformation. BetP is defined as [12] :

BetP(A) = )

IANB| m(B)
C
51 ,VACO (4)

—m(0)
This solution is a classical probability measure from which expected utilities can

be computed in order to take optimal decisions. Full details and justifications
can be found in [11, 12].



3 Assessing the Discounting Factor of one Sensor

Usually the discounting factor applicable to a sensor is unknown and the users
would like to find objective ways to assess it. We present a method to assess
the optimal discounting factor applicable to a sensor reading. The method can
easily be adapted to other domains, the underlying schema being quite general.
The idea is to compare the readings of the sensor with what the user knows
about the actual values. We consider several states of knowledge about the
actual class of the data in the learning set.

3.1 Evaluation of the Discounting Factor

Let 7 = {o1,... ,0,} be a set of n objects and © = {6;,62,... ,0,} be a set
of classes. For each object o; € T, we know its class, denoted c;, with ¢; € ©.
The reading of the sensor about the class of the object o; is represented by a
bba, denoted m®{o0;} defined on ©.

Our first method for assessing the discounting factor considers one sensor
alone. Finding the sensor discounting factor is achieved by comparing the bba’s
me{Oj} produced by the sensor about the class of each of the n objects in T

and their real classes.

Assume the discounting factor « relative to this sensor is known, then its
bba should be discounted taking into account a. We get m®*{o;} by using
equation (3). In order to make a decision about the class to which the object
belongs to, we apply the pignistic transformation on the bba mg’o‘{oj}. So, we
get the pignistic probability, denoted BetP@’a{oj} representing the probability
of the object o; to belong to each individual class. This probability function
is then compared with what the user knows about the actual value c; of the
object 0;. Let the indicator function d;; be defined as: 0;; = 1 if ¢; = 6; and 0
otherwise. The idea is to compute the (iistance between the pignistic probability
computed from the discounted sensor reading and the indicator function §; ;.
We have chosen the Euclidean distance, the choice of the distance is of course
arguable. Other distances could of course be considered. The one we use is by
far the most classical one. This distance is defined as follows:

P
Dist(0;, @) = Y _(BetP®*{0;}(6:) — §;,:)° (5)
i=1
The following property holds for the above distance:
Theorem 1

0 < Dist(oj,a) <2 (6)

Proof. Without loss of generality, we can take 6;; = 1if i = 1, and 0 otherwise. We
write P; for BetP®*{0;}(6;). So Dist(oj,a) = (1—P)> +Y b ,P? =501 P?+1-—
2P;. Being a sum of squares, it is non negative. We also have always > 1 P? <1
so Dist(oj,a) < 2 holds. The boundaries are reached with P, = 1, in which case
Dist(oj,a) =0, and with P, =0 and P» =1, in which case Dist(oj,a) = 2. ad

The next step consists of computing the distance between the pignistic prob-
ability of each object 0; in 7 and its corresponding d;,;. The sum of these dis-
tances, denoted Totalﬁist, reflects sensor reliability. TotalDist is defined as



follows:
TotalDist = Z Dist(oj,a) = Z Z (BetP®*{0;}(6;) — 8;,:)° (7)
j=1 j=1 i=1

We then estimate the discounting factor as the coefficient « € [0, 1] that mini-
mizes Total Dist. In other words, o makes the values of BetP®{0;} as close
as possible to the truth represented by 4, ;.

3.2 The Case of Normalized Belief Functions

In the case of normalized bba’s, it is possible to produce the solution for the
value of a that minimizes TotalDist. Let BetP®{o;} be the pignistic proba-
bility function computed from m®{o;}, before discounting. The value of the
factor « is presented in the following theorem.

Theorem 2 Let a set of normalized bba’s m@{oj} defined on the set of classes
© = {01,0,...,0,} for objects 0j,57 = 1,... ,n. Let the indicator function
d;i = Lifcj = 0; (and the object o; belongs to the class c;), and 0 otherwise. Let
BetPG’O‘{oj} be the pignistic probability function computed from the discounted
bba m®{o;}. The discounting factor « that minimizes:

TotalDist =377, b (BetP®%{0;}(0;) — 6;,)% is given by:

Z] 1 2 (0 BetPe{o]}( ))BetPG{o]}( i)
n/p— EJ | 2iey BetP®{o;}(8:)?

a = min(1, max(0,

) (®)

