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Abstract
In the transferable belief model(TBM), pignistic probabilities are used
for decision making. The nature of the pignistic transformation is justi-
fied by a linearity requirement. We justify the origin of this requirement
showing it is not ad hoc but unavoidable provides one accepts expected
utility theory.

1 Introduction

The transferable belief model (TBM) is a model for the representation of quanti-
fied beliefs held by a belief holder, called You hereafter. We defend the existence
of a two-level mental model: the credal level where beliefs are held and repre-
sented by belief functions, and the pignisitc level where decisions are made by
maximizing expected utilities (Savage, 1954)!. Hence we must build a probabil-
ity measure at the pignistic level in order to compute these expectations. This
probability measure is based on the agent’s beliefs, but should not be understood
as representing the agent’s beliefs themselves. It is just a probability function
derived from the belief function. We call it a pignistic probability function and
denote it BetP to enhance its real nature, a probability measure for decision
making, for betting. Of course BetP will be just a probability measure. The
problem is to derive and justify the transformation between belief functions and
pignistic probabilities.

We have proposed one particular transformation, called the pignistic trans-
formation. Its justification was based on an intuitive argument (Smets &
Kennes, 1994; Smets, 2002, page 33). Apparently the argument was not convinc-
ing for some readers. In this paper we formalize the justification of the pignistic
transformation. Before proceeding with the formal derivation, we rephrase the
intuitive argument.

Example. Buying a drink for Your friend. Suppose You have two
friends, Glenn (G) and Judea (J). You know they will toss a fair coin and the

1From credo, I believe and pignus, a bet, a wage, both in Latin.



winner will visit You tonight. You want to buy the drink Your friend would like
to receive tonight: coke, wine or beer. You can only buy one drink. Let D =
{coke, wine, beer}.

Let mP[G] be the basic belief assignment (bba) that represents Your belief
about the drink Glenn will ask for, should You know he will come. From mP[G],
You build the pignistic probability function BetPP|[G] about the drink Glenn
will ask by applying the (still to be defined) pignistic transformation. Similarly,
You build the pignistic probability function Bet PP[J] based on the bba mP[.J]
that represents Your belief about the drink Judea will ask for, should You know
he will come. The two pignistic probability functions BetPP[G] and BetPP[J]
are the conditional probability functions about the drink that will be asked for
given You know which of Glenn or Judea will come, respectively. Before knowing
who the visitor will be, the pignistic probability functions BetP” about the
drink that Your visitor will ask for is derived from classical probability theory:

BetPP(d) = 0.5BetPP[G](d) + 0.5Bet PP[J](d), Vd € D. (1)

where the 0.5 are the probability that the visitor is Glenn and the probability
that the visitor is Judea, respectively. You will use the pignistic probability
function BetPP to decide which drink to buy.

But You might as well reconsider the whole problem and first compute m
that represents Your belief about the drink Your visitor will ask for. We will
show that mP is given by (see also (Smets, 1997)):

D

mP(d) = 0.5mP[G](d) + 0.5mP[J](d), Vd C D. (2)

where the 0.5 are the basic belief masses given to the fact that the visitor is
Glenn or that the visitor is Judea, respectively. These basic belief masses result
from the coin tossing experiment, and the accepted assumption that the belief
that results from an aleatory experiment is equal to the probability measure
associated with the aleatory experiment.

Given m”, You could then build the pignistic probability BetP” You should
use to decide which drink to buy. It seems reasonable to assume that both so-
lutions must be equal. This requirement implies that BetP must satisfy the
linearity property defined in assumption 1.1. It is the major requirement that
will lead to the unique solution for the the pignistic transformation. O

Formally the linearity property derived in the above scenario is :

Assumption 1.1 (Linearity property) Let m; and msy be two basic belief
assignments on the frame of discernment 2. Let F be the pignistic transforma-
tion that transforms a basic belief assignment over Q) into a probability function
BetP over Q. Then F is said to satisfy the linearity property iff, for any
a € [0,1],

Flam; + (1 —a)ms) =a.F(my) + (1 — «).F(ms) (3)

Once F satisfies the linearity requirement, the derivation of the pignistic
transformation becomes 'immediate’ as it turns out to be mathematically iden-
tical to the derivation of the Shapley value in cooperative game theory (Shapley,
1953; Roth, 1988). The solution is presented in the next definition.



