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Abstract

The paper presents an approach to joint tracking and classification based on belief func-

tions as understood in the transferable belief model (TBM). The TBM model is identical to

the classical model except all probability functions are replaced by belief functions, which

are more flexible for representing uncertainty. It is felt that the tracking phase is well han-

dled by the classical Kalman filter but that the classification phase deserves amelioration.

For the tracking phase, we derive a minimal set of assumptions needed in the TBM ap-

proach in order to recover the classical relations. For the classification phase, we distinguish

between the observed target behaviors and the underlying target classes which are usually

not in one-to-one correspondence. We feel the results obtained with the TBM approach

are more reasonable than those obtained with the corresponding Bayesian classifiers.
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1 Introduction

The paper is devoted to joint tracking and classification (JTC) of targets based on kinematic

data. The optimal Bayesian estimator for this problem [2, 3, 4, 5] consists of a bank of filters that

match the expected dynamic behavior of each class (class-matched filters). In some numerical

examples, however, this type of classifier may produce unsatisfactory performance due to inade-

quate mapping between target behavior and target class. This was a motivation to consider the

classification phase of the JTC problem in the framework of the transferable belief model (TBM)

[6, 7, 8, 9]. It was hoped - and in fact observed - that the use of belief functions, which are more

flexible than the probability functions, could produce better classification results.

In order to use the TBM for the classification phase, we need also to formulate the class-

matched filtering within the TBM framework. Indeed using a probabilistic approach for the

tracking phased and then switching to the TBM for the classification phase would be inconsistent.

The TBM overall model for JTC is identical to the classical JTC model except all probability

functions are replaced by belief functions. It is felt that the tracking phase is well handled by the

classical Kalman filter (KF) but that the classification phase deserves amelioration.

For the tracking phase, we determine under which ‘minimal’ assumptions the TBM approach

produces the classical KF relations (as a typical building block of class-matched filters) [10]. For

this derivation we assume:

• for the dynamic equations, that the uncertainty in the additive noise is represented by belief

functions whose pignistic transformations are Gaussian probability distribution functions,

and the prior belief used at time 0 is a vacuous belief function,

• for the measurement equations, that the uncertainty in the additive noise is represented by

Bayesian belief functions which are Gaussian (as in the classical case).
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For the classification phase, we will distinguish between the observed target behaviors and the

underlying target classes which are usually not in one-to-one correspondence. Within the TBM,

the classification phase is based on the General Bayesian Theorem [11, 12]. The classification

results differ significantly from those derived within the classical framework. It is due to the fact

that the TBM provides more flexible ways to represent adequately the prior beliefs and the target

behavior - target class relations. We argue that the results obtained with the TBM approach are

more reasonable than those obtained with the corresponding Bayesian classifiers.

Historically, the KF has already been described as an example of evidential network by [13]. In

fact the special nature of the belief functions we assume for the KF make it possible to solve easily

the filtering without using the whole machinery of the TBM. Nevertheless for the more general

models, we would use these evidential networks. Note that Kohlas and Monney [14, Ch.10]

also present a formal solution for handling dynamic uncertainty as in the KF. Their solution is

similar to the one presented here but it is derived within the hint model framework which is still

based on probability theory, whereas the TBM does not assume the existence of any underlying

probabilities.

Belief functions used in this papers are defined on continuous spaces, a topic presented in

[15], used in [16] and summarized in appendix A.1.

The paper is organized as follows. In section 2, we present the classical JTC and an example

that motivated this work as its classification results seem inappropriate to us. In section 3, we

present some background material about the TBM. In section 5, we present the KF within the

TBM framework. In section 6, we present the classification phase of the JTC within the TBM

framework. Section 7 presents the conclusions.
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2 JTC in the probabilistic framework

We first present the JTC problem in the classical probabilistic framework.

2.1 Problem formulation

The target state at time t = 0, 1, 2, . . . is represented by n-dimensional vector xt ∈ Rn. Target

class is a time-invariant attribute which takes values from a discrete set: C = {c1, . . . , cs}. For

simplicity let us assume that the state vector evolves according to the linear target motion model:

xt = F (ci)xt−1 + vt−1 (1)

where F (ci) is n× n class dependent transition matrix and vt−1 ∼ Nn(0, Q) is an i.i.d. process

noise1. It is assumed that 1) prior class probabilities P (ci) are known, 2) prior conditional state

is independent of process noise vt−1 and measurement noise wt, and 3) prior conditional state

densities p(x0|ci) are known and Gaussian for i = 1, . . . , s, i.e.

x0|ci ∼ Nn(µi
0,Σ

i
0)

Again for simplicity let us assume that kinematic measurements z ∈ Rm are linearly related to

the target state:

zt = Hxt + wt (2)

where H is m × n measurement matrix and wt ∼ Nm(0, R) is an i.i.d. measurement noise.

