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Abstract

In this paper, we try to study the independence concept for belief
functions theory, as applied to one interpretation of this theory called the
transferable belief model (TBM). In this context, two new results are given
in this paper : first, the concept of belief function independence has differ-
ent intuitive meaning which are non-interactivity, irrelevance and doxastic
independence, second, the concepts of non-interactivity and independence
are identical under a new property called irrelevance preservation under
Dempster’s rule of combination.

Keywords: Independence, Irrelevance, Non-Interactivity, Belief func-
tions, Transferable Belief Model.

1 Introduction

For managing uncertainty reasoning systems, a main requirement is to specify
the conditions under which one item of information is considered dependent
(or independent) from another, given what we already know, and to represent
knowledge in structures that display these conditions. In probabilistic frame-
work, these conditions are identified with the notion of independence, also called
irrelevance or informational irrelevance [13].

In addition to the obvious theoretical reasons for the study of independence,
there are also practical interest. Indeed, using independence, we can modularize
a complex problem (for example, knowledge base) into simpler components in
such a way that we only treat the smaller sub models (for example, pieces
of information having relevance to the question we are interested in). So, in



order to get an efficient performance, reasoning systems must take into account
independence considerations.

There are two main approaches to define independence:

1. Irrelevance approach : Two variables are said to be independent if no
piece of information that can be learn about one of them can change our state
of knowledge about the other. This form of independence can be expressed by
experts.

2. Decomposition approach : Two variables are said to be indepen-
dent if the global information about the two variables can be expressed as a
combination of two pieces of knowledge, one for each variable. This form of in-
dependence permits to work in efficient way (local computations without loosing
any information).

In the case of probability theory, both approaches are equivalent. However,
these approaches do not have identical meaning for belief functions theory.

In this paper, we try to clarify the notion of independence between variables
(or subsets of variables) when uncertainty is expressed by belief functions. In
other words, our main purpose is to find a common sense meaningful definition
of independence. Indeed, this concept, related to one interpretation of the belief
functions theory called the transferable belief model [16], has different intuitive
meaning, but unlike probability theory, this concept has not received a complete
treatment in the literature.

The rest of this paper is organized as follows: in Section 2, we present some
useful notations needed for belief functions. Next, in Section 3, we briefly review
the basic elements of belief functions theory based on the transferable belief
model. The different definitions of the concept of belief function independence
have been discussed in Section 4, making clear the links between them. Finally,
in Section 5, we give a brief summary.

2 Notations

In this section, we give some notations which are convenient when belief func-
tions are used.

Let U = {X,Y, Z,...} be the set of all variables, ©x = {z1,...,z,} be the
domain relative to the variable X (with a cardinality n), and x represents any
instance of X. Let §2 be a frame of discernment [14] composed of the Cartesian
product of all domains of variables in U (finite domain on which beliefs are held),
where, for example, © x x Oy represents the product space of the variables X
and Y, and when there is no ambiguity, it is simply denoted by XY.

Given a background knowledge, denoted by BK, representing conditioning
event, we propose the following notations:

e belY[BK] denotes the belief function on 2 when BK holds. It can be
seen as a vector in a 2/®! dimensional space. Classically, it was denoted
as bel}(. | BK).

e bel[BK](A) denotes the value of the belief function at A (A C Q) given
BK.



o bel*™X is the marginal of bel*’ on X. The Q superscript will not be men-
tioned when there is no risk of confusion.

3 Belief Function Theory and Transferable Be-
lief Model

The theory of belief functions, also known as Dempster-Shafer theory and the-
ory of evidence, aims to model someone’s degree of belief. It is regarded as a
generalization of the Bayesian approach. Since this theory was developed by
Shafer [14], many interpretations have been proposed. Among them, we can
distinguish:

e a lower probability model where beliefs are represented by families
of probability functions. This model is considered as a special case of
imprecise probabilities.

e Dempster’s model derived from probability theory and represented by
hints theory [10].

e The transferable belief model (TBM) unrelated to probability theory
where beliefs are represented by belief functions. This model is introduced
by Smets [16] in order to justify the use of belief functions.

In this paper, we are only concerned with the TBM, so we will use the
concepts based on this model.