Definition 1.1 (The pignistic transformation.) Let m® be a basic belief
assignment on space ). Its associated pignistic probability function BetP$ on
Q is defined as :

P () — 1 _m)
BetP™(w) ngzwew‘m A= m0)’ Yw € 9, (4)

where | W] is the number of elements of Q in W. The transformation between
mS and BetP* is called the pignistic transformation.

The real issue for justifying the pignistic transformation turns out to be the
production of some justification for assuming the linearity property.

The resulting pignistic transformation was already proposed in (Dubois &
Prade, 1982; Williams, 1982) as the ‘natural’ solution but without justifica-
tion. The intuitive justification based on the previous scenario was presented in
(Smets, 1990, 1993; Smets & Kennes, 1994).

Our intuitive justification turns out not to be as compelling as we expected
and some authors argue that the linearity property is ad hoc. So we formalize
it here.

We have to be careful about the meaning of the « in Relation (3): the
multipliers of m; are at the credal level whereas those of F(m;) are at the
pignistic level. In fact we will explain that the two o multipliers are numerically
equal even thought they correspond to two different concepts. We also explain
that Relation (3) holds for any basic belief assignment.

The idea has been defended that the pignistic transformation could simply
be derived by assuming the Principle of Insufficient Reason (PIR) . We do not
support such a justification as we feel the PIR is not an acceptable rationality
principle. Indeed it leads to the many paradoxes described in probability theory,
like Buffon’s needle or Bertrand’s paradox, etc... (Szekely, 1986).

Authors among which (Appriou, 1991; Nifle & Raynaud, 1997; Cobb &
Shenoy, 2003, 2004) favor using the relative plausibilities on the singletons for
decision making?. This solution is similar to the ‘optimistic approach’ described
in the Choquet’s capacities framework (Schmeidler, 1989; Nguyen & Walker,
1994) or the upper and lower probability framework (Jaffray, 1988, 1989a, 1989b,
1994; Strat, 1990b, 1990a, 1994; Schubert, 1995).

Cobb and Shenoy (2003, 2004) defend that the transformation between bbas
and probability functions should satisfy the next requirement: the transforma-
tion of the combination of two bbas (by Dempster’s rule of combination) should
be a function (the point wise product) of the transformations of each bba. This
requirement is satisfied by the transformation based on the relative plausibil-
ities on the singletons. Unfortunately, these authors do not explain why this
requirement should be accepted.

In (Smets, 2002) we already discuss what we feel are the weaknesses of
decision based on relative plausibilities.

In the present paper, we formalize the justification of the pignistic transfor-
mation. We explain the origin of the linearity requirement, and indicate that it
is in fact unavoidable without violating expected utility theory. The linearity
requirement is not ad hoc but necessary except if one rejects expected utility

2The relation was already presented in (Voorbraak, 1989) for approximating belief functions
by probability functions, what does not mean this author proposes it for decision making.



theory, but this is another issue not considered here, even though interesting in
itself.

The paper is organized as follows. In Section 2, we present the definition of
some used operators and formalize the concept of conditional belief functions
that generalize conditional probability functions into the belief function realm.
In Section 3, we derive the equivalent of Relation (2) and the linearity require-
ment of Relation (3). In Section 4, we derive the pignistic transformation.

2 Basic belief assignments

We review a few concepts described in the TBM and used in this paper. Up
to date details on the TBM can be found in (Smets, 1998). Let Q be a finite
set called the frame of discernment.

Definition 2.1 (Basic belief assignment) A basic belief assignment (bba) is
a mapping m** from 2% — [0,1] that satisfies: Y- ,cqm?(A) = 1.

Note that m?(f)) = 0 is not required. The superscript of m® denotes the
frame of discernment, i.e., the domain of the bba.

