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Abstract

This paper explains how multisensor data fusion and target identification can be performed within

the transferable belief model, a model for the representation of quantified uncertainty based on belief

functions. We present the underlying theory, in particular the General Bayesian Theorem needed to

transform likelihoods into beliefs and the pignistic transformation needed to build the probability measure

required for decision making. We present how the this method applies in practice. We compare its solution

with the classical one, illustrating it with an embarrassing example where the TBM and the probability

solutions completely disagree. Computational efficiency of the belief function solution was supposedly

proved in a study that we reproduce and we show that in fact the opposite conclusions hold. The results

presented here can be extended directly to many problems of data fusion and diagnosis.

Keywords: Belief functions, transferable belief model, General Bayesian Theorem, pig-

nistic probabilities, target identification, data fusion.

I. Introduction

Classically, uncertainty is represented by probability functions, but other models like

those based on belief functions have been proposed to represent quantified uncertainty.

Among them, the transferable belief model (TBM) is a model to represent quantified

uncertainties based on belief functions and unrelated to any underlying probability model.

In this paper, we focus on the application of the TBM to classification problems. We

focus on target identification problems, considering them as prototypical examples of ob-

ject classification and pattern recognition. We show how to apply the TBM to such a

problem. We explain what are the General Bayesian Theorem (GBT) and the pignistic

probabilities, the two major tools used for classification. We compare the TBM solution

to the probability solution. We consider also the issue of computational efficiency.

The TBM corresponds to an interpretation of the model initially developed by Shafer in

his book [21]. The TBM has been presented in [31], (see also [29] for a recent survey). It

represents weighted opinions, called here beliefs. The axiomatic justification of the model

can be found in [28].

Several authors have already applied belief functions to classification problems, but usu-

ally they base their work only on Shafer’s book, seemingly ignoring all later developments.

For their defense, it must be acknowledged that the theoretical material about the TBM

is scattered over many papers, some difficult to access. So we feel it useful for the reader

August 10, 2004 DRAFT



3

to regroup the useful results here. Details and proofs can be found in the original papers.

The computational efficiency of the belief function approach and its comparison with

the probability approach has been studied in [32], [4] on a problem of target identification.

The comparison is based on the number of identical data that must be collected in order

to reach a ‘firm’ decision. Unfortunately, these authors use belief functions in a way we

feel to be ad hoc. These authors conclude that the probability approach is more efficient.

We present in details how we consider belief functions should be applied to such problems.

We repeat the efficiency study and show, on the contrary, that the TBM approach is

computationally more efficient than the probability one.

This paper is organized as follows. In Section II, we present the general problem of target

identification by multisensors and the way the TBM can be applied to this problem. In

Section III, we present the General Bayesian Theorem. In Section IV, we apply the General

Bayesian Theorem to a simple problem. In Section V, we show through an example that

the TBM and the probability solutions can be diametrically opposed indicating thus that

the choice of the model can be an essential issue. In Section VI, we reproduce part of the

study presented in [32], [4] and show that the TBM approach is computationally more

efficient than the probability approach. In Sections VII, VIII and IX, we show how to

use the TBM for multisensor target identification problems. In particular, we show that

the TBM solution can produce answers different from those reached with the classical

likelihood based methods. We conclude in Section X.

II. The Transferable Belief Model for Identification

A. Sensors and Identification

A sensor can be seen as a piece of equipment that observes some data x ⊆ X and

transmits some ‘opinion’ about the actual value of a parameter of interest h ⊆ H. In

probability theory, the relation between X and H is represented by a probability distri-

bution on X for each hi ∈ H. Let P (.|hi) denote the probability measure on X given

hi ∈ H, where X and H are called the observation and hypothesis domains, respectively.

After observing x ⊆ X, the sensor communicates its opinion on the value of H under the

form of a ‘likelihood’ vector. Let l(hi|x) denote the likelihood of the hypothesis hi given
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the observed data is x: by definition l(hi|x) = P (x|hi). Inference on H is based on l(hi|x)

and some a priori probabilities.

The rule of Bayes enable us to update our knowledge, and give us the posterior proba-

bilities:

P (hi|x) =
l(hi|x)P (hi)∑

hj⊆H l(hj|x)P (hj)

The TBM enables us to introduce more complex types of uncertainty, at both the

likelihoods and the a priori level.

B. The Transferable Belief Model

The idea of using belief functions to represent quantified uncertainty was first introduced

by Shafer [21] who was building his theory from Dempster’s research [7]. Later Gordon

and Shortliffe [10] coined the term ‘Dempster-Shafer’s theory’. Unfortunately, this term

turns out to be ambiguous as it does not differentiate between a model based on interval

valued probability functions (not considered here) and the TBM. Missing to distinguish

between these models has created confusion in the literature [27].

The central element of the TBM is the basic belief assignment (bba), denoted m. For

A ⊆ H, m(A) is the part of belief that supports A (i.e. the fact that the actual value h0

of H is in A), and that, due to a lack of information, does not support any strict subset

of A. The initial total belief is scaled to 1, and thus m(A) ∈ [0, 1], with
∑

A⊆H m(A) = 1.

We do not require m(∅) = 0 as in Shafer’s work.

The degree of belief bel(A) is defined as: bel : 2H → [0, 1] with, for all A ⊆ H,

bel(A) =
∑

∅6=B⊆A

m(B) (1)

where 2H means all the subsets of the set H.

It quantifies the total amount of ‘justified specific’ support given to A. The term ‘jus-

tified’ means that B supports A, thus B ⊆ A, and the term ‘specific’ means that B does

not support A, thus B * A or equivalently B 6= ∅.

The degree of plausibility pl(A) is defined as: pl : 2H → [0, 1] with, for all A ⊆ H,

pl(A) =
∑

B⊆X,B∩A6=∅

m(B) = bel(H)− bel(A). (2)
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It quantifies the maximum amount of ‘potential specific’ support that could be given to

A. The term ‘potential’ means that B might come to support A without supporting A if

further piece of evidence is taken into consideration, thus B ∩ A 6= ∅.

The commonality function q is defined as: q : 2H → [0, 1] with, for all A ⊆ H,

q(A) =
∑

B⊆X,:A⊆B

m(B). (3)

The functions m, bel, pl and q are always in one to one correspondence. They all describe

the same information but seen under different points of view.

C. Notation

In order to enhance the fact that we work with non-normalized belief functions (m(∅)

may be positive), we use the notation bel and pl, whereas Shafer uses the notation Bel

and Pl. The latter two are kept for normalized belief and plausibility functions, i.e., where

m(∅) = 0.

Besides we use the next conventions. The notation for bel and its related functions is:

belH [F ](A) = x.

It denotes that x is the value of the degree of belief that the actual value h0 of H belongs

to the set A, where A is a subset of the frame of discernment H. The belief is based on

the facts F .

In the above notation, bel can be replaced by any of m, pl, q, etc... The indices should

made it clear what the links are.

Note that belH [F ] denotes the belief function, and can be understood as a finite vector

of length 2|H|, which components are the values of belH [F ](A) for every A ⊆ H.

We also take the convention that hi denotes an element of H whereas h denotes a subset

of H.

D. Conjunctive Combinations

Let E1 and E2 be two ‘distinct’ pieces of evidence and let mH [E1] and mH [E2] be the

bba’s they induce on H. Remember the symbols between [ and ] denote the pieces of

evidence taken in consideration when building the belief functions.
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We want to build the bba mH [E1, E2] = mH [E1] ∩©mH [E2] that results from the combi-

nation of the two pieces of evidence provided both sources are accepted as fully reliable.

The conjunctive combination mH [E1] ∩©mH [E2] is defined by:

mH [E1] ∩©mH [E2](A) =
∑

B,C⊆H,B∩C=A

mH [E1](B)mH [E2](C), ∀A ⊆ H (4)

Dempster’s rule of combination is obtained by normalizing the result of the conjunctive

combination rule, i.e., by dividing all results by (1 −mH [E1] ∩©mH [E2](∅)). The result is

denoted then by mH [E1]⊕mH [E2].

