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Abstract!: Based on the setting of exchangeable bets, this paper proposes a subjectivist
view of numerical possibility theory. It relies on the assumption that when an agent constructs a
probability measure by assigning prices to lotteries, this probability measure is actually induced by
a belief function representing the agent’s actual state of knowledge. We also assume that going
from an underlying belief function to an elicited probability measure is achieved by means of the
so-called pignistic transformation (mathematically equivalent to the Shapley value). We pose and
solve the problem of finding the least informative belief function having a given pignistic
probability. We prove that it is unique and consonant, thus induced by a possibility distribution.
This result exploits a simple informational index, in agreement with partial orderings between
belief functions, comparing their information content. The obtained possibility distribution is
subjective in the same sense as in the subjectivist school in probability theory. However, we claim
that it is the least biased representation of the agent’s state of knowledge compatible with the
observed betting behaviour.

1. Introduction
Quantitative possibility theory was proposed as an approach to the representation of

linguistic imprecision (Zadeh, 1978) and then as a theory of uncertainty of its own (Dubois and
Prade 1988, 2002; Dubois et al. 2000). In order to sustain this claim, operational semantics are
requested. In the subjectivist context, quantitative possibility theory competes with probability
theory in its subjectivist or Bayesian views and with the Transferable Belief Model (Smets and
Kennes 1994; Smets 1998), both of which also intend to represent degrees of belief. The term
subjectivist means that we consider probability, and other numerical set-functions proposed for
the representation of uncertainty, as tools for quantifying an agent’s beliefs in events without
regard to the possible random nature and repeatability of the events. An operational definition,
and the assessment methods that can be derived from it, provides a meaning to the value.7
encountered in statements like "my degree of belief is.7". Bayesians claim that any state of
incomplete knowledge of an agent can (and should) be modelled by a single probability
distribution on the appropriate referential, and that degrees of belief coincide with probabilities
that can be revealed by observing the betting behaviour of the agent (how much would the agent
pay to enter into a game). In such a betting experiment, the agent provides betting odds under an
exchangeable bet assumption. A similar setting exists for imprecise probabilities (Walley, 1991),



relaxing the assumption of exchangeable bets, and more recently for the Transferable Belief
Model as well (Smets, 1997), introducing several betting frames corresponding to various
partitions of the referential. In that sense, numerical values encountered in these three theories are
well-defined.

Quantitative possibility theory seems to be worth exploring as well from this standpoint.
Rejecting it because of the current lack of convincing semantics would be unfortunate, simply
because it entertains close formal relationships between other theories: possibility measures are
consonant Shafer plausibility measure, and thus encode special families of probability functions.
Since possibility theory is a special case of most existing non-additive uncertainty theories, be
they numerical or not, progress in one of these theories usually has impact in possibility theory.
The recent revival along the lines of Walley’s imprecise probabilities, by De Cooman and Aeyels
(1999), of a form of subjectivist possibility theory initiated by Giles (1982), and the development
of possibilistic networks based on incomplete statistical data (Borgelt and Kruse, 2003) also
suggest that it is fruitful to investigate various operational semantics for possibility theory.
Another major reason for studying possibility theory is that it is very simple, certainly the
simplest challenger for probability theory, especially in the form of fuzzy numbers, a
mathematical model extensively used by Chanas in his works (e.g. Chanas and Kuchta, 1998;
Chanas and Zielinski, 2001) as well as many other scholars in fuzzy optimization.

The aim of this paper is to propose subjectivist semantics for numerical possibility
theory based on exchangeable bets. Such subjectivist semantics differ from the upper and lower
probabilistic setting proposed by Giles (1982), Walley (1991) and followers, without
questioning its merit. This school interprets the maximal acceptable buying price of a lottery
ticket pertaining to the occurrence of an event as its lower probability, and the minimal sale price
of the same lottery ticket as its upper probability, both prices being distinct. Here, we assume
exchangeable bets, just like the Bayesian School, but we consider that betting rates only partially
reflect an agent's beliefs. In other words, betting rates produce a unique probability distribution
but they are induced by the agent’s beliefs without being in one-to-one correspondence with
them. For instance, an agent may assign equal probabilities to the facets of a die, either because
the fairness of the die has been experimentally validated, or, by symmetry, just because this agent
does not know if the die is biased or not. Clearly, beliefs entertained by the agent in both
situations are very distinct (Dubois and Prade, 1990). In this paper we assume that beliefs are
more naturally modelled by means of a belief function, thus leaving room for incomplete
knowledge (Dubois et al, 1996).

