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Abstract

The paper defines belief functions on
continuous frames of discernment, where
masses generalize into densities. Explicit
and manageable solutions can be formu-
lated when densities are only assigned to
the intervals of R. When our domain
knowledge is represented by the pignis-
tic probability density, then we build
the corresponding least committed belief
function. The theory is applied to model
based classification and the results are
compared to the classical Bayesian ap-
proach.

Keywords: Belief function theory,
evidential theory, transferrable belief
model, target classification.

1 Introduction

The belief function theory (evidential theory) has
been primarily developed for discrete frames of
discernment (frames). Following [9],[15], this pa-
per defines belief functions on continuous frames,
where belief masses generalize into belief densities.
Explicit and manageable solutions can be formu-
lated when densities are assigned only to the in-
tervals on the real axis R, although the theory is
conceptually valid for R

n.

When our domain knowledge is partial and repre-
sented only by a potential betting behavior on the
observation (in the continuous domain), we model
it by a pignistic probability density. In this case
we can build the least committed belief function
among those which correspond to the given one.
Then we can apply the usual tools of the belief
function theory, such as the Generalised Bayesian
theorem, combination rules (e.g. Dempster’s rule
of combination), etc. The theory is applied to

model based target classification and the results
are compared to those achieved by the classical
Bayesian approach.

We accept that beliefs are quantified by belief
functions as described in the transferable belief
model (TBM) [14]. Classical material about be-
lief functions and the TBM can be found in Shafer
[8] and Smets [11]. In order to simplify our pre-
sentation we will first consider the case where the
frame is the interval [0, 1] ⊂ R, and there is only
a final number of focal sets. Later this will be re-
laxed to the continuous domain (with an infinite
number of focal sets) and the entire real axis R.

2 Belief functions on R

This section presents the extracts from a more
thorough study presented in [13]. Consider a
nonempty interval on the real axis R, denoted as
[α, β] ⊆ R, α < β. Let I[α,β] be a set of closed
intervals in [α, β]. Formally,

I[α,β] = {[x, y] : x ≥ α, x ≤ y ≤ β}.

We assume that masses are only alloccated to
closed intervals. It implies that for a collection
of pairwise disjoint intervals in I[α,β], the belief
functions satisfy a special form of additivity. For-
mally, ∀A1, A2, . . . ,∈ I[α,β], such that

Ai1 ∩ Ai2 = ∅, i1, i2 ∈ {1, 2, . . . }, i1 	= i2

we have:

belI[α,β](
⋃

i=1,2,...

Ai) =
∑

i=1,2,...

belI[α,β](Ai)

2.1 Finite number of focal sets

Let A be a subset of I[0,1] consisting of a finite
number of non-empty intervals on [0, 1]:

A = {Ai : Ai ∈ I[0,1]; i = 1 . . . , n} ∪ {∅}



For convenience, use notation A0 = ∅. Function
mA : A → [0, 1] is a basic belief assignment (bba)
with the property

∑n
i=0 mA(Ai) = 1. The Ai’s

with mA(Ai) > 0 are the focal sets of this bba.

There is a very convenient graphical representa-
tion of these intervals: every A = [a, b], such that
a, b ∈ [0, 1] and a ≤ b, corresponds to a single
point in the triangle of Figure 1, and vice versa.
This triangle is defined as:

T[0,1] = {(x, y) : x, y ∈ [0, 1], x ≤ y}.

To each point in the triangle T[0,1] that corre-
sponds to a focal set of mA, we assign a mass equal
to the basic belief mass. Hence mA([a, b]) is as-
signed to the point (a, b) ∈ T[0,1] for every A ∈ A.
When mA(∅) = 0, the result of this assignment
is a (discrete) probability distribution function on
T[0,1], i.e. P{(x, y) = (a, b)} = mA([a, b]). The
convention for axes x and y is adopted as shown
in Figure 1. In order to further illustrate this con-
cept, consider the following example.
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Figure 1: Point K = (a, b) inside the triangle
T[0,1], uniquely defines the interval [a, b] ⊆ [0, 1]

Example 1. Table 1 defines a bba with six fo-
cal sets, depicted in Figure 2 inside the triangle
T[0,1]. Let A = [a, b] be an interval in [0, 1], with
a = 0.2 and b = 0.7. Let us now work out the
belief, the commonality and the plausibility func-
tions (belA, qA and plA, respectively) of interval
A. The sign × in last three columns of Table 1 in-
dicate the masses to be included in belA(A), qA(A)
and plA(A).

belA(A), A = [a, b], is the sum of all the masses
given to the subsets of A, thus to the non-empty
intervals Ai = [ai, bi], where [ai, bi] ⊆ [a, b], i.e.
ai ≥ a and bi ≤ b. Graphically, every mass in-
cluded in belA(A) must lie in the shaded triangle
of Figure 3.(a) – this triangle contains all (and