The conjunctive combination can also be computed as:

qH [E1] ∩©qH [E2](A) = qH [E1](A)qH [E2](A), ∀A ⊆ H. (5)

E. Conditioning

A special case of conjunctive combination rule is the conditioning rule. Let mA be so

that mA(X) = 1 if X = A, and 0 otherwise. The result of the conjunctive combination of

m with mA produces a new bba m[A] with:

m[A](B) =
∑
C⊆A

m(B ∪ C) if B ⊆ A (6)

= 0 otherwise (7)

bel[A](B) = bel(B ∪ A)− bel(A), ∀B ⊆ H (8)

pl[A](B) = pl(A ∩B), ∀B ⊆ H. (9)

This operation represents the impact of the information ‘h0 /∈ A’, which differs from

h0 ∈ A in the open world context as h0 might then not belong in H.

F. The Least Commitment Principle

An hypothesis that receives a belief of .3 is less supported than an hypothesis that

receives a belief of .4. If bel1(h) ≤ bel2(h) for every h ⊆ H, we can say that bel1 gives less

support to (every hypotheses h of) H than bel2. We say that bel1 is less committed than

bel2. For normalized belief functions, these inequalities are the same as: pl1(h) ≥ pl2(h)

for all h ⊆ H.
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With non normalized belief functions, the inequalities between the beli are not adequate,

whereas those between the pli are still adequate [29]. The formal definition becomes:

Let two bba m1 and m2 be defined on a frame of discernment H. m1 is less committed

than m2 iff: pl1(h) ≥ pl2(h), ∀h ⊆ H.

The least committed belief function defined on H is the vacuous belief function defined

by pl(h) = 1, ∀h ⊆ H, or equivalently m(h) = 1 if h = H, and 0 otherwise. It represents

a state of total ignorance as none of the strict subsets of H is supported.

G. Extensions and Marginalizations

G.1 The Vacuous Extension.

Let H be a frame of discernment. Let H ′ be a refinement R of H, i.e., every element

hi of H is mapped by R into one to several elements of H ′, and the images R(hi) and

R(hj) on H ′ of any pair hi, hj ∈ H, hi 6= hj are disjoint. It just means that H ′ is more

detailed than H. Suppose there is a bba mH on H. This bba can be extended on H ′ in

order to build a bba on H ′ that expresses the same information as contained in mH . This

transformation is called the vacuous extension of mH on H ′, denoted by mH ↑H′
and its

values are given by:

mH ↑H′
(h′) = mH(h) if h′ = R(h)

= 0 otherwise.

where R(h) is the image of h under R [21].

G.2 Coarsening.

Suppose a bba mH′
defined on H ′. Let H be a coarsening of H ′, i.e., H ′ is a refinement

R of H. The bba induced on H by mH′
is denoted by mH′ ↓H , and the values of its related

belH
′ ↓H are:

belH
′ ↓H(h) = belH

′
(R(h)) ∀h ⊆ H

Marginalization is a special case of coarsening when H can be represented as the product

space of two variables X and Y , and the bba defined on X × Y is transformed into a bba
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on X; indeed X is a coarsening of X × Y .

G.3 The Ballooning Extension.

Let H be a frame of discernment and let H ′ be a subset of H. Suppose a bba mH′

defined on H ′ and we need a bba on H. The least committed bba on H such that its

conditioning on H ′ is mH′
is given by the ‘ballooning’ extension introduced in [22], [26],

denoted mH′ ⇑H , and its values are:

mH′ ⇑H(h) = mH′
(h′) if h′ ⊆ H ′, h = h′ ∪H ′

= 0 otherwise.

The ballooning extension is useful when the received beliefs were build on a limited

frame and we discover that some alternatives had not been taken into consideration when

the sensor produced the bba on the limited frame. We can thus build a bba on the larger

frame from the one collected on the limited frame. It is repeatedly used to derive the

General Bayesian Theorem presented in Section III.

H. Credal and Pignistic Levels

In the TBM, beliefs held by an agent are represented by a belief function belH . When a

decision must be taken by this agent and the optimal decision depends on the actual value

of H, the belief function belH is transformed into a probability function on H, probability

function which is used to compute the expected utilities required to select the optimal

decision [20]. In order to enhance that this probability function does not represent the

agent’s beliefs, we call it the pignistic probability function and denote it BetPH .

The transformation between the belief function and the pignistic probability function is

called the pignistic transformation (see Section II-I).

Conceptually, the TBM distinguishes between two mental levels:

• the ‘credal’ level where beliefs are entertained and represented by belief functions and

• the ‘pignistic’ level where beliefs are used to make decisions and induce a pignistic

probability function.

The qualifiers come from ‘credo’ I believe and ‘pignus’ a bet, both in Latin.
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In probability theory, these two levels are not distinguished and probability functions

quantify beliefs at both levels.

I. The Pignistic Probabilities for Decision Making

Suppose a bba mH that quantifies beliefs on H. Its pignistic transformation producing

the pignistic probability function BetPH , is assumed to be a function of H and mH ,

BetPH = Γ(mH , H).

The only transformation from mH to BetPH that satisfies some rationality requirements

is the so called pignistic transformation given by:

BetPH(h) =
∑

A:h∈A⊆H

mH(A)

|A|(1−mH(∅))
, ∀h ∈ H (10)

where |A| is the number of elements in A [25], [30], [31].

It is easy to show that the function BetPH is indeed a probability function and the

pignistic transformation of a probability function is the probability function itself. We call

it ‘pignistic’ in order to avoid the confusion that would consist in interpreting BetPH as a

measure representing beliefs on H. BetP is the probability function needed to determine

the optimal decision, not the measure of some beliefs, the last being quantified by the

belief function.

This approach has been shown to resist to the Dutch book argument used by the

Bayesians to justify the probabilistic approach [31].

III. The General Bayesian Theorem

In probability theory, Bayes theorem permits the computation of a probability function

over the space H given the value of some variable x ∈ X from the knowledge of the

probabilities over X given each hi ∈ H, and some a priori probability function over

H. The same idea has been extended in the TBM context where we will build a belief

function over H given an observation x ⊆ X from the knowledge of the belief function over

X given each hi ∈ H and a vacuous a priori belief over H, i.e., an a priori describing a

state of total ignorance (therefore solving the delicate problem of choosing an appropriate

a priori). This generalization is called the General Bayesian Theorem or GBT for short.
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Incorporating an a priori information on H is achieved by combining the belief in-

duced by x on H computed with the GBT with the a priori belief using the conjunctive

combination rule.

For the GBT, all that is needed from the sensor after it observes x is the vector of

plausibilities plX [hi](x) for all hi ∈ H. In many cases, the conditional belief over X given

hi is in fact represented by a probability function, in which case plX [hi](x) = PX [hi](x).

In order to keep with the tradition, we call plX [hi](x) the likelihood of hi given x, what

we denote by l(hi|x).

Given the the likelihoods l(hi|x) for every hi ∈ H, then for x ⊆ X and for every A ⊆ H,

Smets [22] proves:

mH [x](A) =
∏
hi∈A

l(hi|x)
∏
hi∈A

(1− l(hi|x)) (11)

belH [x](A) =
∏
hi∈A

(1− l(hi|x))−
∏

hi∈H

(1− l(hi|x)) (12)

plH [x](A) = 1−
∏
hi∈A

(1− l(hi|x)) (13)

qH [x](A) =
∏
hi∈A

l(hi|x) (14)

Should there be some non vacuous beliefs on H, represented by mH [E0], then this belief

is simply combined with mH [x] by the application of the conjunctive rule of combination.

The GBT has been derived axiomatically by Smets [22], [23], [26] and independently by

Appriou [1].

A. Some Properties

Some particular properties of the GBT are worth mentioning.

A.1 A Way to Derive the GBT

The GBT can be derived from the ballooning extensions (see Section II-G). We start

from the bba mX [hi] collected for hi ∈ H. We build its ballooning extension on X ×H,

and then conjunctively combine these bba’s over the hi’s. The result is then marginalized

on H and is exactly the bba derived by the GBT.
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Formally we have:

mH [x] = ( ∩©hi∈H mX [hi]
⇑X×H)[x]↓H

= ∩©hi∈H (mX [hi]
⇑X×H [x]↓H)

The combination can be performed before or after conditioning on x and marginalizing,

results are identical.

Furthermore, the bba mX [hi]
⇑X×H [x]↓H happens to be a simple support functions1 on

H with a mass 1− l(hi|x) given to hi and a mass l(hi|x) given to H [26].

A.2 Independent Observations

Suppose two ‘independent’ observations x defined on X and y defined on Y , and the

inference on H obtained from their joint observation.