In previous works, Smets (1990) axiomatically argued that there exists a natural
transformation of a belief function into a (so-called pignistic) probability function such that if the
agent’s beliefs are modelled by the former, his betting rates are captured by the latter. He called
it the pignistic transformation. It was previously suggested by Dubois and Prade (1982) in the



setting of belief functions, and formally coincides with the Shapley value in game theory
(Shapley, 1953); see Dubois and Prade (2002). Denneberg and Grabisch (1999) have
generalized it to so-called interaction weights attached to all subsets (not only to singletons).
Moreover in the case of possibility distributions, corresponding to consonant plausibility
functions, the transformation is one-to-one. In general, however, distinct belief functions may
correspond to the same pignistic probability. The pignistic transformation has been proposed by
several authors in yet a different context. Kaufmann (1980) and Yager (1982) proposed a
scheme for the random simulation of a finite fuzzy set: picking a membership grade at random in
the unit interval, and them randomly picking a value of the variable in the corresponding cut of
the fuzzy set. In the continuous setting, Chanas and Nowakowski (1988) proposed a more
general probabilistic interpretation of fuzzy intervals based on a similar interpretation.

This paper formalizes and solves the following problem: given a subjective pignistic
probability distribution p provided by an agent under the form of betting rates, find a suitable
least committed belief function whose pignistic transform is p . Such a belief function is a
cautious representation of the agent’s belief, assuming minimal statistical knowledge. For
instance, if the agent supplies a uniform probability, it is assumed by default that the agent has
no information. In that case, an unbiased representation is the vacuous belief function, or
equivalently, the uniform possibility distribution, thus reversing Laplace’s principle of
indifference.

The main result of the paper is that the least committed belief function with prescribed
pignistic transform is unique and consonant, that is, it can be modelled as a possibility
distribution. This result was already announced by the authors (Dubois et al. 2001), but its proof
is still unpublished. Since the pignistic transformation is one-to-one for possibility distributions,
this result also provides the converse transform with a natural interpretation, first suggested with
a different rationale by Dubois and Prade (1983). This result also sheds light on the probabilistic
interpretation of fuzzy numbers suggested by Chanas and colleagues in his work.

2. Belief functions
Consider beliefs held by an agent on what is the actual value of a variable ranging on a

set W, called the frame of discernment. It is assumed that such beliefs can be represented by a
belief function. A belief function can be mathematically defined from a (generally finite) random
set that has a very specific interpretation. A so-called basic belief mass m(A) is assigned to each
subset A of W, such that m(A) ≥ 0, "A Õ W; moreover:

Â AÕ W m(A) = 1.



The degree m(A) is understood as the weight given to the fact that all the agent knows is
that the value of the variable of interest lies somewhere in set A, and nothing else. In other words,
the probability allocation m(A) is potentially shared between elements of A , but remains
suspended for lack of knowledge. A set E such that m(E) > 0 is called a focal set. In the absence
of conflicting information it is generally assumed that m(∅) = 0. This is what is assumed in the
following. A belief function Bel as well as a plausibility function Pl, attached to each event (or
each proposition of interest) can be bijectively associated with the basic mass function m (Shafer,
1976). They are defined by

 Bel(A) = ∑Ø ≠  E Õ A m(E)";             Pl(A) = 1 – Bel(Ac) = ∑E:E«A ≠ Ø m(E),

where Ac is the complement of A. The belief function evaluates to what extent events are logically
implied by the available evidence. The plausibility function evaluates to what extent events are
consistent with the available evidence. A companion set-function, called commonality, and
denoted by Q, is defined by reversing the direction of inclusion in the belief function expression:

Q(A) = ∑ A Õ E m(E).

Q(A) is the share of belief totally unassigned and free to potentially support any
proposition in the context where the agent accepts that A holds true1. It can been argued that
Q(A) is a measure of guaranteed plausibility of A because it clearly provides a lower bound of
the plausibility of each element in A.