Proof. Given the bba m®{o;}, its a-discounted bba is:

m®*{0;}(0) = (1 — a)m®{0;}(0) ifdCo
= (1—a)m®{0;}(0) + « ifg=0

Hence, BetP®*{0;} computed from m®®{o;} can be defined as a function of BetP®{o0;}
which is computed directly from the initial bba m®{o;}. We get BetP®{o0;}(8;) =
Ze:eiee me{oj}(e)/|9|

BetP®{0;}(8;) = 3= g.9,eo m™*{0;}(8)/16|

= Yp.0,c0(1 — )m®{0;}(6)/10] + a/p = (1 — @) BetP®{0;}(0) + a/p

Let P;; = BetP®{0;}(#;). The value of TotalDist to be minimized becomes
Total Dist = Z?Zl S P (BetP®{0;}(8;) — ;)% = E?Zl P (l-a)Pj+a/p—
8j,i)°

Its extremum is reached when its derivative is zero:

d Total Dist
———— =2 (1—a)P; +a/p—0;;)(—Pi; +1/p)

da I
ocz om/p-i—Z(S“P”+(1—a)n/p+om/p—n/p
7,
—Z 1—0{P2 —om/p-{—Z(Sj,iPij
Jri

22;.i(05,i—Pij) Pij
Thus o = = =2
n/p=32;; Pi2j

prove that our solution is a minimum, the second derivative is shown to be positive.

. In order that a € [0, 1], we get the limit constraints. To



We have:

d? Total Dist )
a2
48

For any probability distribution function ¢; : i = 1,...,p, we have ¢? < g;, Vi, thus
3,47 < >, ¢; = 1. Furthermore the minima of ), ¢7 is reached when ¢; = 1/p,Vi
(obtained by minimizing Y, ¢7 —A(}; ¢;—1) where X is a Lagrange multiplier). Coming
back to the initial relations, we get n > Z” P% > n/p, thus % > 0, and the

extremum for « is a minimum. O

Hence, in the case the sensor produces normalized bba’s, we may easily find
its discounting factor.

3.3 Example

Our example deals with a simple classification problem of aerial targets. Assume

two sensors S1, So are applied to present their readings concerning the class of

the detected target. Three classes are possible: © = { Airplane, Helicopter, Rocket}.
The sensor readings on the classes are expressed by the bba’s detailed in table

1 where we consider 4 objects which classes are known by us but not by S; and

So. At the first row of the table, we have the actual class of each object, then

the bba’s produced by the two sensors about the classes of the four objects.

Table 1: The bba’s produced by two sensors.

Truth Airplane Helicopter Airplane Rocket
Sl 01 02 03 04
0 0 0 0 0
Airplane 0 0 0 0
Helicopter 0 0.5 0.4 0
Rocket 0.5 0.2 0 0
Airplane U Helicopter 0 0 0 0
Airplane U Rocket 0 0 0.6 0.6
Helicopter U Rocket 0.3 0 0 0.4
(C] 0.2 0.3 0 0
52 01 02 03 04
0 0 0 0 0
Airplane 0 0.3 0.2 0
Helicopter 0 0 0 0
Rocket 0 0 0 0
Airplane U Helicopter 0.7 0.4 0 0
Airplane U Rocket 0 0 0 0
Helicopter U Rocket 0 0 0.6 1
(C] 0.3 0.3 0.2 0

Let oy be the discounting factor applicable to sensor S;. We discount bba’s
produced by S; relative to the four objects. Then, we compute their corre-
sponding BetP’s (see table 2):

Next, the whole distance relative to the sensor S; will be equal to T'otal Dist =
Sio1 Yooy (BetPOet{o;}(6;) — 6;)%. Hence, TotalDist = 0.41a7 — 0.540n +
2.83.



Table 2

: BetP’s computed from the four discounted bba’s of S;

Sl 01 02 03 04
Airplane | 0.06 + 0.26c1 | 0.1 +0.24a; | 0.3+ 0.03c; | 0.3 + 0.03c1
Helicopter | 0.22 +0.12a; | 0.6 —0.27a; | 0.4 — 0.06c1 | 0.2 4+ 0.13c1
Rocket 0.72 —0.38a1 | 0.3 +0.03a1 | 0.3 +0.03a1 | 0.5 —0.16a1

Minimizing Total Dist under the constraint 0 < a; < 1 results in oy = 0.66.
Applying the same procedure for readings produced by the sensor Sy, we get
the discounting factor ap = 0.52. Thus, sensor Sy is (a little) better than the
sensor S, in other words, it is (a little) more reliable than S;.