Suppose the two variables X and Y are conditionally ‘independent’ given H. If the

beliefs over X and over Y given hi ∈ H are represented by probability functions, it means

that X and Y are conditionally stochastically independent given H. In the more general

case where the beliefs over X and over Y given hi ∈ H are represented by belief func-

tions, the ‘independence’ requirement becomes what is called the Conditional Cognitive

Independence [26]. In both cases, the next property is satisfied;

l(h|x, y) = l(h|x)l(h|y) ∀h ∈ H, x ∈ X, y ∈ Y. (15)

where the likelihood is either the conditional probability or the conditional plausibility of

x given h.

The GBT could then be applied in two different ways.

Let plH [x] and plH [y] be computed by the GBT (with a vacuous a priori belief on H)

from the likelihoods on H obtained from x and y, separately. They are then combined by

the conjunctive rule of combination in order to build plH [x, y].

We could as well consider the likelihoods directly obtained from the joint observation

x, y, using the product rule (15). We then compute plH [x, y] from them using the GBT.

Both results are the same. This property is essential and in fact at the core of the

axiomatic derivations of the rule. Other suggested extensions of Bayes theorem to belief

1A Simple Support Function is a belief function where all masses are null except for one set and the whole frame.
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functions fail to satisfy it.

A.3 New Hypothesis

The mass given to the empty set by the application of the GBT can receive a nice

and useful interpretation. Suppose we accept that H is not exhaustive, thus there are

unthought-of hypotheses. Let h∗ denote all of them. Then mH [x](∅) is equal to belH∪h∗ [x](h∗),

thus the degree of belief that the data x supports that none of the hypothesis in H holds,

and that we are facing a case where a new previously unthought-of hypothesis must be

considered. Identically we have for all h ⊆ H:

belH∪h∗ [x](h ∪ h∗) = belH [x](h) + mH [x](∅),

belH∪h∗ [x](h) = 0.

This result is what the GBT produces if we add an extra hypothesis h∗, and define

belX [h∗] as the vacuous belief function. This is the natural solution, as it is obvious

that the user knows nothing about the conditional beliefs over the data when the actual

hypothesis belongs to h∗, the set of unthought-of hypotheses.

A.4 The Bayesian Degradation

If for each hi ∈ H, plX [hi] is a probability function PX [hi] on X, then the GBT for

|hi| = 1 becomes:

plH [x](hi) = P (x|hi), ∀x ⊆ X.

That is, on the singletons hi of H, plH [x] reduces to the likelihood of hi given x. The

analogy stops there as the solution for the likelihood of subsets of H are different.

If, furthermore, the a priori belief on H is also a probability function p0(h), then the

normalized GBT becomes:

BelH [x](A) =

∑
hi∈A P (x|hi)p0(hi)∑
hi∈H P (x|hi)p0(hi)

= P [x](A)

i.e. the (normalized) GBT reduces itself into the classical Bayesian theorem (as it should).

This explains the origin of its name.

August 10, 2004 DRAFT



13

A.5 Most Plausible and Most Probable Hypothesis

Suppose we know plX [hi](x) for all x ⊆ X and all hi ∈ H. Data x ⊆ X is collected and

we want to select which hypothesis hi ∈ H is ’best supported’ given the observed data.

Two strategies have been proposed, one based on selecting the hypothesis with the largest

pignistic probability (see Section II-I), the other based on selecting the hypothesis with

the largest plausibility [1], [19] which is equivalent to selecting the hypothesis with the

largest likelihood. It happens that the selected hypothesis is the same for both approaches

when the a priori belief on H is vacuous.

Theorem III.1: Given x ⊆ X and plX [hi](x) for all hi ∈ H, let plH [x] be the plausibility

function defined on H and computed by the GBT (relations (11) to (14)), and BetPH [x]

be the pignistic probability function constructed on H from plH [x] (relation (10)), then:

BetPH [x](hi) > BetPH [x](hj) iff plX [hi](x) > plX [hj](x).

Proof. Let l(hk|x) = plX [hk](x). Suppose l(hk|x) < 1 for all hk ∈ H. Let rk =

l(hk|x)/(1− l(hk|x)) and α =
∏

hk∈H(1− l(hk|x)). Then by the GBT (see relation (11)),

we have for h ⊆ H:

mH [x](h) =
∏
hi∈h

l(hi|x)
∏
hi∈h

(1− l(hi|x)) = α
∏
hk∈h

rk.

With K = 1/(1−mH [x](∅)), we have BetPH [x](hi):

BetPH [x](hi) = K
∑
h⊆hi

1

|h|+ 1
mH [x](hi ∪ h)

= αK ri

∑
h⊆hi

1

|h|+ 1

∏
hk∈h

rk

= αK
∑

h⊆hi∪hj

∏
hk∈h

rk (
ri

|h|+ 1
+

ri rj

|h|+ 2
) where j 6= i

In that case:

BetPH [x](hi)−BetPH [x](hj) = α K
∑

h⊆hi∪hj

∏
hk∈h

rk (
ri

|h|+ 1
− rj

|h|+ 1
)

= α K(ri − rj)
∑

h⊆hi∪hj

∏
hk∈h

rk (
1

|h|+ 1
)
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As rk ≥ 0, the product terms are non negative, and so is their sum. The sum is positive

as the term with h = ∅ has a product equal to 1. Hence the sign of the difference is the

same as the sign of ri − rj:

BetPH [x](hi) > BetPH [x](hj) iff ri > rj.

As ri > rj iff l(hi|x) > l(hj|x), i.e., iff plX [hi](x) > plX [hj](x), the largest value of

BetPH [x](hν) is obtained for the hypothesis hν for which plX [hν ](x) is maximal.

If for k ∈ H0 ⊆ H, l(hk|x) = 1, then every positive mass on H is given to a superset

of h0, and thus the pignistic probabilities given to the hk ∈ H0 are equal and maximal.

Simultaneously, plX [hk](x) is always less or equal to 1, so the hypothesis hk ∈ H0 are those

with a maximal plausibility, hence the theorem. 2

This property is very useful when the only purpose is to take a decision and the a priori

belief on H is vacuous. Indeed all computation can be avoided as all that is needed is

plX [hk](x). Of course, the whole computation is still needed when expected utilities and

other results are required. This result does not hold when a non vacuous a priori belief

on H is introduced.

IV. A Simple Example of Data Fusion

In order to illustrate the use of the GBT and the pignistic transformation, we present

a simple problem of target identification by two sensors. Our examples are inspired by

those in [4].

Let S1 and S2 be two sensors, an Electronic Support Measure (ESM) and a Radar sensor,

respectively. Let X and Y be the domains of the data they can observed, respectively. Let

H = {F, M, B} be the set of possible targets where the letters denote a F-15, a Mig-27

and a Boeing 747 aircraft, respectively. Table I presents the values of the conditional

plausibility functions for x ⊆ X and y ⊆ Y , where x and y are the observations made by

the two sensors, respectively. Table II presents the computation performed by the GBT.

We list the plausibility function induced by data x on H (line plH [x]), and its related bba

(line mH [x]) and commonality function (line qH [x]) using relation (5). For instance,

plH [x](F, M) = 1− (1− .7)(1− .4) = .82
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We do the same with data y. We then conjunctively combine the two belief functions

by a pointwise multiplication of their commonality functions (line qH [x, y]). We then

present the bba (line mH [x, y]) and the normalized belief (line BelH [x, y]) and plausibility

functions (line PlH [x, y]) related to the commonality function and that result thus from

the conjunctive combination of the belief functions induced on H by x and by y. Finally

Table III presents the pignistic probability functions computed after collecting data x

alone, data y alone and data x and y jointly. For example,

BetPH [x](F ) = (.378 + .252/2 + .041/−+.028/3) / (1− .162) = .638

The ESM sensor supports the hypothesis that the object is a F-15, whereas the Radar

sensor supports that it is a Boeing. But together, they support more strongly that the

object is a F-15. This fits with what Table I tells. Hypothesis M and B are each rejected

by one sensor, and F is the only hypothesis somehow supported by both sensors. For

comparison purposes we also present in Table III what would be the posterior probabilities

obtained with the same data using equi a priori probabilities on H. Results are very similar

in this case. Such a similarity is not always encountered as shown in the nest example,

where the TBM conclusions and the probability ones diverge completely.

Sensor data F M B

ESM x .7 .4 .1

Radar y .5 .2 .6

TABLE I

Example 1. Values of the conditional plausibility functions on x ⊆ X and y ⊆ Y given

the 3 hypotheses F , M and B in H. x and y are the observations made by the ESM and

the Radar Sensors, respectively.