Definition 1 Let Q be the frame of discernment. The mapping bel : 22 —
[0,1] is an (unnormalized) belief function if and only if there exists a basic belief
assignment (bba) m : 2* — [0,1] such that:

(i) S-m(A)=1 for ACQ

(i) bel(A) = > - m(B) for BC A, B#0

(iii) bel(D) =0

The value m(A) represents the degree of belief that is exactly committed
to A. Due to the lack of information, m(A) cannot support any more specific
event. The value bel(A) quantifies the strength of the belief that the event A
occurs. A subset A such that m(A) > 0 is called a focal element of bel. bel is
vacuous if the only focal element is . In TBM context, we accept that none of
the elements could be true, so m(@) can be positive (open-world assumptions)
[16].

Given a belief function bel, we can define a plausibility function pl: 2% —
[0,1] and a commonality function q: 2> — [0,1] as follows: for A C Q,

pl(A) = bel () — bel(A) and pl(0) =0
=>"m(B) for BNA#Q

q(4) => m(B) for ACBCHQ
The value pl(A) quantifies the maximum amount of potential specific sup-
port that could be given to A. The commonality function g(A) is useful for
simplifying some computations. It is proved that m, bel, pl and ¢ are in one-to-
one correspondence with each other [14].



4 Belief Function Independence

The notion of informational irrelevance has been extensively studied in proba-
bility theory [6], [7], [12], [13], where it is identified with independence or more
specifically conditional independence. The concept of independence has also
been studied in non-probabilistic frameworks such that Spohn’s theory of or-
dinal conditional functions [17], Zadeh’s possibility theory [1], [3], [8], [9], [19],
[20], upper and lower probabilities theory [2], [4], [5], and in abstract frame-
work that unifies different calculi called valuation-based system [15]. However,
the concept of independence for variables has not been widely treated in belief
functions theory.

The aim of this section is to investigate some ways to define independence re-
lationships between variables when uncertainty is expressed by belief functions.
Some other researches studying this topic are [2], [14], and [18]. We concentrate
on the intuitive meaning on each definition and we discuss the possible links
between them.

In this section, we consider two variables X and Y. The frame of discernment
Q is the Cartesian product of X and Y. Formally, Q = ©x x ©y (simply noted
as = XY') where Q is the minimal refinement of X and Y ([14], page 123).

Previously, we recall the definition of probabilistic independence. We say
that two random variables X and Y are (marginally) independent under a dis-
tribution P on the space XY, denoted by X Ilp Y, if and only if one of the
following conditions is satisfied: Vo C X, Vy C Y

o PXY(2,y) = PXYIX () PXYIY (y)

where PXY1X and PXY1Y are the marginal probabilities of P on X and
Y, respectively.

o PXY[yIiX () = PXYIX(g)

where PXY[y]!X is the conditional probability on X given y.

Remark. This notation is more cumbersome than the usual one (i.e. such as
n [7], [13]), but it helps when belief functions are involved as it avoids confusion.

The first definition of independence is presented in terms of the factoriza-
tion of the joint probability distribution through its marginal distributions on
X and Y, respectively (a mathematical property). However, the second can be
interpreted in terms of (ir)relevance of information, it means that any informa-
tion about Y is irrelevant to the uncertainty about X (an epistemic property).
In probability context, there is no distinction between irrelevance and indepen-
dence.

To extend these definitions of independence to the case of belief functions,
Shafer ([14], page 147 et seq.) proposes two definitions of independence. Af-
ter recalling these definitions, we introduce our definitions of marginal non-
interactivity, irrelevance and doxastic independence for variables.