Furthermore, process and measurement noises are mutually independent. The optimal joint state

and class estimator in the Bayesian sense requires to construct at time t the posterior density

p(xt, ci|Zt), where Zt = {z1, . . . ,zt} is the sequence of observations up to time t.

1Let Nn(µ,Σ) denote the n-dimensional normal distribution of mean µ and covariance matrix Σ. The ∼ in

expressions like Y ∼ Nn(µ,Σ) means that the variable Y is a n-dimensional random variable with a Gaussian

probability density function.
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The optimal Bayesian solution for JTC [4, 5] consists of a bank of class-matched filters as

shown in figure 1. Class-matched filters are typically built as Kalman filters or a weighted sum of

Kalman filters, as described in the example in section 2.2. The terms p(xt|Zt, ci) are the outputs

used for tracking (state estimation). Class probabilities are computed recursively as follows:

P (ci|Zt) = α p(zt|Zt−1, ci) P (ci|Zt−1) (3)

where p(zt|Zt−1, ci) is the likelihood of class i at time t and α is a normalizing constant.
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Figure 1: JTC scheme

2.2 A motivating example on classification

Suppose we have s = 3 classes of targets, and for classification we use their acceleration (that

is maneuvering) capabilities. Class 1 (c1) are for example commercial planes with modest accel-

eration, class 2 (c2) are large military aircraft (e.g. bomber) which can perform medium level

acceleration and class 3 (c3) are light and agile military aircraft (fighter planes) which are able

to attain very large levels of acceleration. In the steady state all platform classes fly with no

acceleration in order to minimise the fuel consimption.

To simplify the analysis let us consider 1D geometry with state vector x = [x ẋ]′, and with
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a linear target motion model (for all three classes):

xt =

1 T

0 1

xt−1 +

T 2/2

T

 a + wt−1

where T is the sampling interval and a represents the input acceleration with limits |a| ≤ Li,

where Li = 1g, 3g and 5g for class c1, c2, c3, respectively (g= 9.81 m/s2 is the acceleration due

to gravity). The measurement equation is given by (2) where H = [1 0]. The motion with

small acceleration (|a| < 1g) we will refer to as nearly constant velocity (CV) motion.

The question is how to implement the JTC scheme shown in figure 1 for this example. The

bank of filters in JTC scheme can be more easily tuned to detect the behavior of targets, rather

than their class. Let B = {b1, . . . , bn} be the set of possible behaviors and p(bj|Zt), j = 1, . . . , n,

be a vector of behavior probabilities. In our example C = {commercial, bomber, fighter}, while B

can be for example B = {nearly CV, slow turn, sharp turn}. A reasonable mapping rule between

B and C is:

‘sharp turn implies fighter’,

‘slow turn implies fighter or bomber’, and (4)

‘nearly CV implies fighter or bomber or commercial’.

In general, behaviors are related to the classes by a matrix M = [Mij], where Mij = p(ci|bj).

The beliefs on C are constructed using p(ci|Zt) =
∑

j Mij · p(bj|Zt), for all i = 1, . . . , s.

How does one choose the matrix M ? When behaviors and classes are in one-to-one cor-

respondence, indexes can be organized so that bi ≡ ci, in which case M = I and p(ci|Zt) =

p(bi|Zt). In our example, however, it may be better to use the following matrix:

M =


1/3 0 0

1/3 1/2 0

1/3 1/2 1

 (5)
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which corresponds to rule (4), that is: if p(b1) = 1, all three target classes will be of equal

probability; if p(b2) = 1, target classes 2 and 3 will be of equal probability; if p(b3) = 1, target

class 3 is certain.

Next we analyze the classification results obtained by Monte Carlo simulations using the JTC

scheme of figure 1. Matrix M is the identity matrix or the matrix given by equation (5). The

target is moving with CV in the first 36 scans, followed by 4 scans of acceleration with 2g (which

is not compatible with a commercial plane), and then another 40 scans of CV motion. The

sampling interval is T = 3 s.

The filters in JTC scheme are tuned to the behavior set B: a KF is used for behavior b1; an

interactive multiple-model (IMM) filter [10] with three modes (corresponding to a ∈ {−2a, 0, 2a})

for behavior b2; an IMM with 5 modes (corresponding to a ∈ {−4a,−2a, 0, 2a, 4a}) for behavior

b3.

We fell that the outcomes before medium acceleration is observed should not support any of

the three classes more than any other as the data are perfectly consistent with the three classes,

and that after medium acceleration is observed, class c1 should become impossible and the other

two classes should become equi-probable.

Figure 2 shows the classification results averaged over 20 Monte Carlo runs.

• Case (a) uses M = I and equi-priors on the 3 classes. Even though the CV is a steady

state motion for all three classes, c1 becomes rapidly the best supported class. This is due

to the fact that commercial planes can only exhibit nearly CV, whereas the other two can

exhibit other behaviors. We feel this conclusion is inadequate as none of the three classes

should become better supported by a nearly CV behavior. Furthermore, after observing a

medium acceleration, the classifier supports class c2, which is as unjustified for the same

argument as above.
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• Case (b) uses M given by (5) and equi-priors on the 3 classes. We could hope the better

representation of the relationship between the behavior and class would improve the results.