V. An Embarrassing Example Comparing the TBM with a Probability

Approach

We present an example where the probability and the TBM approaches strongly dis-

agree. This example is useful is showing that the choice between the two models can be
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H ∅ F M B F, M F, B M, B F, M, B

plH [x] 0 0.7 0.4 0.1 0.82 0.73 0.46 0.838

mH [x] 0.162 0.378 0.108 0.018 0.252 0.041 0.012 0.028

qH [x] 1 0.7 0.4 0.1 0.28 0.07 0.040 0.028

plH [y] 0 0.5 0.2 0.6 0.6 0.8 0.68 0.84

mH [y] 0.16 0.16 0.039 0.24 0.04 0.24 0.060 0.06

qH [y] 1 0.5 0.2 0.6 0.1 0.3 0.12 0.06

qH [x, y] 1 0.35 0.08 0.06 0.028 0.021 0.004 0.001

mH [x, y] 0.562 0.302 0.048 0.035 0.026 0.019 0.003 0.001

BelH [x, y] 0 0.691 0.111 0.081 0.862 0.817 0.200 1

PlH [x, y] 0 0.799 0.182 0.137 0.918 0.888 0.308 1

TABLE II

Example 1. Computation performed by the GBT in order to compute the belief and

plausibility functions on H given the x and y data.

essential in practice. The example cannot be used to ‘prove’ that one of the two models

is right or wrong, as neither common sense nor rationality requirements can definitively

help us in deciding which of the two diverging conclusions is the ‘correct’ one. Some hints

about this choice are discussed at the end of this section.

A. The Problem

Let S1, S2 . . . S30 be a set of 30 sensors. Each sensor identifies objects as ‘friend’ (denoted

Frd) or ‘foe’ (denoted Foe). For each sensor, we know what is the probability that it is

in working condition or broken. Let pi = P (Si in Working Condition).

Let Xi be the domain of the data sensor Si can collect, with Xi = {xi, yi}. When in

working condition, the sensor is a perfect detector, i.e., xi is equivalent to Frd and yi to

Foe. When broken, we totally ignore how the sensor would react when observing a friend

or a foe.

All sensors are either of high quality (HQS) or of low quality (LQS), with sensors

S1 . . . S11 ∈ HQS whereas S12 . . . S30 ∈ LQS. For each Si ∈ HQS, pi = .99 and for each
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Sensor F M B

ESM BetPH [x] 0.638 0.298 0.065

Radar BetPH [y] 0.381 0.131 0.488

ESM+Radar BetPH [x, y] 0.745 0.147 0.109

ESM+Radar PH [x, y] 0.714 0.163 0.122

TABLE III

Example 1. Pignistic probabilities computed on H given observed data are x, y and x, y,

respectively. The last line presents the probabilities one would obtained when

applying a classical probability approach, using an equi a priori probability function on

H.

Si ∈ LQS, pi = .90.

The collected data is the vector data = (x1 . . . x10, y11, x12, y13 . . . y30). So 10 out of the

11 high quality sensors and one among the 19 low quality sensors support the target is a

friend, the others support it is a foe. What should we conclude after fusing these data? It is

hard to decide as common sense can hardly help. We show now that the TBM concludes

with a probability of .91 that the target is a friend, whereas the probability analysis

concludes with a probability .92 that it is a foe. Values were of course chosen in order

to get this enormous discrepancy. Nevertheless such a discrepancy is quite embarrassing.

It shows that selecting the model deserves serious attention as conclusions can strongly

depend on this choice.

B. Bayesian Analysis.

In order to proceed with a Bayesian analysis, we need first to assess α = P (xi|Si =

Brk, Frd) = P (xi|Si = Brk, Foe), where we accept that the behavior of the broken

sensor does not depend on the target’s nature. A strict Bayesian claims that a probability

can be assigned to any event, and thus that α can and must be assessed. The most natural

assessment here (and the one most users will apply in practice) is α = .5.

The Bayesian analysis proceeds then as follows. Table IV presents relevant data. We
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Target Frd Foe

Si Status Wrk Brk Wrk Brk

P (Status) pi 1− pi pi 1− pi

Xi p(di) p(di) p(di|Frd) p(di) p(di) p(di|Foe)

xi 1 .5 pi + .5(1− pi) 0 .5 .5(1− pi)

yi 0 .5 .5(1− pi) 1 .5 pi + .5(1− pi)

TABLE IV

Example 2. Probability Approach. For Sensor Si, values of p(di) where the Target T

can be Frd (for Friend) or Foe and Si Status can be Wrk (for Working) and Brk (for

Broken). pi is the probability Sensor Si Status is Wrk. The columns p(di|Frd) and

p(di|Foe) present the probability on Xi given the target is Frd or Foe, thus the

likelihoods given to the targets when the observed data is xi or yi, respectively.

must compute P (Frd|data) where data is the data = (d1 . . . d30) vector . We have:

P (Frd|data) ∝ P (Frd)P (data|Frd)

= P (Frd)
∏

i=1...30

P (di|Frd)

assuming the conditional independence of the data given the nature of the target.

We have then, with Wrki and Brki being the status of Si:

P (di|Frd) = P (di|Frd, Wrki)P (Wrki|Frd) + P (di|Frd, Brki)P (Brki|Frd)

= P (di|Frd, Wrki)P (Wrki) + P (di|Frd, Brki)P (Brki)

= P (di|Frd, Wrki)pi + P (di|Frd, Brki)(1− pi)

assuming the sensor working condition is independent of the nature of the target. These

values are displayed in the columns p(di|Frd) and p(di|Foe) of Table IV. Their numerical
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values are in the present example:

P (di|Frd) = 1× .99 + .5× .01 = .995 if Si ∈ HQS and di = xi

= .5× .01 = .005 if Si ∈ HQS and di = yi

= 1× .90 + .5× .10 = .95 if Si ∈ LQS and di = xi

= .5× .10 = .05 if Si ∈ LQS and di = yi

Given the observed data, we have:

P (Frd|data) ∝ P (Frd)× .99510 × .0051× .951× .0518 = 1.72E − 26

Identically with foe, we get:

P (Foe|data) ∝ P (Foe)× .00510 × .9951 × .051 × .9518 = 1.93E − 25

Assuming equi prior probability of Friend and Foe (P (Frd) = P (Foe) = .5), we get:

P (Frd|data) =
1.72E − 26

1.72E − 26 + 1.93E − 25
= 0.08

P (Foe|data) =
1.93E − 25

1.72E − 26 + 1.93E − 25
= 0.92

Hence the probability analysis concludes that the target is a foe.

Strict Bayesian might argue that he α = .5 was not correct and that another value for α

must be used. This is not a real issue as once the α is determined, it is always possible to

find a set of data so that the Bayesian and the TBM conclusions will diverge as strongly

as here.

One might argue that this strict Bayesian analysis is not an adequate probability anal-

ysis, and that we should perform a sensitivity analysis, i.e., we must consider all possi-

ble values for α. The result becomes then totally uninformative and useless as we get

P (Frd|data) varying from 0 (when α = 1) to 1 (when α = 0), a truism of course.

C. TBM Analysis.

The TBM analysis leads to a conclusion opposite to the one reached by the strict

Bayesian. It proceeds as follows. We must build the plausibility over {Frd, Foe} given
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each type of observation and each sensor quality (see Table V). In the ‘working’ case, the

sensors are perfect, hence the mass 1 on Frd with xi and on Foe with yi. When the sensor

is ‘broken’, we are in a state of total ignorance about what might be the target, hence

a mass 1 is given to {xi, yi} for both possible data. Table V presents the corresponding

plausibility functions on Xi (columns plXi), and the values of plXi [Frd] and plXi [Foe]

taking into consideration the pi values (they are the weighted average of the former).

Target Frd Foe

Si Status Wrk Brk Wrk Brk

P (Status) pi 1− pi pi 1− pi

Xi plXi plXi plXi [Frd] plXi plXi plXi [Foe]

xi 1 1 1 0 1 1− pi

yi 0 1 1− pi 1 1 1

TABLE V

Example 2. TBM Approach. For Sensor Si, values of plXi [T, Si Status] where the Target

T can be Frd (for Friend) or Foe and Si Status can be Wrk (for Working) and Brk (for

Broken). pi is the probability Sensor Si Status is Wrk. The columns plXi [Frd] and

plXi [Foe] present the plausibility on Xi given the target is Frd or Foe, thus the

likelihoods given to the targets when the observed data is xi or yi, respectively.