The function Pl restricted to singletons, induced by a mass function m  is called its
contour function (Shafer, 1976), and is denoted pm, defined by pm(w) =  Pl({w}). When the
focal sets are nested, the plausibility function is called a possibility measure (Zadeh, 1978), and
can be characterized, just like probability, by its contour function, then called a possibility
distribution p. In such a situation, the primitive object can be the possibility distribution, and
each of the functions m, Pl, Bel, can be reconstructed from it, noticing that (Dubois and Prade,
1982)

Pl(A) = max w Œ A p(w) (1)

                                                

1 When conditioning a mass function on event A, the mass m(E) of each focal set E is allocated to the subset

A«E. The overall (possibly subnormal) mass finally allocated to a subset C of A is denoted m(C | A) . Then

Q(A) coincides with the mass m(A | A) assigned to set A before normalizing. So, up to normalization, Q(A) is a

measure of unassigned belief in the context where the agent accepts that A holds true.



The set function Pl is then often denoted P. If W = {w1, º, wn}, and letting pi = p(wi),
such that 1 = p1  ≥ p2  ≥ º ≥ pn ≥  pn+1 = 0, then the mass function generating p is denoted mp

such that

mp(A) = pi - pi+1 if A = {w1, º, wi} (2)

                                                  (= 0, otherwise).

If the mass function m is not consonant the contour function is not enough to recover it
as in (2) since m then needs up to 2

card(W) 
terms to be determined from pm where card stands for

cardinality.

3. The pignistic transformation
It is assumed that the actual beliefs of the agent can be faithfully modelled by a mass

function on W. A probability measure induced by a mass function can be built by defining a
uniform probability on each set with positive mass, and performing the convex mixture of these
probabilities according to the mass function. This transformation, which, as pointed out earlier,
recurrently appears in various contexts since the fifties, was called the pignistic transformation
by Smets (1990). Let m be a mass function from 2Ω to [0, 1]. The pignistic transform of m is a
probability distribution BetP = Pig(m) such that :

BetP(w) = ∑A: w ŒA m(A)/ card(A) (3)

where card(A) is the cardinality of A. It could be viewed as an extension of Laplace indifference
principle, according to which equally possible outcomes have equal probability. It looks like a
weighted form thereof, since, by symmetry, each focal set is then interpreted as a uniform
probability. According to (Smets, 1991), the agent’s beliefs cannot be directly assessed. All that
can be known are the values of the "pignistic" probabilities the agent would use to bet on the
frame W. Only the probability distribution BetP, not the belief function accounting for the
agent’s beliefs, is obtained by eliciting an agent’s betting rates on the frame W (Smets, 2002).

The pignistic probability depends on the chosen betting frame. Changing W into one of
its refinements, thus modifying the granularity, a different probability is obtained. It has been
proved that for any event A, the minimal (resp. maximal) value of BetP(A) = ∑w ŒA BetP(w) over
all possible changes of granularity yields back Bel(A) (resp. Pl(A)) (Wilson, 1993). So, the
interval [Bel(A), Pl(A)] contains all possible values of the pignistic probability of A, across all
betting frames. This is related to the fact that all probability functions P dominating the belief
function Bel induced by m (that is P ≥ Bel) can be generated by changing each focal set E into a
probability distribution p(⋅E) with support E. Namely:



p(w) = ∑E p(wE) ⋅ m(E).

In Bayesian terms, this is an application of the total probability theorem where p(wE) is
the (subjective) probability of w when all that is known is the piece of evidence E, and m(E) is
the probability of knowing this piece of evidence only. So, in terms of upper and lower
probabilities, BetP is the centre of gravity of the set of probabilities dominating the belief
function (Dubois et al., 1993). In terms of game theory, it corresponds to the Shapley value of a
game.

In the special case of consonant belief functions, the pignistic transformation can be
expressed in terms of the possibility distribution p  such that 1 = p1  ≥ p2  ≥ º ≥ pn ≥ pn+1 = 0
as follows, letting pi = BetP(wi) :

pi = ∑j = i, º,n (pj - pj+1 )/ j "i = 1, º, n

It can be checked that p1  ≥  p2  ≥ º ≥  pn  and that the transformation is bijective between
probabilities and possibilities. Its converse Pig-1 was independently suggested by Dubois and
Prade (1983). It reconstructs the possibility distribution as follows

pi = ∑j = 1, º,n min(pi, pj), "i = 1 º, n (4)

and we write p = Pig-1 (BetP). Note that another probability-possibility transformation exists, of
the form (Dubois and Prade, 1982!; Delgado and Moral 1987)!:

si = ∑j = i, ºn pj, "i = 1, º, n (5)