It turns out that now class c3 becomes better supported both before and after the medium

acceleration is observed. This result is also unsatisfactory.

• Case (c) uses M given by (5) and priors pB
0 (b1) = 0.9999, pB

0 (b2) = pB
0 (b3) = 0.00005.

By adopting these priors, we can obtain desirable results before the medium acceleration

maneuvre (all three classes are equally probable). But once the medium acceleration is

observed, results deteriorate again as class c3 is better supported than class c2.

Other choices for matrix M and for the prior do not improve the classification. This example

serves as a motivation to consider the classification problem using the transferable belief model.

However, we need to look at the JTC problem in its entirety. Indeed creating a JTC where

the tracking phase would be done within the probabilistic framework and the classification phase

within the TBM framework would be easily criticized for being an opportunist patch work. If we

want to apply the TBM in the classification phase, we should also use it in the tracking phase,

which is what we do in section 5. It turns out that the classical KF relations developed in the

probabilistic framework can also be derived in the TBM framework, with the advantage that

many hypotheses underlying the probabilistic KF can be relaxed.

2.3 Background probabilistic relations

We present first a few well known properties of Gaussian random variables [10].

Lemma 2.1 Let Y ∼ Nn(µ,Σ) and let F be a m× n matrix. Then FY ∼ Nm(Fµ, FΣF ′).

Lemma 2.2 Let Y i ∼ Nn(µi,Σi) : i = 1, 2 and let A and B be two m×n matrices. If Y 1 and

Y 2 are stochastically independent, then AY 1 + BY 2 ∼ Nm(Aµ1 + Bµ2, AΣ1A
′ + BΣ2B

′).
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Figure 2: Classification results using JTC scheme in the probabilistic framework. The target

is moving with CV in the first 36 scans, followed by 4 scans of acceleration with 2g, and then

another 40 scans of CV motion.
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Lemma 2.3 Let

X

Z

 ∼ N (

µX

µZ

 ,

ΣXX ΣXZ

ΣZX ΣZZ

). Then the probability density function

about X given Z = z is given by X|z ∼ N (µX|z,ΣX|z) where

µX|z = µX + ΣXZΣ−1
ZZ(z − µZ)

and

ΣX|z = ΣXX −ΣXZΣ−1
ZZΣZX .

2.4 Kalman Filter Equations

Relations and notations for the Kalman filter are strongly influenced by [10]. For simplicity sake,

we assume that the noise components and the parameters of the system are time independent

(the R, Q, F and H matrices of section 2.1). Generalization to the time-dependent case is very

simple, but the notation becomes so cumbersome that the major underlying ideas get hidden.

Consider the dynamic and measurement equations introduced by (1) and (2), respectively.

Suppose temporarily that there is only one class and the prior state is Gaussian distributed, i.e.

x0 ∼ Nn(µ0,Σ0). (6)

The KF performs filtering in two phases (update and prediction):

• the updated state where one computes the beliefs about xt given beliefs relative to x̂t|t−1

induced by the past data and given the present measurement zt. It results in a probability

function about xt|t.

• the predicted state where one computes the beliefs about the next state xt+1 given the

beliefs built for the updated phase. It results in a probability function about xt+1|t.

In Fig: 3, we present the different components of the Kalman filtering process for what concerns

the tracking phase.
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Figure 3: The Kalman filter for the tracking phase

These beliefs are computed using the following relations.

Definition 2.1 We use the next notations:

x̂j|t , E(xj|zt) (7)

Σj|t , E((xj − x̂j|t)(xj − x̂j|t)
′|zt) (8)

The relations at t = 0 are:

x̂0|0 = µ0, (9)

Σ0|0 = Σ0 (10)

For t = 1, 2, . . ., the relations are:

Predicted state

xt|t−1 ∼ N (x̂t|t−1,Σt|t−1) (11)

x̂t|t−1 = F x̂t−1|t−1 (12)

Σt|t−1 = FΣt−1|t−1F
′ + Q (13)
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Update state

ẑt|t−1 = Hx̂t|t−1 (14)

νt = zt − ẑt|t−1 (15)

St = HΣt|t−1H
′ + R (16)

W t = Σt|t−1H
′S−1

t (17)

xt|t ∼ N (x̂t|t,Σt|t) (18)

x̂t|t = x̂t|t−1 + W tνt (19)

Σt|t = Σt|t−1 −W tStW
′
t (20)

The likelihood of the measurement sequence is required for classification. It is given by:

p(Zt) =
∏

i=1,...,t

p(zi|Zi−1) (21)

where p(zi|Zi−1) = N (zi; ẑi|i−1, Si). Thus:

p(Zt) = p(Zt−1)N (zt; ẑt|t−1, St).

3 TBM Background

We introduce some preliminary concepts related to the TBM.