3.4 Categorical Imprecise Sensors

Sensors are qualified as ‘categorical’ when there is only one focal element, so
there is a 7; C © with m®{o0;}(r;) = 1 for all objects o;. Categorical sensors
are ‘precise’ if |7;| = 1 for all objects o;.

We say that a sensor is ‘blind’ if the class 7; is selected irrespective of
the object oj, i.e. the sensor allocates the object to a class at random, using
the same distribution of every object, irrespective of true object class. It is
‘unbiased’ if the distribution gives equal probability for each class. A sensor is
‘worth using’ if its results are better than those a blind sensor would achieve.

We consider the case of a categorical but imprecise sensor, i.e. a sensor such
that for all object o, there is a 7; C © with m®{o;}(7j) = 1 and |r;| > 1, with
a strict inequality for some objects. Thanks to the simplified structure of the
data, it is possible to derive the value of the discounting factor to assign to the
sensor.

Theorem 3 Let © = {6,... ,0,} be a set of p mutually exclusive and exhaus-
tive classes, and {o1,... ,0,} be a set of n objects. For each oj, let c; be the
actual class of object oj, and 7; C © be the subset of © in which all we know
about ¢; is ¢c;j € Tj. Let njg = |{j : ¢ = 6,75 =0} and n g =) ;n;9. The
value o that minimizes Total Dist in relation (7) is given by:

a = min(1, %) 9)
where PCC =Y Y T;T’f‘i (10)
i 9Ch;
1 n.g
1£0CO

Proof. Suppose a is the discounting factor. For every j, m®{o;}(;) = 1 and its alpha
discounted bba is m®*{0;}(r;) = 1 —a,m®*{0;}(0) = a. The pignistic probabilities
computed from m®*{o;} are:

BetP®%{0;}(8;) = a/p+ (1 —a)/r

Vo, € Tj
‘v’ﬁl ¢ Tj



where r = |7;| and p = |0O|.
The distance Dist(o;, ) becomes:

e If ¢; € 7; (possibly exact classification): —1 — a?/r +1 — a?/p.
e If ¢; ¢ 7; (wrong classification): (1 —a)?/r +1—a?/p.

The overall distance becomes:

)2 2
TotalDistzZ angug |0|+1 —+—an9 +n(1—%)
i9Ce;

2

nzGUG nlg «
—(1=a’)} > pE -’y Y - =)

6]+ 1 || p

i9Ch; i9Ch;

= —n(1 —a”)PCC +n(1 — a)*(S — PCC) + n(1 — a’/p)

ni,g; U8 n,
where PCC =37, %53, \9H—u1 and S = Emﬁge |T|9.
The value of « in [0,1] that minimizes TotalDist is obtained by finding the value
that makes the derivative equals to zero , and satisfies the domain constraints.

d Total Dist
# =2anPCC — 2(1 — a)n(S — PCC) — 2na/p = 0.
Hence, a = min(1, %= PSC) which is a minima as the second derivative S — 1/p is
positive. Indeed with m(0) = n. o/n, S = 3 g9ce m(0)/10] = Y proce m(0)/|O] =

1/p. O

The nature of the terms in relation (9) deserves consideration. Define
BetP®(0;) = >_0;coco Hi(0)/16] where 11;(0) = njp/n; .. By construction p;
is a normalized bba’s on ©. The term BetP®(6;) is the probability with which
you would bet correctly when the case is a 6; case. It is the analogous of the
PCC (Percent of Correct Classification) for the 6; cases. This value would be
the classical PCC' if:

e all cases with ¢; = 7; are correctly classified,
e 1/m cases with ¢; € 7; for |7;| = m are correctly classified.

A global PC'C computed for the whole learning set can be defined in this context
of imprecise data as PCC = 3, " BetP®{0;}(6;), hence its name.

Using the same argument, S can be seen as the maximal number of objects
that we can expect to classify correctly when data are imprecise.

Finally, the term 1/p can be seen as the expected number of objects correctly
classified by a blind unbiased sensor.

The only case when the domain constraint is used is when PCC < 1/p, thus
when the sensor is worse than a blind unbiased sensor that allocates objects on
pure chance. When « < 1, the sensor is worth using. When o = 1, all bba’s
produced by the classifier are so discounted that they become vacuous. In that
case why bother with such a sensor?