The latter transformation of a probability distribution p yields the most specific (=
restrictive) possibility distribution such that P(A) ≥  P(A). When p  stems from validated
statistical data, one may argue that this transformation yields the most legitimate possibilistic
representation of P (Dubois et al, 2001) since p represents a complete model of the studied
random phenomenon and (5) yields the most specific possibility distribution respecting the
ordering of elements of W induced by p, in the sense that ∑j = 1, º , n sj is minimal (minimal
cardinality of the fuzzy set with membership grades sj). However, in the subjective probability
case, it is questionable whether the expert possesses a complete model, even if the betting
framework enforces it. If the parameter under concern is random, the agent may have only partial
knowledge about it. If the parameter is not random (just ill-known), a complete model should
come down to knowing its precise value. Hence the optimal (maximally specific) transformation
(5) does not convincingly apply to subjective probabilities.



4. The most cautious belief function inducing a subjective probability
The knowledge of the values of the probability p allocated to the elements of W by the

agent is not sufficient to reconstruct a unique underlying belief function whose pignistic
transform is p. Many belief functions induce the same pignistic probability distribution. As
already said, for instance, uniform betting rates on W either correspond to complete ignorance on
the values of the variable, or to the knowledge that the variable is random and uniformly
distributed. So, all that is known about the mass function that represents the agent's beliefs is that
it belongs to the ones that induce the available subjective probability. Under this scheme, we do
not question the exchangeability of bets, as done by Walley (1991), Giles (1982) and others.
What we question is the assumption of a one-to-one correspondence between the betting rates
produced by the agent, and the actual beliefs entertained by this agent. Betting rates do not tell if
the uncertainty of the agent results from the perceived randomness of the phenomenon under
study or from a simple lack of information about it.

 Since several mass functions may lead to the same betting rates, one has to select the

least committed among these mass functions, as the one that, by default, reflects the actual

state of belief of the agent. The belief functions whose pignistic transform is p  are

called isopignistic belief functions and form the set IP(p). A cautious approach among

isopignistic belief functions is to obey a "least commitment principle". It states that one

should never presuppose more beliefs than justified. Then, one should select the least

committed element, that is, the least informed one, in the family of isopignistic belief functions

corresponding to the pignistic probability function prescribed by the obtained betting rates.

4.1 Informational comparison of belief functions

There are several methods to compare belief functions in terms of their informational
contents. Some informational indices extend the probabilistic notion of entropy. Other ones
generalize the notion of cardinality of a set representing incomplete knowledge, yet other ones
combine both (see the recent survey by Klir and Smith (2001), for instance). Besides, three
partial orderings comparing the information content of two belief functions in terms of
specificity have been proposed by Yager (1985) and Dubois and Prade (1986).

A first natural specificity ordering of belief functions compares intervals limited by belief
and plausibility. Namely the interval [Bel(A), Pl(A)] is all the wider as the information
concerning A is scarce. So, a partial information order on the set of belief functions over W can
be defined as follows!: Bel1 is at least as precise as Bel2 if and only if [Bel1(A), Pl1(A)] Õ

[Bel2(A), Pl2(A)], "A Õ W; it corresponds to an inclusion relation between sets of probabilities
dominating Bel1 and Bel2. In fact, this ordering can be defined equivalently and more simply as
Pl1(A) £ Pl2(A), "A Õ W due to the duality between  Bel and Pl.



Interestingly, this partial ordering does not imply any relationship between the
commonality functions Q1 and Q2 (see Dubois and Prade, 1986 and the counterexample below).
Another partial informational ordering between belief functions has thus been defined by
comparing the commonality functions!: Bel1 is at least as Q-informed as Bel2 if and only if
Q1(A) ≤ Q2(A), "A Õ  W.  This direction of inequality is natural since it ensures that for
singletons, Pl1({w}) ≤ Pl2({w}), due the identity of Pl and Q functions on singletons.