In order to combine the data, we compute plH [data] = ∩©1...30pl
H [di]. This is easily

achieved using the commonality function qH [di] as:

qH [data](T ) =
∏

i=1...30

qH [di](T ), ∀T ⊆ H.

Table VI presents the details of this computation and the resulting pignistic probabilities

BetP . The TBM approach concludes that the target is a Friend with BetP (Frd) = .91.

Notice that if one had replaced the vector (1 1) of plXi by (.5 .5) in the Brk columns

of Table V, the results of the TBM analysis become the same is those of the probability

approach. So the source of the difference between the results of the two approaches

comes from the fact we represent total ignorance by equal probabilities in the probability
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HQS LQS

qH [xi] xi yi xi yi BetP

Friend 1.00 0.01 1.00 0.10 .909

Foe 0.01 1.00 0.10 1.00 .091

H 0.01 0.01 0.10 0.10

TABLE VI

Example 2. Individual values of the commonality function qH [xi]. The column BetP

presents the pignistic probabilities over H.

approach and by a vacuous belief function in the TBM approach. Which representation

is adequate is a matter of personal opinions.

D. Choosing between the two models.

As shown before, the two models, the Bayesian and the TBM, give totally opposite

conclusions, which is quite disquieting. Its origin has been found in the representation of

the uncertainty about how the sensor would react when broken.

We feel that we cannot leave each model stands against the other without giving read-

ers some help to choose among them. A possible answer comes from the study of the

informativity of the sources.

In the probabilistic setting, Shannon entropy has been defined in order to assess the

informativity of distributions. The TBM can represent a broader range of uncertainty,

Shannon entropy cannot be applied directly to bba’s, and measures have been appropri-

ately adapted to measure the informativity of a belief function [14].

According to these measures, the uniform distribution used in probability theory is not

the most uninformative; it includes already ‘something’. On the contrary, the vacuous

belief is always the least informative. This might be used as an argument in favor of the

TBM solution as it is based on less information than the probability solution.
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VI. Computational Efficiency: Comparison with the Bayesian Model

In [4] the authors compare the Bayesian and the ‘Dempster-Shafer’ approaches in mul-

tisensor data fusion applied to a problem of target identification. They present a one and

a two sensors example and a Monte Carlo simulation. They conclude that the use of belief

functions is computationally less efficient than the use of probability functions. We repeat

their study and show that in fact the converse holds.

Their approach is base on comparing the number of identical observations required by

the two models so that the a posteriori probability of the actual hypothesis reaches a 0.99

threshold.

A. Example 3. One Sensor Problem: Mathematical Comparison

Let H = {h1, h2, . . . hn} denote a set of n hypotheses, for instance the type of aircraft

under observation. One of these hypotheses, denoted h0, corresponds to the actual one.

In order to determine the value of h0, a sensor, like an Electronic Support Measure

(ESM), makes an observation. Let X denote the set of possible values this observation

can take. Suppose the sensor measurement is x ∈ X and that its likelihoods are l(h1) = a

and l(hi) = b for i = 2, . . . , n, 0 < b < a < 1.

Suppose we collect k independent observations and each observation is the same x ∈ X.

The likelihoods are then l(h1) = ak and l(hi) = bk for i = 2, . . . , n.

A.1 Probability Approach

The initial knowledge state is total ignorance, so we assume an a priori probability

PH
0 (hi) = 1/n, ∀hi ∈ H.

With Bayes rule we compute the probability at step k. Let xk represent the collected

data, i.e., k times x. We have, PH [xk](h1) = ak/(ak + (n − 1)bk) and for i = 2 . . . n,

PH [xk](hi) = bk/(ak + (n− 1)bk).

A.2 TBM Approach

For the TBM analysis, the GBT needs plX [hi](x), i = 1 . . . n which are the likelihoods

ak and bk of the previous section. To achieve the comparison, we need BetP (h1) after

observing k times the same data x.
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The bba on H is (see relation (11)):

mH [xk](h1) = ak(1− bk)n−1

mH [xk](h1, h2, . . . hi) = akbk(i−1)(1− bk)n−i

mH [xk](h2, . . . hi) = (1− ak)bk(i−1)(1− bk)n−i

or in general, ∀h ⊆ H

mH [xk](h) = ak|h1∩h| (1− ak)1−|h1∩h| bk|h1∩h| (1− bk)(n−|h1∩h|−1)

A.3 Computing BetP

We derive the equation for BetPH [xk] using the symbols as defined above.

Theorem VI.1:

BetPH [xk](h1) =
ak

nbk

1− (1− bk)n

1− (1− ak)(1− bk)n−1
(16)

Proof. Let ak = y, bk = z. By relation (10), we have:

BetPH [xk](h1) =
∑

h1∈h⊆H

mH [xk](h)

|h|(1−mH [xk](∅)

=
1

(1−mH [xk](∅))
∑
h⊆h1

y

1 + |h|
z|h](1− z)n−1−|h|

=
1

(1−mH [xk](∅))

n−1∑
i=0

y

1 + i

(
n− 1

i

)
zi(1− z)n−1−i

=
y

(1−mH [xk](∅))
1

nz
(1− (1− z)n)

mH [xk](∅)) = (1− y)(1− z)n−1

BetPH [xk](h1) =
y

nz

1− (1− z)n

1− (1− y)(1− z)n−1

2

A.4 Convergence Speed

We prove that the ratio BetPH [xk](h1)/P
H [xk](h1) is always larger than 1, thus that

the TBM converges faster than the probability model, contrary to what [4] concludes.
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Theorem VI.2: BetPH [xk](h1) ≥ PH [xk](h1).

Proof. Let ak = y, bk = z. By relation (16), we have:

BetPH [xk](h1)

PH [xk](h1)
=

y

nz

1− (1− z)n

1− (1− y)(1− z)n−1

y + (n− 1)z

y

To prove the ratio is larger than 1, we must show that

(1− (1− z)n)(y + (n− 1)z) ≥ nz(1− (1− y)(1− z)n−1)

which, after algebraic manipulations, becomes equal to:

(y − z)(1− (1− z)n − nz(1− z)n−1) ≥ 0.

As y ≥ z by hypothesis, it is sufficient that:

1 ≥ (1− z)n + nz(1− z)n−1.

This is equivalent to showing that:

1 ≥ (1− z)n−1(1 + (n− 1)z)

1− (1− z)n−1 ≥ (n− 1)z(1− z)n−1

1− (1− z)n−1

1− (1− z)
≥ (n− 1)(1− z)n−1 as z ∈ [0, 1)

n−1∑
i=0

(1− z)i ≥ (n− 1)(1− z)n−1

n−1∑
i=0

(1− z)−(n−i−1) ≥ n− 1

As z ∈ [0, 1), (1− z)−(n−i−1) ≥ 1. Their sum is larger than n, what proves the inequality.

2

The ratio BetPH [d](h1)/P
H [d](h1) is thus always larger than 1 when a > b, for all

k = 1, 2 . . . . Therefore the number of steps k needed so that BetPH [d](h1) ≥ .99 is never

larger than the number of steps needed so that PH [d](h1) ≥ .99.

This result contradicts the conclusions in [4]. The possible origin of the discrepancy is

discussed in Section VI-D.
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B. Example 4. Two Sensors Problem: Mathematical Comparison

Suppose we use two sensors S1 and S2 that observe the data x1 and x2, respectively.

Let the likelihoods they generate in such cases be:

• l1(hi) = a for i = 1 . . . j, and b for i = j + 1 . . . n

• l2(hi) = b for i = 1 . . . j − 1, and a for i = j . . . n

where a > b. So alone, the sensors cannot discriminate the hypothesis hj when it holds,

whereas together, they do it nicely.

Suppose the same data x1, x2 has been collected k times, and the observations collected

with the two sensors are independent, we can thus compute the likelihoods for the joint

data. They are:

l12(hi) = akbk for i = 1 . . . j − 1

= a2k for i = j

= akbk for i = j + 1 . . . n

We are thus back to the previous example, and the same proof shows that the pignis-

tic probabilities computed in the TBM is always larger than the posterior probabilities

computed in the probabilistic approach for any k.

C. Example 5. Monte Carlo Simulation

This part revisits the simulations used in [4]. We use the same data and compare the

speed of convergence to the winning hypothesis by two decision systems: the classical

Bayesian approach and TBM approach.

Contrary to the results presented in [4], the TBM-based algorithm is never slower than

the Bayesian algorithm.