When the classifier is categorical and precise, i.e., when |7;| = 1 for all

objects oj, then S = 1 and o = min(1, 11 Pﬁpc)




3.5 Uncertainty about the Truth

Suppose the actual classes of the objects used to assess the discounting factors
are not exactly known, but we only have a bba m$ {o0;} that expresses what we
know about the true class of object o;. The adaptation of the distance, in such
a case, is immediate. Let p;; be the value of the pignistic probability induced
from the m§ {o;} with p;; = BetP® (c; class of o; is 0)). If we knew that the
class of 0; was 0, we would compute Dist(o;,a) = Y b_ (BetP®*{0;}(6;) —
8ji)%. According to equation (5), where §;; = 1if ¢; = 6;, and 0 otherwise.
The probability that the class of o; was 0}, is p; x, so we weight this distance by
pjr and compute its expectation taken over k.

P P
Dist(oj,a) = ,pjs ) (BetP{o;}(60;) — 0;:)° (12)
k=1 i=1
We then proceed as previously (see section 3.1).

3.6 Comparing a and k

A classical criterion for evaluating the classifier quality is the k coefficient. This
coefficient is normally defined for categorical and precise classifiers, as follows:

PCC — proportion correctly classified by chance
kK =

max possible PC'C' — proportion correctly classified by chance

— El ni0; — Ez n~79ini7~/n

n— im0, [

Of course max possible PCC is 1 in the classical context.
Within our framework, the « coefficient can be used to generalize the mean-
ing of k in context where learning set data are imprecise and non categorical.

Consider the following sensors:
e Suppose the sensor is categorical, precise and worth using. Further sup-

pose the sensor allocates the same number of objects in each class. Then
1 — a = k. This illustrates the direct link between the two coefficients.

e Suppose the sensor is categorical, imprecise and worth using. The pro-
portion correctly classified by chance becomes S, what fits indeed with
the explanation given for relation (11). So, « in relation (9) is a direct
generalization of «.

e Suppose the sensor is not categorical and worth using, then « is a further
generalization of the previous case adapted to the non categorical cases.

In order to better understand what o means, we can propose another link
that might help. For categorical and precise sensors, the PC'C' can be seen as
the expected utility obtained from the use of the sensor when utilities are 1 for
a correct decision (¢; = 7;), and 0 for a wrong decision. For the categorical
imprecise sensor, use utilities 1/|7;| when ¢; € 7;, thus when the sensor is not
wrong, and 0 when it is wrong. The coefficient fits nicely with the natural idea
that if for instance all we know is 7; = {61,602, 03}, then such a decision is worth
1/3 as on the average one can expect that 1/3 of those objects classified as 7;
are correctly classified and 2/3 are wrongly classified. Relation (8) could be
seen as generalizing this idea of expected utilities to non categorical sensors.



3.7 Unclassified Data

Suppose an object o; has not been classified by the sensor, and still we add
it to the data base to assess the discounting factor. It seems that this case
should not interfere with the assessment of . And so is it indeed. In that case,
BetP®{0;}(6;) = 1/p whatever a. Equation (12) becomes:

Dist(oj,a) =32 _ pjx >t 1(1/p — 6;;)* which does not depend on o and
therefore the evaluation of « will not be affected by these unclassified cases.
This property results from the fact that the discounting of a vacuous belief
function is the vacuous belief function itself.

3.8 Conclusions for one sensor

We have considered the case where data in the learning set are categorical
precise, categorical imprecise, or uncertain. The computation of the discounting
factor « is obtained by a minimization procedure. In the most classical case
where bba’s are normalized, explicit solutions are presented. The smaller the
«, the best the sensor. The discounting factor can be applied to the beliefs
generated by the sensor when facing new data. They can also be used to order
sensors by their ‘quality’.

4 Assessing the Discounting Factors of Several Sen-
sors Used Jointly

4.1 Assessing the Discounting Factors

The second method developed in this paper permits the evaluation of the dis-
counting factors when there are several sensors and their readings are aggre-
gated. Pooling sensor readings together is done in order to derive, hopefully,
a better predictor. This pooling is achieved by conjunctively combining the
bba’s produced by each sensor. Before combining them, they must be dis-
counted appropriately in order to take into account their individual reliability.
Let mgu {o;} be the bba collected from sensor S, about the actual value of the
class of object o, denoted ¢;. In order to get the optimal set of discounting
factors, the following steps are applied:
e Assume a set of discounting factors «,,, one for each sencor.
e Discount mgu {o;} by its discounting factor «, given to sensor S,. We get
m?‘:a” {0;}. This process is applied for each sensor and for each object.
e For each object o; (j = 1,...,n), apply the conjunctive rule in order to
compute the overall bba m®%{o,} about the class to which o; belongs.

el 67 67 €
m®o;} =mg " {0;}@........ @mg *{o;} (13)
where @ denotes the vector (aq,... , ).

e Compute the corresponding B 6tP®’a{0j} representing the pignistic prob-
ability on the class of object o;.