The transferable belief model (TBM) [9, 17, 6] is a model to represent quantified beliefs

based on the belief function theory developed by Shafer [18], but completely unrelated to any

underlying probabilistic constraints as it is the case with the model of Dempster [19] and with

the hint model [14]. These differences are not important here.

The essential tool is the basic belief assignment (bba) mΩ which maps subsets of its domain

Ω to [0, 1]. Its value mΩ(A) for A ⊆ Ω is called the basic belief mass (bbm) when Ω in countable
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and the basic belief density (bbd) when Ω is the set of reals. It represents the amount - or

density - of belief that specifically supports that the actual value of the variable on which beliefs

are expressed belongs to A, and that supports nothing more specific due to a lack of information,

but that might support any strict subset of A if further information justifies it.

3.1 Notation

We use the next notation to express the bbas. Suppose a variable V which possible values

belong to the frame of discernment Ω. The bba relative to the the actual value ω0 of the

variable V and based on the conditioning facts cond is denoted as mΩ{V }[cond]. The expression

mΩ{V }[cond](X) denoted the value taken by the bba at X ⊆ Ω. The same notation is used for

the functions related to the bba, like bel and pl. Some indices are neglected when the context

makes them obvious.

We recall the definitions of a refinement, coarsening and vacuous extension.

Definition 3.1 (The refinement) Let X be a frame of discernment. We say that Y is a

refinement of X iff there exists a mapping R : X → Y such that R(x) ⊆ Y, R(x) 6= ∅ for all

x ∈ X, and R(x1) ∩R(x2) = ∅, x1, x2 ∈ X, x1 6= x2.

Definition 3.2 (The coarsening) Let Y be a frame of discernment. We say that X is a

coarsening of Y iff Y is a refinement of X.

Definition 3.3 (The vacuous extension: ↑) Let X be a frame of discernment and let Y be

a refinement of X based on R. Let mX be a bba on X. Its vacuous extension mX↑Y on Y is

given by:

mX↑Y (W ) =


mX(A), if W = R(A), A ⊆ X

0 otherwise.

(22)
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3.2 Credal variables

A credal variable is a variable for which we have defined a bba. The symbol mRn{x} denotes

the bba of the credal variable x whose domain is Rn. The superscript Rn is often omitted in

notation.

A credal space is a triple (Ω,A, m) where Ω is a set, A an algebra on Ω (closed under union,

intersection, complement, with ∅ and Ω), and m is a bba on Ω. If the credal variable x is defined

on a credal space (Ω,A, m), we write x ∼ m.

A probability space is the credal space where m satisfies m(A) = 0, ∀A : |A| 6= 1..

If Ω is finite or countable, A = 2Ω, the power set of Ω..

If Ω = R, A is the Borel sigma-algebra on the set of real numbers [15, 16].

If Ω = Rn, A is the cross product of n Borel sigma-algebra as just defined.

A vacuous credal variable x on Ω is a credal variable x which belΩ{x} function is a vacuous

belief function. Thus its related plausibility function plΩ{x} satisfies plΩ{x}(A) = 1,∀A ⊆

Ω, A 6= ∅. We denote it x ∼ V BF .

3.3 The Gaussian Bayesian Belief Functions

To differentiate between a Gaussian pdf and a Gaussian Bayesian belief function, we use notation

N for the former and NB for the latter. Mathematically, they are the same functions, the

difference lies in their semantics.

Definition 3.4 x ∼ NBn(µ,Σ) means that x is a n-dimensional credal variable on Rn whose

basic belief density allocates non-zero densities only to the singletons of Rn and these densities

are those of the n-dimensional Gaussian distribution of mean µ and covariance matrix Σ.

Let m{x} denote the basic belief density (bbd) that represents the basic belief assignment
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(bba) relative to x. Then:

m{x}(A) =


N (a; µ,Σ) if A = {a}, a ∈ Rn

0 otherwise.

(23)

We also use the notation m{x} = NB(µ,Σ) and we refer to m{x} as the Gaussian bbd

(meaning that x is Gaussian).

The index n is omitted when the state dimension is clear from the context.

We use ∩© and ⊕ to denote the conjunctive combination rule and Dempster’s rule of combi-

nation (the normalized conjunctive combination rule), respectively.

We present a few useful lemmas. Lemma 3.1 to lemma 3.3 are just rephrasing equivalent

theorems of probability theory.

Lemma 3.1 If x ∼ NB(µ,Σ), then Fx ∼ NB(Fµ, FΣF ′).

Lemma 3.2 Let x ∼ NB(µX ,ΣX) and y ∼ NB(µY ,ΣY ). Let z = Ax + By. Then

z ∼ NB(AµX + BµY , AΣXA′ + BΣY B′).

Lemma 3.3 Let x ∼ NB(µX ,ΣX) and w ∼ NB(0, R). Let z = Ax + w. Then the

conditional bbd on x given z is given by

x|z ∼ NB(A−1z, A−1RA−1′).