The experiment simulates a problem of decision concerning an aircraft engagement. The

aircraft fled by the user detects another aircraft, and the question is to classify it. There

are ten possible aircrafts. Table VII presents the various hypothesis, their class and their

nature.

The user possesses a multisensor system to detect and recognize possible aircrafts: it

consists of an Electronic Support Measure (ESM), an Identification Friend or Foe (IFF)
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Identity Type Class Nature

1 F15 Fighter Friend

2 F16 Fighter Friend

3 ATF Fighter Friend

4 B2 Bomber Friend

5 Mig27 Fighter Foe

6 Mig25 Fighter Foe

7 Mig29 Fighter Foe

8 Mig31 Fighter Foe

9 Tu26 Bomber Foe

10 Boeing Commercial Neutral

TABLE VII

The various hypotheses of the problem.

and a Radar Sensors. We assume here that these three sensors have already been trained

on the possible aircrafts. Tables VIII, IX, X present the confusion matrices, i.e., the

conditional probabilities about the sensor observation for each possible aircraft.

The ESM sensor has been trained to discriminate between the 10 types. The IFF sensor

can only discriminate between the two classes: Friend of Foe, and the Radar sensor can

only distinguish between the three natures: Fighter, Bomber, or Commercial.

For the experiment, we varied three parameters. There was a possible misassociation:

when detecting an aircraft, if a misassociation occurs, another aircraft is detected. The

probability of a misassociation is 0.0 or 0.2 or 0.4. It was also possible that a sensor could

not take a measure, sending in such a case an empty information. An empty information

was modeled by a uniform distribution in the probability framework, and an vacuous belief

function in the TBM framework. The probability that a sensor could not send a message

ranges from 0 to 0.4 by 0.1 steps. The no-report problem could apply on each sensor

separately, each pair of sensors and the three sensors simultaneously.

We rerun all the simulations performed in [4] and found out that the number of identical

observations needed to reach a .95 a posteriori probability was always the same in both
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Claimed Actual aircraft

to be F15 F16 ATF B2 Mig27 Mig25 Mig29 Mig31 Tu26 Boeing

F15 0.526 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053

F16 0.053 0.526 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053

ATF 0.053 0.053 0.526 0.053 0.053 0.053 0.053 0.053 0.053 0.053

B2 0.053 0.053 0.053 0.526 0.053 0.053 0.053 0.053 0.053 0.053

Mig27 0.053 0.053 0.053 0.053 0.526 0.053 0.053 0.053 0.053 0.053

Mig25 0.053 0.053 0.053 0.053 0.053 0.526 0.053 0.053 0.053 0.053

Mig29 0.053 0.053 0.053 0.053 0.053 0.053 0.526 0.053 0.053 0.053

Mig31 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.526 0.053 0.053

Tu26 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.526 0.053

Boeing 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.526

TABLE VIII

Confusion matrix for the ESM sensor.

Claimed Actual aircraft

to be F15 F16 ATF B2 Mig27 Mig25 Mig29 Mig31 Tu26 Boeing

Friend 0.909 0.909 0.909 0.909 0.091 0.091 0.091 0.091 0.091 0.091

Not Friend 0.091 0.091 0.091 0.091 0.909 0.909 0.909 0.909 0.909 0.909

TABLE IX

Confusion matrix for the IFF sensor.

approaches. We also discovered that the difference between the pignistic probability and

the Bayesian probability observed when reaching the .95 threshold was positive in 70%

with the pignistic probability, being larger than the Bayesian probability and within 1.0E-

10 in 30% (what looks more like a rounding error). The difference was never negative.

The largest difference encountered was 0.004. The TBM conclusions were always a little

bolder than the one reached by the Bayesian approach.

These results indicate only that the claims made against the computational inefficiency

of the belief based model are inexact.

D. Origin of the difference

There are three essentials differences between our GBT solution and the solution pub-

lished in [32], [4], denoted hereafter the X solution.

• The interpretation of the confusion matrix data. In the X solution, the bba on H

satisfies: mH [x](hi) = l(hi) and mH [x](H) = 1 − l(hi) where hi ∈ H is the most likely

hypothesis under x, i.e., l(hi) > l(hj) ∀hj ∈ H, hj 6= hi. Its origin is not explained. Other
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Claimed Actual aircraft

to be F15 F16 ATF B2 Mig27 Mig25 Mig29 Mig31 Tu26 Boeing

Fighter 0.833 0.833 0.833 0.083 0.833 0.833 0.833 0.833 0.083 0.083

Bomber 0.083 0.083 0.083 0.833 0.083 0.083 0.083 0.083 0.833 0.083

Commer. 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.833

TABLE X

Confusion matrix for the Radar sensor.

ad hoc suggestions can be found in [5]. In the GBT solution, we use mH [x](hi) = 1− l(hi)

and mH [x](H) = l(hi). The axiomatic justification of this choice can be found in [26].

• The relation used in the X solution to compute mH [xk] after collecting k data (see ([32],

eq. (7.28) page 247), and [4], eq. (1) page 570, where uj must be read as u). The equation

corresponds to Dempster’s rule of combination if mH [x] is a simple support function, what

happens for some of the cases analyzed by the X solution. Otherwise, the rule is ad hoc

and does not correspond to Dempster’s rule of combination.

To show the inadequacy of the published equation consider the case with H = {a, b},

mH [x](a) = mH [x](b) = 1/4 and mH [x](a, b) = 2/4. Table XI presents the value of the

normalized bba after collecting n times the same data x, with n = 2 and 3. The published

equation gives for n = 3:

mH [x3](a) =
1/4 [ (1/4 + 2/4)2 + 2/4 + (2/4)2]

2 ∗ 1/4 [ (1/4 + 2/4)2 + 2/4 + (2/4)2] + (2/4)3
=

21

50

whereas the solution obtained by Dempster’s rule of combination is 19/46.

• The X solution focuses on comparing the a posteriori probabilities with the belief

belH [xn](h1) computed in the X model. Basing decision on bel is usually not advised.

Had the authors used plH [xn](h1), their conclusions would have been reversed. In the

GBT, we use the pignistic probabilities for the comparisons, so comparing comparable

objects. The justification for using BetP and the inadequacy of bel or pl for decision

making are presented in the overview [30].

These discrepancies lead to the published conclusions that we have shown to be incorrect.

Study [4] fails as an argument against the computationally inefficiency of the TBM.
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H mH [x] mH [x2] mH [x3]

{a} 1/4 5/14 19/46

{b} 1/4 5/14 19/46

{a, b} 2/4 4/14 8/46

TABLE XI

Computation of the normalized bba’s mH [xn] = ⊕i=1,...,nmH [x] using Dempster’s rule of

combination.

VII. Nested Sensors: Several Sensors per Level

In this example 6, we want to identify a vehicle. There are three types of vehicles: Buses

(h1 = B), Cars (h2 = C) and Trucks (h3 = T ), two models of Buses, denoted h11, h12, two

models of Cars, denoted h21, h22 and two models of Trucks, denoted h31, h32 (see Figure

1).

Suppose we have 4 sensors. The first, denoted S0, measures the variable X0 that can dis-

tinguish between Buses, Cars and Trucks. So its frame of discernment is H0 = {h1, h2, h3}.

The second, denoted S1, measures X1 and can distinguish between the two models of

Buses. The third, denoted S2, measures X2 and can distinguish between the two models

of Cars. The fourth, denoted S3, measures X3 and can distinguish between the two mod-

els of Trucks. The frames of discernment of S1, S2, S3 are H1, H2, H3, respectively, where

Hi = {hi1, hi2}. The granularity of each frame of discernment is important. So the frame

of discernment H0 has three singletons. Similarly the frame of discernment H1 has two

singletons, and the same holds for H2 and H3. The overall frame of discernment H has in

fact six elements, the hij, i = 1, 2, 3, j = 1, 2. H0 is a coarsening of H, whereas H1, H2

and H3 are disjoint subsets of H.

The sensors S0, S1, S2, S3 produce the bba’s mHi , i = 0, 1, 2, 3, on their respective frames.

As defined H1, H2 and H3 do not share a common refinement so conjunctive combination

rules cannot be applied directly. In order to get a bba on H, we build the ballooning

extension (see Section II-G) of the mHi ’s on H. For instance mH1(h11) will be extended

on H so that it will be allocated to the h11 ∪H2 ∪H3. By construction, these extensions

share the same frame of discernment and the combination rules can then be applied to
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Fig. 1. Example 6. The tree of hypotheses and the domain of the four sensors with the beliefs they

produce.

them.