A third partial informational ordering can be described directly from the mass functions
m1 and m2. The idea is that Bel1 is at least as informed as Bel2 whenever it is possible to turn m2

into m1 by consistently reassigning each weight m2(E) to subsets of E that are focal sets of m1

(possibly splitting the masses among them). It is called the specialization ordering. Namely, m1

is more specialized than m2 if and only if there is a stochastic matrix W whose rows correspond
to focal sets of m1 and columns to focal sets of m2, such that m1 = W ⋅ m2. Here, mass functions
are encoded as vectors and entry wij reflects the proportion of the mass m2(Ej) allocated to focal
set Fi of m1, with the condition that Fi must be a subset of Ej for wij to be positive.

This third ordering is more demanding than the other ones and implies them. But the Q-
informativeness and the precision orderings are not comparable.
Example 1. Suppose W = { w1, w2, w3}, E = {w1, w2},  F = {w1, w3}, a Œ (0.5, 1). 

Consider the mass function m(E) = a, m(F) = 1 - a, and the possibility measure p such that
p(w1) = 1, p(w2) = a, p(w3) = 1-a. It is clear that Pl({w}) = p(w), "w ; the mass function
associated to p by (2) is mp({w1}) = 1- a, mp(E) = 2a - 1, mp(W) = 1 - a. It is obvious that
none of the two mass functions m and mp is a specialization of the other since mp has a focal
element contained in none of E or F, and a focal element containing none of them. Now it is
obvious that m is at the same time less precise and more Q-informed than mp. Indeed, Pl(A) ≥
P(A), "A, and Pl({w2, w3}) = 1 > P({w2, w3}) = a. However Qp(A) ≥ Q(A), "A, and Qp({w2,
w3}) = 1 - a > Q({w2, w3}) =  0.

In view of this situation, the interpretation of the Q-informativeness is somewhat
problematic. Nevertheless, all three orderings coincide for possibility measures and come down
to the possibilistic ordering of specificity on singletons (Yager, 1983; Dubois and Prade, 1988)!:
p1 is at least as informed as p2 if and only if p1 ≤ p2).

While the merit of such partial informational orderings is to lay bare the meaning of the
comparison, they often lead to non-comparability. Indeed, one may try to define the least
debatable representation of an agent’s belief as a minimally informative isopignistic mass
function according to one of these orderings. Unfortunately, unicity may easily fail for these
least informative mass functions, as the corresponding optimization problem comes down to
vector-maximization.



4.2 Using expected cardinality

An easier problem is to maximize an information index. A natural measure of non-
commitment of a belief function is the average of the cardinalities of its focal elements, weighted
by the mass function m!:

I(m) = ∑ A Õ W   m(A)⋅card(A)

It is the simplest imprecision measure. It is easy to see that I(m) is the cardinality of the
fuzzy set whose membership function coincides with the contour function (Dubois and Jaulent,
1987), namely,  I(m) = ∑ w Œ W   pm(w).

It is clear that this index is compatible with the specialization ordering (hence with the
two other informational orderings), namely that if m1 is more specialized than m2 then I(m1) ≤
I(m2).

We define the least biased belief representation, for an agent supplying a pignistic
probability p, as the belief function whose mass m* maximizes I(m) among isopignistic belief
functions whose pignistic transform according to eqn.(4) is p . The following result is now
established.

Theorem 1: The unique mass function which maximizes I(m) under the constraint Pig(m) = p
exists and is consonant. It is the possibility distribution p  defined by the converse of the
pignistic transformation applied to p (restricted to possibility measures, as defined by (4)).

The proof of this result is based on the following lemma!:

Lemma!1: For any belief function with mass function m , I(Pig-1(Pig(m)) ≥  I(m), and
I(Pig-1(Pig(m)) = I(m) only if m is consonant.

Proof!: Consider p = Pig(m), such that p1  ≥  p2  ≥ º ≥  pn and p  = Pig-1(p) such that 1 =
p1  ≥ p2  ≥ º ≥ pn ≥ pn+1 = 0. It can be checked that

I(Pig-1 (p)) = ∑i = 1, ºn pi

         = ∑i = 1, ºn∑j = 1, ºn min(pi,  pj)
      = ∑i = 1, ºn(2i - 1) ⋅ pi

(I(Pig-1 (p)) is the sum of entries in the n¥n matrix with coefficients min(pi, pj). There is only
one entry containing p1, 3 entries containing p2, etc.).
Now, since pi =∑E: wi Œ E m(E)/ card(E), it remains to be shown that

 ∑i = 1, ºn(2i - 1) ⋅ ∑E: wi Œ E m(E)/ card(E) ≥ ∑i = 1, ºn∑ E: wi Œ  E m(E).