4.1 Cognitive Independence : Weak Independence

Following Shafer [14], two variables are ” cognitively independent” with respect
to a belief function if new evidence that bears on only one of them does not
change the degrees of belief for propositions discerned by the other. This notion



of ” cognitive independence” is also called weak independence in [11]. The formal
definition of ”cognitive independence” is the following :

Definition 2 [14] : The variables X and Y are cognitively independent with
respect to m*Y if and only if: for allxz C X, ally C Y,

P (2,y) = p¥Y X () PV ()

4.2 Evidential Independence : Strong Independence

The definition of ”cognitive independence” is very weak. Shafer [14] proposed
another notion of independence called ” evidential independence” ': two vari-
ables are ” evidentially independent” if their joint belief function is represented
by the combination of their marginals using Dempster’s rule of combination.
The formal definition of evidential independence is as follows :

Definition 3 [1/] : The variables X and Y are evidentially independent with
respect to m~Y if and only if: for allz C X, ally C Y,

(i) pP*Y (z,y) = pt*" X () pPXY Y (y)

(ii) belXY (x,y) = belXY X (2) belXY 1Y (y)

Based on the definition of evidential independence, let us state the following
theorems:

Theorem 1 The variables X and Y are "evidentially independent” with respect
to mXY if and only if:

m* Y (w) = m ()m Y (y), if w= (2,y)

= 0, otherwise.
where x is the projection of w on X, and y is the projection of w on Y.

Theorem 2 The variables X and Y are ”evidentially independent” relative to
mXY if and only if:

qXY(w) :qXYlX(x) qXYLY(y)7 Y C XY
where x is the projection of w on X, and y is the projection of w on'Y.

In fact, ”cognitive independence” is a weaker condition than ”evidential
independence” : if two variables are ”evidentially independent” with respect to
a belief function, then they will be ”cognitively independent” with respect to it.
Indeed, ”evidential independence” requires constraints on bel and on pl whereas
”cognitive independence” requires only constraints on pl.

Remark. Cognitive independence may hold whereas evidential indepen-
dence fails. In addition, neither (1) nor (2) implies the other [14]. This may be
shown in the following example.

Example. Let G and S be two variables representing Gender and Smoking
and taking their values in ©¢ = {Male, Female} and ©gs = {Yes, No}, respec-
tively. Let © = {(Male,Yes), (Female,Yes), (Male,No), (Female,No)} be the
frame of discernment representing the product space ©g X Og.

Mt is also called strong independence in [11].



Define the refining w; : 29¢ — 2% by:
w1({Male}) = {(Male,Yes), (Male,No)} = M,
w1 ({Female}) = {(Female,Yes), (Female,No)} = F,
and define the refining wo : 295 — 2% by:
w2 ({Yes}) = {(Male,Yes), (Female,Yes)} =Y,
w2({No}) = {(Male,No), (Female,No)} = N,
Suppose that we have the following basic belief assignment (bba) over the
product space :
m{(Male,Yes)} = 0.5
m{(Male,Yes), (Female,Yes), (Male,No)} = 0.25
m{Q} = 0.25
The corresponding plausibility functions are:
pl(M) = pl({(Male,Yes), (Male,No)}) =1
pl(F) = pl({(Female,Yes), (Female,No)}) = 0.5
pl(Y) = pl({(Male,Yes), (Female,Yes)}) = 1
pl(N) = pl({(Male,No), (Female,No)}) = 0.5
Then, we can easily verify that :
pl({(Male,Yes)} = pl(M,Y) = pI(M) pl(Y) =1
pl({(Female,Yes)} = pl(F,Y) = pl(F) pl(Y) = 0.5
pl({(Male,No)} = pl(M,N) = pl(M) pl(N) = 0.5
pl({(Female,No)} = pl(F,N) = pl(F) pl(N) = 0.25
But bel({(Male,Yes)} = bel(M,Y) = 0.5 is not equal to bel(M) . bel(Y) =
0.5 x 0.5 = 0.25. So, we conclude that G and S are cognitively independent.
But, they are not evidentially independent.

4.3 Belief function Non-Interactivity

In this section, we propose the definition of decompositional belief function
based on the basic belief assignment functions. In possibility theory, there is
an analogous definition introduced by Zadeh [20] where the decompositional
independence between two variables is represented by the non-interactivity
relation. The non-interactivity is a mathematical property useful for computa-
tion considerations. In our work, we use the same terminology.

Intuitively, the non-interactivity of two variables X and Y with respect to
m*XY means that the joint mass can be reconstructed from its marginals. The
formal definition of non-interactivity is as follows :

Definition 4 Given two variables X and Y, and m = m*Y on XY. X and Y
are non-interactive with respect to m , denoted by X L., Y, if and only if :

mXY = XY 1X g XYY

iFrom theorem 1, non-interactivity and Shafer’s evidential independence are
equivalent.