When we state that S1 can distinguish between the types of buses, we mean also that

we have no idea whatsoever about how sensor S1 would react if it was facing a car or a

truck. This might occur if S1 had never been used to measure the X2 values on cars and

X3 values on trucks. Identical properties hold, up to permutation, for S2 and S3.

Suppose the four measurements are x0, x1, x2, x3. The four sets of likelihoods are pre-

sented in Tables XII and XIV.

Bus Car Truck

h1 h2 h3

l(hi|x0) 0.60 0.40 0.10

BelH0 [x0] 0.41 0.18 0.03

PlH0 [x0] 0.77 0.51 0.13

TABLE XII

Example 6. Likelihoods on H0 produced by the observations x0, , and the normalized

beliefs and plausibilities they induce on the singletons of H0.

We first compute the bba mH0 [x0] on H0 given x0 from the likelihoods produced by S0

(i.e., the line l(hi|x0) of Table XII). The resulting bba is presented in Table XIII. Its

computation is done by applying equation (11). So for example

mH0 [x0](h1) = .60× (1− .40)× (1− .1) = .32
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H0 ∅ h1 h2 h1, h2 h3 h1, h3 h2, h3 h1, h2, h3

mH0 [x0] 0.22 0.32 0.14 0.22 0.02 0.04 0.02 0.02

TABLE XIII

Example 6. The basic belief assignment on H0 given x0, computed from the likelihoods

of Table XII.

Bus i = 1 Car i = 2 Truck i = 3

h11 h12 h21 h22 h31 h32

l(hij|xi) 0.45 0.55 0.90 0.10 0.40 0.70

BelHi [xi] 0.27 0.40 0.89 0.01 0.15 0.51

PlHi [xi] 0.60 0.73 0.99 0.11 0.49 0.85

TABLE XIV

Example 6. Likelihoods on H1,H2,H3 produced by the observations x1, x2, x3, , and the

normalized beliefs and plausibilities they induce on the singletons.

For each sensor Si, i = 1, 2, 3, we compute mHi
⇑H [xi], the ballooning extension of

mHi [xi] on H.

We conjunctively combine these three bba and (the vacuous extension of) mH0 [x0]:

mH [x0, x1, x2, x3] = ( ∩©i=1,2,3 mHi
⇑H [xi]) ∩© mH0 [x0]

↑H .

This last bba is the final bba on H built from all collected data.

For practical applications, the computation can be tremendously speed up as, in prac-

tice, we hardly need all bbm, but only bel and pl (and maybe BetP ) on the elements of

H. Table XV presents these end results for these elements, i.e., the normalized Bel and

Pl functions.

The analysis of the data show that S0 supports that the target is a Bus (h1), but after

collecting all data, it appears that the h21 is the best supported target type (thus not a

Bus). These data enhance the danger of premature decision making. Suppose we apply an

iterated procedure by first observing S0’s data, and decide them to collect only S1’s data

as far as the first step leads us to consider the target was a Bus. It would save the cost
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of collecting S2 and S3’s data, but the end result would have been erroneous, as the h21

hypothesis would have been rejected, whereas it seems nevertheless the best hypothesis in

the present case. This illustrates the dilemma between cost reduction obtained by taking

intermediate decisions versus larger expenses resulting from delayed decisions with ‘better’

results.

In practical applications where cost reduction is an issue, a pre-posterior sensitivity

analysis has to be realized at each step in order to decide if collecting further data would

affect the results and are worth the effort. The method is essentially mimicking the strategy

followed by the Bayesians. We do not explore this methodology further here, but it can

‘easily’ be performed within the TBM.

h11 h12 h21 h22 h31 h32

BelH [x0, x1, x2, x3] 0.104 0.156 0.240 0.003 0.006 0.000

PlH [x0, x1, x2, x3] 0.397 0.485 0.530 0.059 0.059 0.103

BetPH [x0, x1, x2, x3] 0.231 0.300 0.364 0.028 0.025 0.052

TABLE XV

Example 6. Normalized beliefs and plausibilities and pignistic probabilitys induced on

the singletons by x0, x1, x2, x3.

VIII. Nested Sensors: One Sensor per Level

As in Section VII, in this example 7, we want to identify vehicles. They can be catego-

rized in three types: Buses (h1), Cars (h2) and Trucks (h3). Each type can be subdivided

according to the auto-maker: Buses can be VanHool (h11) or Mercedes (h12), Cars can be

VW (h21), Audi (h22) or Ford (h23), Trucks can only be GMC (h31). For each auto-maker,

there are two models of vehicles (hij1, hij2), like ‘Beetle’ and Passat for VW, A4 and A6

for Audi. . . Figure 2 presents the tree describing the relation between the hypotheses.

There are three sensors, denoted S1, S2, S3 which measure the values of the three vari-

ables X1, X2, X3, respectively. S1 is able to distinguish between the three types, S2 between

the 6 auto-makers, and S3 between the 12 models. It means that:

• the frame of discernment H = {hijk : i = 1 . . . 3, j = 1 . . . ni, k = 1, 2} where hijk is one
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Fig. 2. Example 7. The tree of hypotheses and the domain of the three sensors with the beliefs they

produce.

of the 12 models.

• there is a coarsening H ′ = {hij : i = 1, 2, 3, j = 1 . . . ni} of H where the elements of H ′

are the 6 auto-makers.

• there is a coarsening H ′′ = {hi : i = 1, 2, 3} of H ′ where the elements of H ′′ are the 3

types.

• S1 reports likelihoods on the types (H ′′), S2 on the maker (H ′) and S3 on the model (H).

It results from the fact that, for S1, we only know the probability over X1 given h1, h2 and

h3. We have no information about what would be these probabilities given more refined

hypothesis, like for instance h11. So S1 reports only likelihoods on H ′′. Similarly S2 reports

likelihoods on H ′, and S3 on H.

• we denoted by mH′
1 , mH′

2 and mH
3 the bba produced by the three sensors S1, S2, S3,

respectively.

The practical aim is to compute the normalized beliefs, plausibilities and pignistic prob-

abilities for the singletons of H (the models) considering all available likelihoods. The

computation could be done in a straightforward manner by vacuously extending mH′
2 and

mH′′
1 on H, and conjunctively combining the three bba’s so defined on H. But this is not

computationally efficient as it means we would have to work on the space 2H . A more

efficient algorithm can be described that needs only to produce the full bba on H ′. As

one can expect that the cardinality of the antepenultimate level in a tree is really smaller

that the one of the last level, the computational benefit can be serious.
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In the present example, suppose the three sensors have observed x1, x2, x3, respectively.

Let l denote the corresponding likelihoods. So we have three sets of likelihoods:

• l1(hi) for hi ∈ H ′′

• l2(hij) for hij ∈ H ′

• l3(hijk) for hijk ∈ H

Let mH
123 denotes the bba obtained on H after conjunctively combining the bba’s pro-

duced by the three sensors, and mH′
12 the one on H ′ produced by combining sensors S1 and

S2.

mH′

12 = mH′

2 ∩©mH′′↑H′

1

mH
123 = mH

3 ∩©mH′↑H
12

As we only need plH123, bel
H
123 on the singletons of H, very efficient algorithms can be

used. Some are detailed in [6].

A. Computation

Tables XVI and XVII present some details of the computation for the case presented in

Figure 2. The object is an VH1 (h111). We use likelihoods of .1 for the wrong hypothesis,

and .4 for the correct ones (see Table XVI). We do not detail the subsets of h2 and h3

as the values are all the same as those given in the columns h2 and h3. The terms belH
′′

1

and plH
′′

1 are computed from l1 by equations (12) and (13). The bba mH′′
1 corresponding

is detailed in Table XVII in the column mH′′↑H′

1 . In that last table, we also presented the

masses mH′
2 computed from l2, and the masses obtained by conjunctively combining mH′′

1

and mH′
2 into mH′

12 (the small masses are not presented). Table XVI presents then the

beliefs and plausibilities on the singletons of H ′ and H. Finally, the normalized results

on the singletons are displayed at the line BelH123 and PlH123. The hypothesis VH1 (h111)

is strongly supported, VH2 (H112) get a small support, and all other hypotheses can be

neglected. We do not present the pignistic probabilities as they are always between Bel

and Pl, and thus they would hardly bring any useful detail in the present context. Indeed

BetPH
123(h111) ≥ .65 whereas it will be less than .18 for all other hypotheses.