Lemma 3.4 Let x ∈ Rn. Let f1 and f2 are two pdf on Rn. For i = 1, 2, let mi{x} be two

bbds relative to x with

mi{x}(A) =


fi(a) if A = {a}, a ∈ Rn

0 otherwise.

(24)
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Then

m1 ∩©2{x}(A) , m1{x} ∩©m2{x}(A) =


f1(a)f2(a) if A = {a}, a ∈ Rn

0 otherwise.

(25)

Proof. The only non null densities are given to the singletons. For the combination, the product

f1(a1)f2(a2) is allocated to a if a1 = a2 = a, else to the empty set. 2

Lemma 3.5 Let x ∈ Rn. Let m1{x} = NB(µ1,Σ1) and m2{x} = NB(µ2,Σ2) be two bbds

relative to x. Then (after normalization)

m1⊕2{x} = m1{x} ⊕m2{x} = NB(ν, S)

where S−1 = Σ1
−1 + Σ2

−1 and ν = S(Σ1
−1µ1 + Σ2

−1µ2).

Proof. By lemma 3.4, the result of the combination is a bbf and its value is computed from the

pointwise product of the two underlying Gaussian pdfs. 2

3.4 Decision making in TBM

When a decision must be made and uncertainty is represented by the TBM, the decision maker

derives the so-called pignistic probability function using the pignistic transformation. The result

is just a probability function that is used to make decisions using the classical expected utility

theory. Given a bba mΩ on a finite Ω, the pignistic probability function (denoted BetP ) is defined

as :

BetP (Y ) =
∑
X⊆Ω

|Y ∩X|
|X|

mΩ(X)

1−mΩ(∅)
, ∀Y ⊆ Ω (26)
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The nature of the pignistic transformation given by (26) is presented in [20, 9]. Its detailed

justification is presented in [21].

When the credal variable X is defined on R, we end up with a pignistic probability density

function Betf which is defined as:

Betf(a) = lim
ε→0

∫ x=a

x=−∞

∫ y=∞

y=a+ε

mR(X ∈ [x, y])

y − x
dydx. (27)

Details can be found in [15].

3.5 Doxastic independence

The concept of doxastic independence is the extension of the concept of stochastic independence

in the TBM framework [22, 23]. Its syntactical definition is given by:

Definition 3.5 Let X and Y be two credal variables defined on Rn1 and Rn2 , respectively. Let

m{X} and m{Y } be their bbds. The credal variables X and Y are doxastically independent iff

m ∝ m{X} ∩©m{Y }.

This definition generalizes the definition P (A ∩ B) = P (A)P (B) encountered in probability

theory.

The major property used here is that stochastic independence also holds between their pignistic

probabilities [22]. Let X and Y be two doxastically independent credal variables. Then

Betf{X, Y }(x, y) = Betf{X}(x) ·Betf{Y }(y).

Hence the pignistic transformation of two doxastically independent credal variables is the product

of the pignistic transformation of the individual variables, a very satisfactory property.
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4 JTC in the TBM framework

The overall model for JTC is represented by relations (1) and (2), where v and w are credal

variables. The difference between this model and its classical version resides in the fact that belief

functions replace the probability functions.

In a nutshell, we will:

1. keep the assumptions about the dynamic of the state vectors (1) and about the kinematic

measurements (2),

2. relax the assumptions about the initial state vector (6) and replace it by x0 ∼ V BF ,

3. accept that the additive process noise vt in (1) is a credal variable; its bbd is unknown but

its pignistic transformation Betf{v} is a Gaussian pdf: Betf{v} ∼ N (0, Q),

4. accept that the additive measurement noise wt in (2) is Gaussian credal variable: wt ∼

NB(0, R),

5. select the most committed admissible bbd for the credal variable xt+1|t

6. use the General Bayesian Theorem for the final classification phase with a vacuous a priori

belief on B and a M matrix that better translates the implication rules.

The whole prediction phase will be essentially the same as with the probability approach.

The gain obtained by relaxing (6) about x0 is really not that essential. All it does is avoiding

the “quarrel” about the choice of an adequate prior on x0. Relaxing constraints on vt is surely

more impressive, as we do not even require knowing its underlying bbd, all we use is its pignistic

transformation. Selecting the most committed admissible bbd is arguable, but our purpose is to

show what are the assumptions underlying the Kalman filter relations within the TBM, not to

build a new set of Kalman filter relations.

17



Given the relaxed assumptions, in particular the third one about vt, the bbds of xt+1|t and

xt+1|t+1 cannot be derived. Still we can derive their related pignistic probabilities, and as far as

this happens to be all we need in practice, ignoring the bbds is not a real issue.

What is interesting here is that the classical relations used in the Kalman filter can be justified

within the TBM.

Major discrepancies appear in the classification phase. For the previous example of section

2.2, we will use conditional belief functions that represent exactly the rules between classes and

behaviors. Such a representation is not achievable in probability theory.