The straightforward propositions are:

Proposition 1 The product of m implies the product of plausibility, but NOT
the reverse.

Proposition 2 The product of m implies the product of belief function, but
NOT the reverse.



4.4 Belief Function Irrelevance

In probability theory, the notion of independence can be defined in term of
irrelevance. This kind of independence is based on conditioning. The intuitive
meaning of irrelevance is that knowing the value y of Y does not affect belief on
X. In belief functions theory, the formal definition of irrelevance is the following;:

Definition 5 Given two variables X and Y, and m = m*Y on XY. Y is
irrelevant to X with respect to m, denoted by IR, (X,Y), if and only if: Yy C
Y such that pl*Y (y) > 0

W @) o« m (@), Yo C Xz 40
and Yy CY such that pl™¥ (y) =0
m ) (@) =0, Ve C X 2 # 0, and m™ [y (0) = 1.

We need « because in the TBM context we don’t normalize when applying

Dempster’s rule of conditioning. Under normalization, proportionality becomes
equality.
Based on the definition of irrelevance, we can deduce the following consequences,
where the second item of the proposition 3 implies that IR is rquivalent to
Shafer’s cognitive independence. Nevertheless, we will show that IR is not
equivalent to non-interactivity.

Proposition 3 Y is irrelevant to X with respect to m, if and only if :
1. pl Y ] = aypl™ Y [ya] Y (1)

XY
where oy, = ny—gzlg(ay independent of x)

Pl (2Y) pl*Y (Xy)
pIXY (XY) ®

2. pl*Y (zy) =

3. IRW(X,Y) = IR, (Y, X) (3)

In the following example, we show that irrelevance does not imply non-

interactivity between variables.
Example. Suppose X = {z1,22} and Y = {y1,y2} and let @ = X x Y =
{a,b,c,d} where a = (z1,11),b = (z2,11),¢ = (21, y2),d = (22,y2). We present
in table 1 a bba m® such that IR,,o(X,Y) even though we do not have X |0
Y.

We start with m, compute its related pl*® (table 1). Then we present in
table 2 (3) the values of the bba and their related plausibility functions on X
(Y) after conditioning on y1, yo2, and Y (21, x2 and X).

Using the marginals on X and on Y, that is mX
given in the rightmost columns of the tables 2 and 3, we compute m*X @ m
which result is given in table 1, fourth column. It can be seen that m® #
maX @ Y

Nevertheless X and Y are irrelevant to each other with respect to m®. In-
deed, we can see that the conditional bba’s on X (Y) table 2 (3) satisfy the

and mY | which are
Qly



Q m*? Pl M PL Required
[ .0000 0 0 .0000 4
a 1275 | .3000 | .13 | .3000 v
b A7 .3500 | .17 | .3500 v
ab .1025 | .5000 | .10 | .5000 4
c .16 .3600 | .16 | .3600 Vv
ac .0125 | .6000 | .01 | .6000 v
be 0 .6550 | .00 | .6800

abc | .0075 | .7925 | .01 | .8000
d .2075 14200 21 .4200 v
ad .01 .6700 | .01 | .6900

bd .0225 | .7000 | .02 | .7000

abd 0 .8400 | .00 | .8500

cd .1325 | .6000 | .13 | .6000 V4
acd 0 .8300 .00 .8400

bed | .0075 | .8725 | .01 | .8800

abed .04 1.0000 | .04 | 1.0000 V4

Table 1: For each subset of 2 = X x Y, listed in column 1, the columns 2
and 3 present the value of m* and of its related pl’. The column 4 presents
the values of M = m® @ mY where m* = m®X and m¥ = m®Y. Column
5 presents the plausibility function PL = pl**¥X @ pi*}Y related to the bba of
column 4. Column 6 indicates by / those subsets of Q where the equality for

the plausibility functions is required.

proportionality requirement of the IR definition. Identically, we show that pi‘
and plI™X @ pl?YY are equal on those subsets of  where such equality is
required by the IR definition, that is those indicated by a 4/ symbol in the
‘Required’ column of table 1.