In conclusion, together the three sensors point strongly toward the fact the vehicle is

a VH1. The purpose of this numerical example is only to illustrate the computation
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procedure and as such the data do not deserve a more detailed analysis.

H ′′ h1 h2 h3 m(∅)

l1 .4 .1 .1

belH
′′

1 .324 .054 .054 .486

plH
′′

1 .4 .1 .1

H ′ h11 h12 h2j h3j

l2 .4 .1 .1 .1

belH
′

12 .139 .023 .006 .008 .786

plH
′

12 .16 .04 .01 .01

H h111 h112 h121 h122 h2jk h3jk

l3 .4 .1 .1 .1 .1 .1

belH123 .056 .009 .003 .003 .001 .001 .913

plH123 .064 .016 .004 .004 .001 .001

BelH123 .65 .11 .03 .03 .01 .01

PlH123 .73 .18 .05 .05 .01 .01

TABLE XVI

Example 7. Value of bel and pl for the singletons of H ′′, H ′ and H, and their normalized

values Bel and Pl on H. Rightmost column gives the masses given to ∅ used for

normalization.

B. Comparison with the likelihood solution

Reader may get the feeling that the solution provided by the TBM is not different from

the one derived from the likelihood approach; in which case why to to use the TBM when

the likelihood theory provided the same output in a simpler way. As shown in theorem

III.1, this holds when the a priori on H is vacuous. It does not resist once a priori beliefs

is introduced.

The next numerical example 8 presented in table XVIII uses a case with two sensors, one

reporting on a frame H1 with three elements h1, h2, , h3, the second on H2, a refinement of

H1 with five element h11, h12, h21, h22, h31 where hij ∈ hi for all i and j. The table presents
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h11 h12 h21 h22 h23 h31 mH′′↑H′

1 mH′
2 mH′

12

0 0 0 0 0 0 .486 .354 .786

1 0 0 0 0 0 .236 .139

0 1 0 0 0 0 .039 .023

1 1 0 0 0 0 .324 .026 .015

0 0 1 0 0 0 .039 .006

0 0 0 1 0 0 .039 .006

0 0 0 0 1 0 .039 .006

0 0 0 0 0 1 .054 .039 .008

0 0 1 1 1 0 .054

1 1 1 1 1 0 .036

1 1 0 0 0 1 .036

0 0 1 1 1 1 .006

1 1 1 1 1 1 .004

Total 1.0 .811 .989

TABLE XVII

Example 7. Subsets of H ′ with the bba’s mH′′

1 extended on H ′, mH′

2 and their conjunctive

combination. The subsets with mH′

12 small than .001 are omitted. The 6 leftmost

columns represent subsets of H ′ with the 1 indicating which elements belong to the

subset. At bottom line, sum of the masses displayed.

the likelihoods collected by sensor S1 and S2 that report on H1 and H2, respectively. The

joint likelihoods on H2 is obtained by multiplying the likelihoods in a pointwise manner.

The most likely solution is h11. The next line presents the pignistic probabilities BetP12

which is maximal on h21. The two methods disagree and the idea that the TBM reproduces

the likelihood solutions is incorrect.

IX. Sensors on Partially Overlapping Frames

In this example 9, we present a case of non compatible frames and a method to extend

the conjunctive combination rule in order to handle non compatible frames with some
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H1 h1 h2 h3

l1 .60 .75 .30

H2 h11 h12 h21 h22 h31

l2 .60 .50 .45 .10 .10

l12 .360 .300 .337 .075 .030

BetP12 .321 .251 .338 .063 .026

TABLE XVIII

Example 8. The likelihoods l1 on space H1 and l2 on H2 a refinement of H1. At bottom,

the combined likelihood l12 and the pignistic probabilities BetP12 on H2.

partial overlap. The solution is a ‘careful’ solution. This topic has been studied in [12],

[13] who discuss the present careful solution but also present other bolder solutions.

Suppose a sensor S1 that has been trained to recognize h1 objects and h2 objects and a

second sensor S2 that has been trained to recognize h2 objects and h3 objects (like h1 =

airplanes, h2 = helicopters and h3 = rockets). Sensor S1 never saw an h3 object, and we

know nothing on how S1 would react if it was observing an h3 object. Beliefs provided by

S1 are always on the frame of discernment {h1, h2}. The same holds for S2 with h1 and

h3 permuted.

A new object X is presented to the two sensors. Both sensors S1 and S2 express their

beliefs as mH′
1 and mH′′

2 , the first on the frame H ′ = {h1, h2}, the second on the frame

H ′′ = {h2, h3}. How to combine these two bba’s into a bba mH
12 on a common frame

H = {h1, h2, h3}?

The careful solution consists in applying the ballooning extension on the frame H to

each bba and then conjunctively combining the results.

In this example the first sensor supports that X is h1, whereas the second claims that

X is h2. If X had been h2, how comes the first sensor did not say so? So the second sensor

is probably facing an h1 and just states h2 because it does not know what an h1 is. So we

feel that the common sense solution is X = h1, what is confirmed by BetPH
12 , the pignistic

probability computed from mH
12, as its largest value .655 is given to h1. How probabilists
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would solve that problem without introducing artificial extra assumptions is not obvious.

H mH′
1 mH′′

2 mH′ ⇑H
1 mH′′ ⇑H

2 mH
12 plH12 BetPH

12

h1 .6 .42 .90 .655

h2 .1 .7 .07 .32 .190

h3 .2 .02 .30 .155

{h1, h2} .3 .7 .21 .98

{h1, h3} .6 .2 .24 .93

{h2, h3} .1 .1 .01 .58

{h1, h2, h3} .3 .1 .03 1

TABLE XIX

Example 9. Basic belief assignment mH′

1 and mH′′

2 on two partially overlapping frames,

with their ballooning extensions on the common frame H and their conjunctive

combination mH
12 on H with its related plausibility and pignistic probability functions.

X. Conclusions

The transferable belief model (TBM) is a model developed to represent quantified un-

certainty based on belief functions. We have explained how to use the TBM for problems

of target identification, these being considered as just a prototypical example of object

classification. The major tools are the General Bayesian Theorem that permits to pass

from the likelihoods to the posterior beliefs, and the pignistic transformation that permits

the construction of the probabilities needed for decision making.

Our model mimics the probabilistic approach except that every probability function is

replaced by a belief function. The latter being much more general than the former, we can

handle degrees of uncertainty hard to represent in probability theory. In particular we can

represent the state of total ignorance. It provides a solution to the problem of choosing

the adequate prior in the diagnosis process. With the TBM, a prior representing total

ignorance is available and can be used directly. Of course if justified priors are available,

they are included in the model. The TBM reduces itself into the classical probability

approach when all the ingredients needed for such an analysis are available.
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We present an example where the TBM conclusion is diametrically opposed to the

probability one, indicating thus that the choice of the model is a very serious issue.

Models based on belief functions have often been criticized for their computational

inefficiency [32], [4]. This study has been used as an argument against the use of the

TBM, so we reproduce it and find, to our own surprise, that the TBM approach is in fact

computationally more efficient that its probability analogous.

We show then how to use the TBM for multisensor target identification problems. We

consider cases of sensors collecting data sequentially on frames that are successively more

and more refined. Incidentally we show that the results produced by the TBM are different

from those derived from the likelihood approach.

We consider also a case where the likelihoods are known on strict and only partially

overlapping subsets of the overall frame.

Our approach have been extended to other real life issues like 1) when the communication

capacity of the sensors are limited and the sensor transmits just a few likelihoods, 2) when

the sensors express the likelihoods on frames which granularity changes in an unknown

way with each measure, or 3) when the sensor collected repeatedly the same type of

information, hence data cannot be considered as distinct sources of evidence.

For the problem of multisensor data fusion, the TBM seems to offer a serious alternative

to the probability model. To decide which model is the best is delicate as the term ‘best’

is hardly clearly defined. A nice property of the TBM is that it uses only the data really

available and does not require the introduction of probabilities which values are unknown,

or worse artificial, but necessary to apply the probability model.

Some very encouraging results have been obtained in real life contexts by [16], [17],

[18] for a problem of multisensor an tipersonal mine detection. Other applications related

to the use of the TBM for data fusion problems and detections have been developed in

[15], [33], [2] and a very fruitful TBM based method for discriminant analysis has been

introduced by Denœux and his group [8]. Ayoun and Smets [3] study the problem of the

number of targets under observation, a problem that precedes the identification phase.
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