5 Kalman filter in the TBM framework

We derive first the KF relations in the TBM framework.

As the initial assumptions on x0 are not those of the classical Kalman filters, we must derive

the properties of x1|0, z1 and x1|1.

We then proceed with time t = 2 and derive the properties of x2|1, z2 and x2|2 which turn

out to be those of the classical KF for what concerns their pignistic probabilities. We can just

proceed then as with the classical KF relations.

5.1 Predicted state for t1: bba on x1 induced by x0

Let x0 be a vacuous credal variable on Rn: x0 ∼ V BF . Let v0 ∈ Rn be a credal variable

whose bbd is unknown but which pignistic transformation is Gaussian: Betf{v} ∼ N (0, Q).

Let w1 ∈ Rm satisfies w1 ∼ NB(0, R). Assume v0 and w1 are doxastically independent credal

variables. From (1) we have:

x1 = Fx0 + v0.

Since x0 ∼ V BF , then Fx0 ∼ V BF .
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We ignore mRn{v0}. Still whatever mRn{v0}, x1 ∼ V BF .

Formally, we combine the two bbds after vacuously extending them on their product space.

mR2n{Fx0, v0} = mRn{Fx0}↑R
2n

∩©mRn{v0}↑R
2n

The bbd satisfies:

mR2n{Fx0, v1}(x, v) =


mRn{v1}(v) if x = Rn and v ⊆ Rn

0, otherwise

(28)

The bba mRn{x1} for x1 = Fx0 + v0 is the result of a coarsening of mR2n{Fx0, v0} which is

a vacuous belief function (x1 ∼ V BF ).

This result reflects the natural rule that if one adds two terms, the value of one of them being

completely unknown, the result is also completely unknown.

5.2 Updated state for t1: bba on x1 induced by x0 and z1

For simplicity we assume that m = n. Generalization to m 6= n is feasible, but equations become

more complex, hiding the message of the paper.

From (2) we have:

z1 = Hx1 + w1

We can now use two different approaches with identical outcomes:

1. We can use the just derived bba mRn{x1}, vacuously extend it on the R2n space, vacuously

extend the a priori belief about w1 on the R2n space and combine them with the conjunctive

combination rule. Then we condition the result on the observation z1, and marginalize the

result on x1 domain. This last bba would be the final bba on x1 induced by x0 and z1.
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2. We can consider the conditional belief over z1 given x1. The conditional bbds are given by

mRn{z1}[x1] = NB(Hx1, R). We apply credal inference to determine the bbd on x1

given the observation z1. The result is mRn{x1}[z1] ∼ NB(H−1z1, H
−1RH−1′). We

conjunctively combine this bbd with the just derived bba mRn{x1}.

The argument used to show x1 ∼ V BF leads similarly to z1 ∼ V BF .

For x1|1, we have x1|1 = H−1(z1−w1) where z1 is the observed value and w1 ∼ NB(0, R).

Therefore x1|1 ∼ NB(x̂1|1,Σ1|1) where x̂1|1 = H−1z1 and Σ1|1 = H−1RH ′−1.

The left half of table 1 summarizes the results at time t1.

Time t1 Time t2

Variable bbd Betf Variable bbd Betf

prior x0 V BF - x1|1 ? Gauss

process noise v0 ? Gauss v1 ? Gauss

observ. noise w1 Gauss Gauss w2 Gauss Gauss

updated state x1|1 ? Gauss x2|2 ? Gauss

predicted state x2|1 V BF - x3|2 ? Gauss

Table 1: Bba and Betf computed at times t1 and t2.

5.3 Predicted state for t2: bba on x2|1 induced by x1|1

The input is x1|1 ∼ NB(x̂1|1,Σ1|1) and v1 for which we ignore its bbd but we know its pignistic

probabilities. Thus we know the pignistic probabilities of both variables, and thus we know the

pignistic probability function on their joint space, out of which we compute (by convolution)

the pignistic probabilities relative to their sum. For what concerns the pignistic probabilities,

probability theory applies and we have: Betf{x2|1} = N(x̂2|1,Σ2|1) where x̂2|1 = F x̂1|1 and
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Σ2|1 = FΣ1|1F
′ + Q. Still, the bbd of x2|1 is unknown because the bbd of v1 is unknown.

5.4 Updated state for t2: bba on x2|2 induced by x2|1 and z2

The input is x2|1 which bbd is unknown but which pignistic probability function is Gaussian and

w1 which bbd is is a Gaussian Bayesian belief function.

For z2, we ignore its bbd but we know its pignistic probability function: Betf{z2} =

N(ẑ2|1, S2) where ẑ2|1 = Hx̂2|1 and S2 = HΣ2|1H
′ + R.

For x2|2, if we knew the bbd mRn{x2|1}, we would vacuously extend it on the R2n space. We

would also vacuously extend the belief about w2 on the R2n space, and combine these two bbds

with the conjunctive combination rule. Then we condition the result on the observation z2, and

marginalize the result on x2|2 domain. This last bbd would be the bbd on x2|2 induced by x2|1

and z2.