Definition 2.2 (Bayesian belief function) A Bayesian belief function on
is a belief function which associated bba m® satisfies m?(A) = 0 whenever

Al # 1.
Mathematically a Bayesian belief function is just a probability function.

Definition 2.3 (Normalized basic belief assignment) A normalized bba is
a bba that satisfies: m() = 0.

Definition 2.4 (Normalizing a bba) Given a bba m**, normalizing it con-
sists in the construction of a normalized bba M which satisfies

MR (A) = %, VACQ,A#0D

=0 if A=10

Definition 2.5 (Dempster’s rule of conditioning) Let a bba m®* and W C
Q. The bba m?[W] defined by:

meW)(A) = > m?(AUB), VACW
BCW

=0 otherwise.

mS[W)] is called a conditional bba on Q given W. The conditioning operation is
called the Dempster’s rule of conditioning.

Note that the result of the conditioning is not normalized as in Shafer pre-

sentation. By abuse of language we nevertheless use the same name as Shafer
did.



Definition 2.6 (The Q frame) Let © = {0, :i=1,..., I} and A = {6; : j =
1,...,J} be two finite spaces® and let @ = O x A ={w;j:i=1,...1,j=1,...J}
where w;; = (0;,0;). As we will use this frame repeatedly, we define it as ‘the Q
frame’.

For A C ©,B C A, (A, B) denotes the set of elements (x,y) in © such that
r€A yeB.

Definition 2.7 (The marginalization) Let m® be a bba on the Q2 frame. Its
marginalization m*'® on © is given by:

mMeU4) = Y mfWw), VvACe

where W' = {x 2 € ©,Wn (z,A) # 0}.

Let the Q frame. Given a probability function P over €2, the conditional
probability function P2(.|#), denoted here P2[f)], results from the conditioning
of P on § € ©. The same structure exists in the TBM, which will result in
conditional bbas.

Definition 2.8 (The conditional bba) Let m‘ be a bba defined over the
frame. The bba m*2[0] on A for @ € © is the conditional belief function on A

giwen 6. It is equal to:
mA[6] = m(8, A)]2.

The last marginalization (| A) step is trivial as |§| = 1. Tt is needed in order to
keep correct domain notation.

3 Deriving the linearity property

In order to derive the linearity property of Assumption 1.1, we consider a
betting framework on the Q = © x A frame where we know the conditional bbas
on A given each § € ©, and an a priori bba m® which happens to be a Bayesian
belief function. In that framework, we show that the pignistic transformation
must satisfy the linearity property (see Assumption 1.1). In Section 3.4, we
show that it must be satisfied for any bba.

3.1 The belief functions

Suppose You hold beliefs about the actual value of €, represented by m®. Sup-
pose You only communicate the conditional bbas of m on A for every § € ©
and the marginal of m® on ©, which turns out to be a Bayesian belief function.
We show that the underlying bba on € is uniquely defined by this apparently
partial information.

3Formally, the two spaces must be compatible and independent: see (Shafer, 1976, pages
121 and 127).



The conditional beliefs. Let the € frame. For each 6; € ©, the conditional
bba mA[f;] denotes the normalized bba representing Your beliefs about the
actual value of A given You accept as true that 6; is the actual value of ©.
The marginal Bayesian belief function. Suppose the marginal bba m?®
happens to be a Bayesian belief function denoted P®.

In the example of section 1, the conditional bbas are those that represent
Your beliefs about the drink Your visitor will ask for given You know who the
visitor will be, and the marginal Bayesian belief function ccorresponds to the
0.5 beliefs that result from the coin tossing experiment.

Lemma 3.1 Given the Q frame, the normalized conditional bbas m*™[0;] for
each 0; € © and the Bayesian belief function P®, the only bba m such that

m?[(6;, A)PA = m2[6;], V8; € © and mHe= p®
is given, for all W C Q, by:
m® (W) =m2[0:)(D)PO(6:)  if W = (0:, D)
=0 otherwise.