10



e For each object oj, compute the distance Dist(o;, @) between BetP®%{o;}
and d;;, the indicator function for the real class of o;. Dist(o;,@) =
P (BetP®%{0;}(0;) — §;:)* where 6, = 1 if ¢; = 6; and 0 otherwise.
e Compute Total Dist as follows:

n
TotalDist = Z Dist(o;, @) (14)
j=1

Total Dist is expressed on the terms of the sensor discounting factors aq,
a9, ..., 0.

e To find the optimal discounting factors, we minimize TotalDist on the
a,,’s under the constraints 0 < o, < 1, Vv € {1,..,¢}

4.2 Example 2

Let us consider the same data in the example 1 (see table 1) but assume that
the two sensor readings will be taken into account together. So, let’s apply our
second method on the two sensor readings in order to get their merged reading.

Once the bba’s of S} and Sy are discounted, we get respectively m?l’al{oj} and

(C]

mg**{o;} where j = 1,2,3,4, which are linear functions of the discounting
2

factors. For each object 0}, we compute the joint bba m®®{o0;} as : m®*{o;} =
m?l’al{oj-}@m%az{oj-} where the terms containing the o}s are at worst of the
form [[,_, ;a, where I is the number of sensors (I = 2 in the present case).
The corres,po,nding discounted BetP’s relative to these bba’s are also linear
functions of the same product terms. The value of Dist(o;, @) relative to the
objects, as well as Total Dist, are quadratic functions of the previous product
terms. So its minimization on the «; is simple and can be achieved by any
minimization program.

When we work with more than two sensors, the minimization program
should produce the values of «,’s. Minimization might become problematic
when the number of sensors is large as it is non-linear in the alphas and of
exponential size. This computational problem is not analyzed here as we focus
on the principle, not on its implementation.

In the present case, oy = 0.28 and as = 0.12. It should be emphasized
that the discounting factors computed in this second method should not be
compared to those computed with the first method described in section 3. Here
we need the ay,’s such that the multisensor itself is ‘optimal’, whereas in the first
method, we compute the a,,’s in order to evaluate the quality of the individual
sensors taken individually. Mathematically, in the first case, we minimize for
each sensor individually, whereas in the second case, we minimize the distance
with the result of the combination of the discounted sensor belief functions.

4.3 Sensors Observing Different Data Sets

Suppose an object o; has not been classified by the sensor S,,. This is equivalent
to using a vacuous bba for mgu {0;}. As before, these data do not interfere with
the assessment of the a’s. The term m®®{0;} encountered in equation (13)

11



is not changed as m?‘:a” {o;} is vacuous. The same holds for BetP®%{o;},
Dist(o;,@) and Total Dist. Hence, the o’s will be the same. The fact that the
assessment of a’s does not depend on the addition of any vacuous bba implies
that we can apply the previous method to the case where the data sets observed
by each sensor differ from sensors to sensors. One just considers all possible
cases, add (fictiously) vacuous bba for all the missing bba’s, and proceed as
before. The only problematic case would be if S, had not observed any data,
and produce only vacuous bba’s. In that case T'otal Dist becomes independent
of oy, and any value would be as good as any other, as it should be indeed.
How could we assess the quality of a sensor that does not report anything?

5 Conclusion

In this paper, we have presented two methods for assessing reliability factors
of non ideal sensors. The first method treats the case where each sensor is
considered alone and consists of finding the discounting factor that will make
its readings as close as possible to reality. The second method treats the case
where we have several sensors that must be used jointly in order to assess their
discounting factors. The method can be adapted to handle partially known
data where the user is not sure about the actual values of classes. We can also
apply the method to a case where the sets of objects used for assessing the
reliability of the various sensors varies from sensor to sensor. The methods we
present can easily be extended to other problems of prediction in contexts of
supervised learning. All it requires is a ‘distance’ between the sensor readings
and the reality. The technique consists of finding the discounting factors that
will minimize this distance.
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