Unfortunately, we do not know mRn{x2|1}. We can then invoke the principle of maximum

commitment that states: keep as much information as possible, and select for x2|1 the most

committed normalized bbd among those which pignistic transformation is Betf{x2|1}. The

solution is the Bayesian belief function corresponding to the pignistic probability function. Thus

x2|1 ∼ NB(x̂2|1,Σ2|1). In that case, both belief functions on R2n are bbfs, and probability theory

just applies.

We get x2|2 ∼ NB(x̂2|2,Σ2|2) where x̂2|2 and Σ2|2 are given by relations (9) and (20),

respectively.

During this derivation, it became clear that once all Betf are Gaussian, the relations for Betf

are those of the KF, what we just summarize in the next lemma.

Lemma 5.1 In a Kalman filter with Gaussian noises, once the state xt is Gaussian, all successive

states satisfy the relations described in the classical Kalman filter theory.

21



Being back into the classical KF relations setting, we can proceed for t3, t4, . . . just as with

a classical KF for the prediction phases using relations (11)–(20). The only particularity is that

the pignistic probability function on zt is known but not its bbd. So for the classification phase,

we will have to reconsider the procedure.

5.5 Diffuse prior and TBM solution

It is worth mentioning that the TBM solution is the same solution one would have obtained if

one used the probabilistic approach with a diffuse (also called improper or uninformative) prior

on x0. This should not be understood as the fat that the TBM is just a particular probabilist

solution. What it shows is that, given our assumptions, the TBM solution produces the same

relations as those derived by probability analysis when assuming a diffuse prior. This should be

considered essentially as an anecdotical observation.

Still one might ask why bother with the TBM, if all it achieves is what probability theory

produces with a diffuse prior.

A possible answer is that a ‘diffuse pdf’ is not a pdf, and its use violates the foundation of

probability theory, even thought its users claim to be using probability theory. The TBM also

violates the foundation of probability theory, but purposely and indeed we never claim to be using

probability theory.

Another answer is that even though a diffuse prior applied to a probability analysis produces

the TBM solution, we can also consider other priors, and the flexibility of the TBM allows us to

use any prior on x0, as well in fact as for vt and wt. Our presentation focuses on finding the

KF relations within the TBM framework so we could apply the alternate classification method.

Therefore we limit ourselves to a context very similar to the one used in probability theory, but

the TBM solution can be generalized and that will be studied in future works.
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6 The classification phase in the TBM framework

The JTC in the TBM framework is done conceptually in a similar manner as in the Bayesian

framework. Again we have a bank of tracking filters matched to target behavior or class, which

(according to the previous section) can be based on classical Kalman filters. The main difference,

however, is in the way TBM performs classification.

As in probability theory, classification is based on the likelihood functions (as in eq.(21)).

Within the TBM, the likelihood of an hypothesis is equated to the conditional plausibility of the

observation given the hypothesis. Let us denote by li = pl(Zt|bi) the measurement likelihoods

which are output from filter i matched to behavior bi. Furthermore, we consider a vacuous a

priori on B. Then the General Bayesian Theorem (GBT) permits us to compute the posterior

belief on B. A convenient formulation of the GBT is [11, 12]:

mB[Zt](b) =
∏

i:bi∈b

li
∏

j:bj /∈b

(1− lj), ∀b ⊆ B.

In our study, the bbd of the credal variable zt is unknown, hence the likelihood cannot be

directly derived. But we know the pignistic probability function of zt: it is computed from

relation (21). In order to compute the needed likelihoods we need the bbd of Zt. But as we

only know its pignistic transformation and there are many bbds that share the same pignistic

transformation, we apply the least committed principle that states: never allocate more belief

than necessary. It means we select the q-least committed belief functions among those which

pignistic transformation is the known one derived from the relation (21). The solution is presented

in Appendix A.2.

The relation between B and C can be established in a precise manner on the power set. This

is explained using the example of section 2.2. In this example the relation between B and C is
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described by three conditional belief functions:

mC [b1]({c1, c2, c3}) = 1, (29)

mC [b2]({c2, c3}) = 1, (30)

mC [b3]({c3}) = 1. (31)

Let us represent the bbas as vectors whose elements are ordered as follows (for mB):

∅, {b1}, {b2}, {b1, b2}, {b3}, {b1, b3}, {b2, b3}, {b1, b2, b3},

and similarly for mC . Then, the derivation of the bba on C given the bba on B and the three

conditional belief functions (29)–(31) is achieved using matrix M as follows:

mC = M ·mB,

where:

M =



1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 1 0 1 0 1



.