Proof. The marginalization of m on © is a Bayesian belief function, thus no
basic belief mass may be given to any subset of € that is not fully contained
in a single (6;, A). Furthermore no focal set may be empty, else the marginal
would not be bayesian. The only possibly positive masses are given to the non
empty subsets of the individual (6;, A). Conditioning on #; and normalizing the
result produces a conditional belief function which masses are those of m[6;].
Hence up to proportionally factors all the masses in (0;, A) are determined, and
as their sum must be P®(6;), the theorem is proved. O

Lemma 3.2 Under Lemma 3.1 conditions, let m® = m'2. It satisfies for
every D C A :
m®(D) =Y m®[6;(D)P°(6:).
0;,€0
Proof. Consider D C A. The only masses of m< as given in Lemma 3.1 which

marginalization on A is D are those given to (6;, D) for every ;. Thus the
theorem. O

3.2 Expectation

Given a variable X and a bba defined on its domain, its expectation is defined
as the classical expectation, the pignistic probability function playing the role
of the probability function.

Definition 3.1 (Expectation) Given a bba m* and a variable X that maps
Q on the reals. The expectation of X is:

E(X)=)_ X(w)-BetP?(w)
weN

where BetP% is the pignistic transformation of m® on €.



3.3 The expected utilities

Utilities. Suppose You have several possible acts, denoted a,, : v =1,... , K.
Let u(a,,w;;) be the utility of act a, given the actual value of Q is w;;.

We accept Savage axioms, hence the optimal act is the one for which the
expected utility is maximal. We thus need a probability measure on €. Let it
be denoted P*?. We then compute the expected utility @, of act a, for every v:

ﬂ,, = Zu(al,,wij)PQ(wij). (5)

2%

The optimal decision is the act a, that maximizes w,,.

In order to prove the linearity Theorem (3.1), we further consider the special
case where the utilities do not depend on . It just means in practice that the
utilities of the acts depend only of the j index of w;;. For simplicity sake,
we denote u(a,,w;;) as u(v, j). These utilities are presented in Table 1 when
|A| =2, and || = 3. Relation (5) becomes:

= D u(vg) Y P wy) = D u(v.j)PA)). (6)

J

J

)

L [ & [ & |
01 | u(v,1) | u(v,2)
02 | u(v,1) | u(v,2)
03 | u(v, 1) | u(v,2)

’ C) |u(1/1) ’u(l/2)|

Table 1: Utilities u(a,,w; ;) of act a, in context (6;,0;). As the utilities do not
depend on 6;, we denote u(a,,w; ;) as u(v,j). The bottom line presents the
utilities over A without regard of the value of ©.

In the TBM, we will build a pignistic probability function, denoted BetP,
that is used to compute these expected utilities, replacing in fact P by BetP in
Relations (5) and (6).

The pignistic probability function BetP depends of course of your beliefs.
Suppose a finite frame X, called the betting frame, on which decisions/bets are
made. Let the pignistic transformation be denoted by F'X where the superscript
X represents the domain. So FX maps the set of bbas over X on the set of
probability measures over X, and we can write PX = FX (belX). Formally we
assume the next assumption.

Assumption 3.1 (Credal-Pignistic Link) Let X be a finite set and let m™
be any belief function defined on X. Let BetPX be its associated pignistic prob-
ability function on X. Then:

BetPX = FX(m™),
or equivalently for all x € X,

BetPX(z) = FX (m™)(z),



and for any A C X,
BetPX(A) =Y BetP* ().
r€A

This proposition 3.1 just translates the idea that our beliefs guide our acts.
We also assume the next assumption.

Assumption 3.2 (Projectivity) If m* happens to be a Bayesian belief func-
tion P defined on 2, then F*(P) = P,

It just means that the pignistic transformation of a Bayesian belief func-
tion produces a pignistic probability function which is numerically equal to the
Bayesian belief function. Assumption 3.2 recognizes that if someone’s belief is
already described by a probability function, then the pignistic probabilities and
the degrees of belief are numerically equal.

In our example, we know the conditional bbas on A for each #; € O as
presented in Table 2. We also know the bba m?, that can as well be denoted by
mA[0]. Its value was derived in Lemma 3.2, and is reproduced at the bottom
line of Table 2.