Subtracting the right-hand side from the left-hand side, and factoring m(E), it is enough to prove
that the multiplicative coefficient of m(E) is positive, that is, denoting by mE the indicator function
of E:



c(E) = ∑i = 1, ºn (2i - 1) ⋅ mE (wi )/ card(E) - ∑i = 1, ºn mE (wi ) ≥ 0.
Let E  be a subset with k  elements of the form {w i1, º, wik}  such that p({wi1}) ≥ 
p({wi2})  ≥ º ≥  p({wik}).  Then!:

c(E) = [(2i1-1)/k + (2i2-1)/k + º+ (2ik-1)/k] - k
It is minimal for ij = j for all j = 1, ºk. Hence
c(E) ≥ [(2-1)/k + (4 -1)/k +  º+ (2k-1)/k] - k = (2/k) ⋅ (∑j = 1, ºk j) - k-1 = 0.

It is clear that if c(E) > 0 for any E, then I(Pig-1(Pig(m)) > I(m) as soon as m(E) >0. But since
ij ≥ j by construction, the only way of having c(E) > 0 for some set E is to have ij > j for some i,
that is E is not of the form {w1, º, wk} for some k. But m is not consonant as soon as m(E) > 0
for such a set E (as Pig(m) = p and the only consonant m in IP(p) is p). Hence as soon as m is
not consonant in IP(p),  I(Pig-1(p) )> I(m). �

Proof of theorem!1: Since I(Pig-1 (Pig(m)) ≥ I(m) from the lemma, and Pig is a bijection on
possibility measures, the consonant belief function associated to Pig-1(Pig(m)) is not more
cardinality-specific than the belief function induced by m.  Conversely fixing the probability
distribution p, and choosing any non-consonant m in IP(p),  I(Pig-1 (p)) > I(m). It follows that
the consonant  mass function associated to Pig-1 (p) is the unique maximum of I(m). �

3.2 Comparing commonalities

Smets (2000) suggested that the least specific isopignistic belief function according to
the commonality ordering is also Pig-1(Pig(m)). This ordering is less intuitive than the
specialization ordering and the inclusion of Bel-Pl intervals. However, there is indeed a unique
minimally Q-informative belief function in IP(p), and it is precisely the one found by
maximizing I(m). In order to show it, we first prove that, for ensuring comparability in the sense
of the Q-informativeness ordering between a consonant belief function and a belief function, it is
enough to rely on singletons!:

Lemma 2!: Consider a belief function with mass function m and a possibility distribution p with
respective commonality functions Q and Qp.. Then Qp(A) ≥ Q(A), "A Õ W  if and only if p(w)

≥ Pl({w}), "w Œ W.

Proof!: It is obviously enough to prove the “!if!” part since Q({w}) = Pl({w}). Besides, note
that for possibility measures Qp(A) = minw ŒA p(w). Now assume p(w) ≥  Pl({w}), "w Œ  W.
Then!: Qp(A) = minw ŒA p(w) = p(w*) ≥  Pl({w*}) ≥ Q(A) since function Q  is antimonotonic
with respect to inclusion. �

Theorem 2: The unique consonant mass function in IP(p) (induced by the possibility
distribution defined by (4)), is minimally Q-informative.

As previously we need one more lemma.



Lemma 3 : Consider a belief function with mass function m, p = Pig(m), and p  = Pig-1 (p).
Then p ≥ pm i.e. p is not more specific than the contour function of m.

Proof : Consider p = Pig(m), such that p1  ≥  p2  ≥ º ≥  pn and p  = Pig-1(p) such that 1 =
p1  ≥ p2  ≥ º ≥ pn ≥ pn+1 = 0. Now pk  = pk(w) is defined in terms of m as
pk = k⋅pk + ∑j = k+1, ºn pj

      =  k⋅∑E": wk Œ E m(E)/card(E) + ∑j = k+1,ºn ∑E": wj Œ E m(E)/card(E)