This transformation means that

• mB(∅) is transferred to mC(∅)

• mB({b1}) is transferred to mC({c1, c2, c3}) as b1 implies {c1, c2, c3}

• mB({b2}) is transferred to mC({c2, c3}) as b2 implies {c2, c3}
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• mB({b1, b2}) is transferred to mC({c1, c2, c3}) as b1 or b2 implies {c1, c2, c3}

• mB({b3}) is transferred to mC({c3}) as b3 implies {c3}

• mB({b1, b3}) is transferred to mC({c1, c2, c3}) as b1 or b3 implies {c1, c2, c3}

• mB({b2, b3}) is transferred to mC({c2, c3}) as b2 or b3 implies {c2, c3}

• mB({b1, b2, b3}) is transferred to mC({c1, c2, c3}) as b1 or b2 or b3 implies {c1, c2, c3}

These rules are based on the logical property: if a implies x and b implies y, then a or b implies

x or y.

Next we reconsider the example of section 2.2. Let l1 = 1, l2 = l3 = 0. It means that

the behavior is b1. Then mB[Zt](b1) = 1 and mC [Zt](C) = 1. Thus the a posteriori on C is

vacuous, as it should be as under b1, classes are not distinguishable.

Let l1 = l2 = l3 = 1. It means that none of the behaviors is better supported than the other

two. Then mB[Zt](B) = 1 and mC [Zt](C) = 1. Thus the a posteriori on C is also vacuous, as

it should be as none of the behaviors is supported.

To further illustrate the theory, we repeat the same experimental setup from section 2.2, with

the KF, IMM-3 and IMM-5 filters tuned to the target behavior. We show the resulting pignistic

class probabilities, obtained using the described TBM classifier, in figure 3 (obtained by averaging

over 20 Monte Carlo runs). The classification results appear reasonable: before the maneuver all

three target classes are equally probable, while after the maneuver (which can be performed only

by class c2 and c3 targets), the probability of class c1 drops to zero while the probability of class

c2 and c3 target jumps to 1/2. The TBM classifier is thus capable of resolving the issues raised

in section 2.2, due to its higher flexibility in representing the belief states.
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Figure 4: Classification results using JTC scheme in the TBM framework

7 Conclusions

We have shown that it is possible to derive the Kalman filter within the TBM framework. The

TBM solution for the tracking (filtering) phase of JTC is essentially the same as the one achieved

within the probabilistic framework. For its derivation, however, several assumptions have been

already seriously relaxed, and it can still be generalized to more complex contexts (if necessary).

For the classification phase of JTC, where we feel the probabilistic approach essentially fails,

the TBM offers a solution which is intuitively satisfactory. The overall TBM solution is theo-

retically sound and coherent, and provides a seemingly better framework for joint tracking and

classification.
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Appendix A. Belief Functions

A.1 Belief functions on R

This section summarizes results presented in [15].

Consider the real axis R. Let I be the set of closed intervals in R. We assume that the

’masses’ of the bba defined on R are only allocated to the closed intervals of R. As we work on

continuous spaces, ’masses’ become densities and the basic belief masses are now called basic

belief densities.

Let mI([a, b]) be a basic belief density (bbd). The value of belI([a, b]) is obtained by ’adding’

(integrating) all the ’masses’ (densities) given to subsets of [a, b]. Similarly for plI([a, b]) where

we integrate all the densities which have a non empty intersection with [a, b]. The limits for the

integrations are the shaded areas in figure 5.
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Figure 5: Graphical representation of (a) belief; (c) plausibility

The pignistic density function Betf can be derived from mI([x, y]) as follows:

Betf(a) = lim
ε→0

∫ x=a

x=−∞

∫ y=∞

y=a+ε

mI([x, y])

y − x
dx dy, (32)

for a ∈ R.

These concepts can be generalized to Rn.
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A.2 Ordering bbas and the least committed bbas

Suppose your domain knowledge is partial and based only on some potential betting behaviour,

represented by the pignistic density function Betf(a). Since the pignistic transform is many-

to-one transform, an infinite number of bbds can induce the same Betf . These belief funtions

are said to be isopignistic. In order to apply the belief function theory, one needs to formulate

a method of building a bbd from the pignistic density. The least commitment principle [6],[24]

suggests to choose among all the isopignistic bbds, the one which maximizes the commonality

function q. The q-least committed belief density is a consonant bbd. On the real axis R this

means that all focal elements on I are nested, i.e. can be ordered in such a way that each

focal interval is contained by the following one [15]. One of the essential properties of consonant

plausibility functions is pl([a, b]) = maxx∈[a,b] pl(x).

When the pignistic density Betf is Gaussian (Betf(x) = N (x; µ, Σ)), the plausibility function

related to the q-least committed bbd isopignistic with Betf is given by

pl([x, y]) = 2(x− µ)N (x; µ, Σ) +

∫ t=∞

t=x

2N (t; µ, Σ)dt, y ≥ x > µ (33)

= 2(µ− y)N (y; µ, Σ) +

∫ t=y

t=−∞
2N (t; µ, Σ)dt, µ > y ≥ x ≥ (34)

= 1 y ≥ µ ≥ x (35)
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