91 — mA 91

N
92 — mA 92 —
03 | «— m>[05 —

(0] m Pl=Sy,om BIP°6)

Table 2: Conditional bbas and their marginal given the bayesian marginal on
©. The bbas are to be read as vectors.

For each 6; and for ©, we build the pignistic transformation of m*[6;] and
m?[0)] (see Table 3).

91 — BetPA 91 zFA(mA 91 ) —
0y | «— BetP?[0;] = FA(mA[0,]) —
93 — BetPA[Gg] = FA(’I”I’LA[H;),D —

| © | — BetP2[0] = FA(m~[0]) — |

Table 3: Pignistic probabilities induced by the bbas of Table 2.

The expected utilities Expected utilities can be computed in two ways (see
Table 4). Consider the conditional bbas m*[6;], then:

1. method 1.

(a) compute their pignistic transformation F2(m?[6;]) that are the pig-
nistic probability functions Bet P2 [0;] over A conditional on 6; (Table
3, lines 1 to 3),

(b) compute the expected utility w(v|0;) of a, in the context where 6;
holds by summing the products u(v, j) Bet P2[0;](9;) over j (see the
3 — on lines 6y, 05, 05 of Table 4)



(¢) compute the overall expected utility w(v) by summing the products
u(v|0;)Bet P (6;) where Bet P® is the pignistic transformation of P®
(where BetP®(6;) and P®(6;) are numerically equal by assumption
3.2) (see the bottom right ¥ | in Table 4).

This approach is used in Lemma 3.3. In the example of section 1, it
corresponds in computing the pignistic probability function for each visitor
and averaging the results.

method 2.

(a) compute m”[0] as given in Table 2, bottom line.
(b) compute BetPA[O] as given in Table 3, bottom line.

(c) compute the expected utility uw, of act a, by adding the products
u(v, ) BetP2[0](8;) (see the ¥ — on bottom line of Table 4)

This approach is used in Lemma 3.4. In the example of section 1, it
corresponds in computing the belief over the drink the visitor will ask for
before knowing who the visitor actually is, and then applying the pignistic
transformation to the resulting bba.

!

S —u(v|f:) xBetPO(0;)

02

03

b)) —>ﬂ(V‘93) x Bet P® (93)

(O]

J2)
52) by —>E(V‘92 xBetP@(Qg)
J2)

)

u(v,2)BetP2[0](d2) | ¥ — a(v) N

Table 4: Computation of the overall expected utility w(v) for act a,. ¥ —
denotes a sum taken on the terms in the line (thus on A), and ¥ | denotes a
sum taken on the terms in a column (thus on ©).

Lemma 3.3 The expected utility of Relation (6) satisfies:

a, =Y u(v,j) Y FAmA16:])(6;)BetP® (6) 1)

J 0,€0
Proof. One has:
TUylg, = Z u(v, j)BetP>[0:](6;) definition 3.1 (8)
J
BetP?[6;] = FA(m*[6y]) proposition 3.1 9)

Uy g, = Zu(y,j)FA(mA[Gi])(éj) Relations (8) and (9) (10)

U, = Z ﬂu‘giBetP@(Gi) definition 3.1 (11)
0,€0
Combining Relations (10) and (11), one gets the lemma. O



Lemma 3.4 The expected utility of Relation (6) satisfies:

U, =Y _u(v, j)FA( Y m2[0,1P°(6,))(5)) (12)

J 0,€0
Proof. Relation (6) can be rewritten as:

U, = Y u(v, )FA(mA[6)])(3)). (13)
J

Using Lemma 3.2, we get:

FA(m®[0]) = FA()_ m®[6:]P°(6:) (14)
0;€0
Combining Relations (13) and (14), one gets the lemma. O

Assumption 3.3 The expected utilities u, of Lemma 3.3 and 3.4 are equal.