We must show that this expression is not less than ∑E": wk Œ E m(E) = Pl({wk}) = pm(wk). To this
end we proceed focal set by focal set, with fixed cardinality. Denote by c(E) the multiplicative
coefficient of m(E) in the expression of pk, namely,!denoting by mE the indicator function of E:
c(E) =  k⋅ mE (wk) /card(E) + ∑j = k+1,ºn ⋅ mE (wj)/card(E)
Let us show that c(E) ≥ 1 whenever wk Œ E (otherwise m(E) does not contribute to pm(w)).
First, assume card(E) = n. It means that E = W. The coefficient c(W) of m(W) is (k/n + (n -
k)/n) = 1 since all terms in the second summand of the expression of c(E) are present.
Now, assume card(E) = i > k. There are at least i -  k terms in the second summand of the
expression of c(E). Then c(E) ≥ (k/i + (i - k)/i) = 1.
Assume card(E) = i ≤ k. Then the second summand of the expression of c(E) may be zero since
E may fail to contain any wj for j > k. It is no problem since then c(E) ≥ k/i ≥ 1 by assumption.�

Proof of theorem 2!: Based on lemma 3, we know that p ≥ pm  for p = Pig-1(Pig(m)). Due to
lemma 3 it implies that p is not more Q-informative that m. fixing p = Pig(m), this property
holds for all belief functions in IP(p), and p Œ IP(p),  by construction. Hence p  is not more
Q-informative than any belief function in IP(p). �

Note that Lemma 3 is stronger than Lemma 1. It clearly implies it since Lemma 1
compares the sum ∑i = 1, ºn pi to the sum ∑i = 1, ºn pm(wi). However the proof of Lemma 1 is
more direct. Moreover Lemma 2 shows that when comparing mass functions in terms of
commonality, one of them being consonant, commonality functions play no particular role. Only
contour functions matter. So, the optimality of the possibility measure in IP(p) is really in the
sense of the pointwise comparison, in the fuzzy set inclusion sense, of the plausibility functions
on singletons, i.e. the contour functions. In particular, Lemma 3 implies that the consonant mass
function Pig-1 (p) is certainly minimally precise in the sense of the comparison of Bel-Pl
intervals, in IP(p).

Let us now turn to the issue of unicity of the least informative mass function in the sense
of the pointwise comparison of contour functions. The unicity problem can be stated as follows!:
given a possibility distribution p on W, whose pignistic transform is a probability distribution p=
Pig(p), is there another (non-consonant) mass function m ≠ mp such that p= Pig(m) and p=

pm ? 

Theorem 3 : The one and only mass function m, such that p = Pig(m) and p  £  pm,

where p = Pig-1 (p), is the one underlying the possibility distribution p.



Proof!: Fix the probability distribution p such that p1  ≥  p2  ≥ º ≥  pn and p  = Pig-1(p) such
that 1 = p1  ≥ p2  ≥ º ≥ pn ≥ pn+1 = 0. From Lemma 3, the condition p = pm  must be enforced.
The mass function m must then satisfy the following constraints!:
∑E": wk Œ E m(E)/card(E) = pk for k = 1, º, n";

∑E": wk Œ E m(E) = pk for k = 1, º, n, where pk = k⋅pk + ∑j = k+1, ºn  pj ;

∑E" m(E) = 1.
Note that since p1 = 1, m(E)= 0 as soon as w1 œ E. Now, for k = n, it holds that!pn = n⋅pn so
that!: ∑E": wn Œ E m(E) = n(∑E": wn Œ E m(E)/card(E)). It reads

∑E": wn Œ E m(E)(1 – n/card(E))  = 0, hence m(E) = 0 whenever wn Œ E, Card(E) < n.

So, all such masses m(E) in the pair of equations number k = n are zero except m(W)= n⋅pn.
Suppose all masses m(E) = 0 whenever wj Œ E, Card(E) <  j in the pairs of equations j = k + 1,
º n, except m(W)= n⋅pn, and m({w1, º, wj}) = j(pj – pj+ 1). Consider the pair of equations
number k. It comes!:
∑E": wk Œ E m(E) = k⋅∑E": wk Œ E m(E)/card(E)  + ∑j = k+1, ºn  ∑E": wj Œ E m(E)/card(E)