X | m8ab] X | pl®[ab]I X || X | mScd]*X | pl¥[cd]**
0 .50 0 0 40 0
a 15 .30 ¢ 18 .36
b .20 .35 d .24 42
ab 15 .50 cd 18 .60

X | mOX | piix

0 0 0

ac .30 .60

bd .40 .70

abced .30 1.00

Table 2: Bba and plausibility after marginalization on X of the bba obtained
by the conditioning of m® on the values of Y.

But irrelevance seems to weak and does not imply what we feel should be
the definition of ”independence”. In particular, our definition of irrelevance
does not imply ”non-interactivity” as shown in the last example. Nevertheless,
we feel the next property should also be satisfied by irrelevance, in which case
non-interactivity and irrelevance become equal.



Y | m%ac'Y | pl€®actY [ YV | mS[pd]"Y | pl?[bd]tY
0 .40 0 0 .30 0
a .24 .30 b .28 .36
c .30 .36 d .35 42
ac .06 .60 bd .07 .60

Y | mo | iy

0 0 0

ab 40 .50

cd .50 .60

abced .10 1.00

Table 3: Bba and plausibility after marginalization on Y of the bba obtained
by the conditioning of m® on the values of X.

Let A; and A, denote two agents whose beliefs are considered. The idea
is when the first agent A; claim that Y is irrelevant to X and produce his
beliefs and the second As tell me that Y is irrelevant to X and produce his own
beliefs, then I want that Y is still irrelevant to X for me and my belief will be
equal to the combination of agents’ beliefs (by application of Dempster’s rule of
combination).

This idea can be explicitly formulate by the next property called Irrele-
vance Preservation under Dempster’ rule of combination, denoted by
IRP&.

Definition 6 : Irrelevance Preservation under Dempster’ rule of combination

If IRy, (X,Y) and IR, (X,Y) then IRy, gm,(X,Y)

Remark. This property is not describeed in probability theory as the con-
cept of combination and the & operation are hardly considered.
Now, we can state one main theorem of this work:

Theorem 3 Let Q = XY and m = mXY. If IR, (X,Y) and if for all m’
defined on XY such that IR,/ (X,Y), we have IRgm (X,Y), then X 1,, Y.

This theorem means that when Y is irrelevant to X under m and this ir-
relevance is preserved under Dempster’ rule of combination then X and Y are
non-interactive under m.

4.5 Doxastic Independence

The most obvious difference between probabilistic independence and belief func-
tion independence is that irrelevance and independence have not identical mean-
ing in the belief function framework. This distinction is not commonly consid-
ered in probabilistic framework where both Pearl [13] and Dawid [7] use the
words irrelevance and independence interchangeably.

In order to enhance this distinction, we use the expression doxastic in-
dependence for belief function independence. In Greek, 'doxein’ means to
believe. The formal definition of doxastic independence is as follows :

Definition 7 Given two variables X and Y, and m on XY. X and Y are dox-
astically independent with respect to m, denoted by X 11, Y, if and only if m
satisfies:



o IR, (X,Y)
o Ymg on XY : IR,,,(X,Y) = IRgm,(X,Y)

The intuitive meaning of this definition is that two variables are considered
as doxastically independent only when they are irrelevant and this irrelevance
is preserved under Dempster’s rule of combination.

Theorem 4 Dozastic independence preservation under &.
If X1, Y and X I, Y then X U em, ¥

The link between doxastic independence and non- interactivity is given by
the next theorem :

Theorem 5 Given two variables X and Y, and m on XY. X and Y are doxas-
tically independent with respect to m if and only if X and Y are non-interactive
with respect to m.

5 Conclusion

In this paper, we have studied different concepts of independence for belief
functions. Of special interest for us is to clarify the relationships between the
concepts of non-interactivity, irrelevance and doxastic independence when un-
certainty is expressed under the form of belief functions. These concepts of
marginal independence for belief functions can be extended to conditional case
which successfully depict our intuition about how dependencies should update in
response to new pieces of information. In fact, the study of conditional indepen-
dence in the framework of belief functions theory was not sufficiently developed.
More detailed research of conditional belief function independence is under way.
It will be usefull for the practical use of belief functions in Artificial Intelligence.

Acknowledgements. Thanks to the anonymous reviewers for very construc-
tive comments.
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