As Relations (7) and (12) must be equal whatever the utilities u(v, j), their
coefficients must be equal. We have then derived the next theorem. and we
have:

Theorem 3.1 (Linearity theorem) Assumption 3.3 is satisfied for all u(v, j)
iff

F2(Y ma0:] - PO(0:) = Y FA(m™[0:]) - PO (6) (15)

0;,c0 0;,c0

Proof. As BetP® and P® are numerically equal by assumption 3.2, the relation
is immediate as the two terms are just the multipliers of u(v, 7). O

Relation (15) is exactly the linearity requirement we want to derive. All it
requires is Lemma 3.2 and the acceptance of the expected utility theory.

3.4 Generalization to any bba

We show now that Relation (15) must be satisfied for any bba.

Definition 3.2 (Extreme bba) An extreme bba m* is a bba with only one
non zero mass. Thus there exist a A C Q such that m*(A) = 1, all other
masses being null. The bbas that are not extreme are called non extreme bbas.

The extreme bbas are the vacuous belief function (m®(Q2) = 1), the categor-
ical bba (m®(A) =1 for A C Q, A # (), A # Q) and the full contradictory bba
(m®(®) = 1). The other bbas are non extreme bbas.

Lemma 3.5 For every non extreme bba m*, there exists bbas m$! and m$} and

a € [0,1] such that:
m? =a -mi+ (1 —a) m.

10



Proof. Trivial as the set of bbas on 2 is convex. O

Given any non extreme bba, we can thus find two bbas and write the Relation
(15). For the extreme bbas, we just assume that the F2 transformation is
continuous.

Assumption 3.4 (Continuity of the pignistic transformation) The pig-
nistic transformation, i.e., the F® function in Theorem 3.1, is continuous.

Lemma 3.6 Relation(15) holds for any bba m*:.

Proof. As a consequence of lemma 3.5, for any non extreme bbas m, we can
find a set of bbas m;,i = 1,...,n, and non negative weights «;,i = 1,...,n, that
add to one so that m =3, _,  a;m;. To get Relation (15), replace mA[0;] by
m; and P®(6;) by a;.

For extreme bbas m, take bbas in any epsilon neighborhood of m. The
previous decomposition can then be applied and Relation (15) is satisfied. This
being true for any epsilon, it holds for extreme bbas by continuity. O

4 The pignistic transformation

In order to derive the pignistic transformation some technical assumptions must
be added that are hardly arguable. Hereafter let {2 be a finite frame of discern-
ment.

Assumption 4.1 (Efficiency) BetP%(Q) = 1.

Assumption 4.2 (Anonymity) Let R be a permutation function from Q to Q.
The pignistic probability given to the image R(W) of W C Q after permutation
of the elements of Q) is the same as the pignistic probability given to W before
applying the permutation:

BetP** (R(W)) = BetP*Y(W), VW C Q,

where BetP** is the pignistic probability function on Qx after applying the per-
mutation function.

Assumption 4.3 (Impossible Event) The pignistic probability of an impos-
sible event is zero.

Assumption 4.1 tells that the pignistic probabilities given to the elements of
Q add to one. Assumption 4.2 states that renaming the elements of 2 does not
change the pignistic probabilities. Assumption 4.3 is self evident.

Under these assumptions, it is possible to derive uniquely F*.

Theorem 4.1 (Pignistic Transformation Theorem) Let m be a bba on
space Q. Let BetPt = F(m*). The only solution BetP% that satisfies As-
sumptions 3.1 to 3.3 and 4.1 to 4.3 is:

Q _ L mQ(W) w
Bet P (w) _WQQZ;UEW W (@) Yw € Q, (16)

11



where |W| is the number of elements of Q in W. For non-singleton w C £, we
have:

BetP*(W) = > BetP%(w).
weWw

Proof. The requirements are the same as those that underlie the Shapley value.
In particular, the BetP(w) are non negative and add to one. The proof can
be found in Shapley (1953). O

5 Conclusions

In the transferable belief model (TBM), it is argued that beliefs are represented
by a basic belief assignment (bba), and that decision making must be based on
the pignistic probabilities derived from this bba. The transformation from bbas
to probability functions is called the pignistic transformation. Its derivation
results from a linearity requirement. We formally justify the origin of this
linearity requirement. We feel this requirement is unavoidable within the TBM,
hence the pignistic transformation is necessary provided the expected utility
theory for decision making must be satisfied.
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