Subtracting the right-hand side from the left-hand side, consider the coefficients of the remaining
focal sets!: If wj Œ E and j  >  k,  then E = {w1, º, wj}, the coefficient of m(E) is 1 – (k/j + (j -
k)/j) = 0. If E = {w1, º, wk},"the coefficient is 1 – k/k = 0. If E  Ã {w1, º, wk},"the coefficient
is 1 – k/ card(E) ≠ 0. Hence m(E) =0. Hence the mass m({w1, º, wk})  can be completely
determined as!the unique solution to the equation!:
∑j = k, ºn   m({w1, º, wj}) = k⋅pk + ∑j = k+1, ºn  pj

since all m({w1, º, wj}), for j > k are determined in the previous steps. Overall only subsets of
the form E = {w1, º, wj}, k = 1, º, n"may receive positive mass if the mass function has
pignistic transform p and contour function  p = Pig-1(p). Hence, m is consonant, and because
there is only one consonant mass function in IP(p), it precisely yields the one underlying
Pig-1(p). �

Putting together Theorems 2 and 3, the minimally Q-informative mass function with
pignistic probability p exists, is unique and is consonant. It is actually the mass function having
the least specific (i.e. pointwisely maximal in W) contour function, hence also least precise in the
sense of the comparison of Bel-Pl intervals restricted to singletons. It suggests that most of the
time, a unique least precise non-consonant mass function in IP(p) in the sense of the
comparison of Bel-Pl intervals for all events will not exist. Indeed if m Œ IP(p) is a least precise
mass function different from the one inducing p = Pig-1 (p), then p(w) > pm(w), for some w Œ
W, due to the unicity result in Theorem 3. Since m is among minimally precise ones, it must

also hold that Pl(A) > P(A) for some non-singleton event A. So m and mp are not comparable.

That this non-unicity situation does occur can be checked from Example 1.

Example 1 (continued). Assume a = 1/2.  So, m({w1, w2}) = m({w1, w3}) = 1/2. The pignistic
probability p induced by m is clearly!: p(w1) = 1/2, p(w2) = 1/4, p(w3) = 1/4"; p = Pig-1 (p) is
 p(w1) = 1, p(w2) = 3/4, p(w3) = 3/4. The contour function of m is  pm(w1) = 1, pm(w2) = 1/2,
pm(w3) = 1/2. It is more specific than Pig-1 (p) as expected. Note that Pl({w1, w3}) = 1, while



P({w1, w3}) = 3/4.  Hence  m and Pig-1 (p) are not comparable in the sense of the precision
ordering!; they are both minimally precise in IP(p).

5. Conclusion
The main result of this paper is that, on finite sets, the least committed mass function

among the ones which share the same pignistic transform, is unique and consonant, that is, the
corresponding plausibility function is a possibility function. This possibility function is the
unique one in the set of plausibility functions having this prescribed pignistic probability,
because the pignistic transformation is a bijection between possibilities and probabilities. So this
possibility function corresponds to the least committed mass function whose transform is equal
to the subjective probability supplied by an agent. It suggests a new justification to a probability-
possibility transform previously suggested by two of the authors.

This result provides an operational basis for defining subjective possibility degrees,
hence the membership function of (discrete) fuzzy numbers. It tentatively addresses objections
raised by Bayesian subjectivists against the use of fuzzy numbers and numerical possibility
theory in decision-making and uncertainty modelling tasks. Interestingly, our approach refutes
neither the Bayesian operational setting (unlike Walley(1999) and De Cooman and Aeyels
(1999)) nor the use of standard expected utility for decisions (since the pignistic probability can
be used for making decisions). It only questions the interpretation of betting rates as full-fledged
degrees of belief. Bayesians may then claim that our approach makes no contribution, since the
underlying possibility distribution is not used for selecting decisions. However the proposed
subjective possibility approach, just like the Transferable Belief Model, does differ from the
Bayesian approach in a dynamic environment.  In our non-classical setting, when an event is
known to have occurred, the revision of information takes place by modifying the possibility
distribution underlying the pignistic probability, not this probability directly. It means that the
new probability distribution obtained from the agent is no longer assumed to coincide with the
result of conditioning the original pignistic probability, but that the agent would bet again based
on a different frame supporting the revised knowledge  (see e.g. (Dubois et al. 1996), (Smets
2002), on this matter).

In order to fully bridge the gap between the above results and the probabilistic
interpretations of fuzzy numbers after Chanas and Nowakowski (1988), the next step is to
extend the result of this paper to the infinite case, using continuous belief functions whose focal
sets are closed intervals. This is a topic for further research.
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