Table 1: bba defined on A with six focal sets, and
the corresponding belief, commonality and plausi-
bility of A = [0.2, 0.7]

Ai = [ai, bi]

i mA ai bi belA qA plA

1 .07 .3 .4 × ×
2 .18 .1 .9 × ×
3 .25 .1 .8 × ×
4 .15 .4 .9 ×
5 .05 .4 .5 × ×
6 .30 .8 .9

total 1. .12 .43 .70
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Figure 2: Graphical representation of the focal set
corresponding to Table 1

only) the intervals [x, y] such that x ≥ a and
y ≤ b. Hence, to compute belA(A) one adds up the
masses of all the focal sets located in this triangle.
In our example belA(A) = 0.12.

qA(A), A = [a, b], is defined as the sum of the
masses given to the intervals Ai = [ai, bi], where
[a, b] ⊆ [ai, bi], i.e. ai ≤ a and bi ≥ b. Graph-
ically, every mass included in qA(A) must lie in
the shaded rectangle of Figure 3.(b) – this rect-
angle contains all (and only) the intervals [x, y]
such that x ≤ a and y ≥ b. Hence to compute
qA(A) one adds up the masses of the focal sets
located inside this shaded rectangle. In our exam-
ple, qA(A) = 0.43.

plA(A), A = [a, b], is defined as the sum of the
masses given to the intervals Ai = [ai, bi], where
[ai, bi] ∩ [a, b] 	= ∅, i.e. a ≤ bi and b ≥ ai. Graph-
ically, every mass included in plA(A) must lie in
the shaded area of Figure 3.(c) – this area contains
all (and only) the intervals [x, y] such that x ≤ b
and y ≥ a. Hence to compute plA(A) one adds
up the masses of the focal sets located inside this
shaded area. In our example, plA(A) = 0.70.

The singletons of I[0,1] are zero-length intervals. If
all the focal sets are non-empty intervals (as in our
example), we can compute the pignistic probabil-
ity density function (pdf) over singletons s (where
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Figure 3: Graphical representation of (a) belief;
(b) commonality; (c) plausibility

0 ≤ s ≤ 1) as follows [11]:

Betf(s) =
∑

A:s∈A⊂[0,1]

mA(A)
|a∗ − a∗| [1 − mA(∅)]

where a∗ = inf {a : a ∈ A} and a∗ = sup {a :
a ∈ A}. The computation of pignistic pdf involves
the focal sets located in the rectangular area of
triangle T[0,1] defined by 0 ≤ x ≤ s and s ≤ y ≤ 1.
In our example, the pignistic pdf of say s = 0.35
would involve the focal sets 1, 2 and 3 and would
result in: Betf(0.35) = 0.07

0.1 + 0.18
0.8 + 0.25

0.7 = 1.28.
Betf is a proper probability density function.

2.2 Continuous domain

Next we relax the assumption that the number
of focal elements is finite. The finite collection
of subintervals A, is now replaced by I[0,1]. In-
stead of discrete probabilities defined on the trian-
gle T[0,1], we now assign a probability density over
the entire area of T[0,1]. What we described so far
essentially will remain valid, except that masses
become densities and sums become integrals.

Let m([a, b]) be a basic belief density (bbd) (we
replace bbm by bbd to enhance that m is now a
density). Let fT[0,1](a, b) = m([a, b]). Then fT[0,1]

is a density function on T[0,1]: fT[0,1] : T[0,1] →
[0,∞) with the property that:

∫ x=1

x=0

∫ y=1

y=x

fT[0,1](x, y) dx dy = 1 (1)

Normalisation of the basic belief density as in (1)
in fact is not necessary. The integral of fT[0,1] over
T[0,1] may be allowed to result in a value that is
less than 1, with the missing belief allocated to
the empty set, just as it was done in TBM [11].

Let us now define belI[0,1] , plI[0,1] and qI[0,1] func-
tions corresponding to fT[0,1] . According to the
explanations given so far, these functions will be
the integrals of fT[0,1] , with the limits of integra-
tion defined by the shaded areas in Figure 3. Thus

we have:

belI[0,1]([a, b]) =
∫ x=b

x=a

∫ y=b

y=x

fT[0,1](x, y) dx dy

plI[0,1]([a, b]) =
∫ x=b

x=0

∫ y=1

y=max(a,x)

fT[0,1](x, y) dx dy

qI[0,1]([a, b]) =
∫ x=a

x=0

∫ y=1

y=b

fT[0,1](x, y) dx dy

Using derivative-integral identities one can also
write:

fT[0,1](a, b) = −∂2 belI[0,1]([a, b])
∂a ∂b

(2)

fT[0,1](a, b) = −∂2 qI[0,1]([a, b])
∂a ∂b

(3)

The pignistic density function Betf can be derived
from fT[0,1](x, y) as follows:

Betf(a) = lim
ε→0

∫ x=a

x=0

∫ y=1

y=a+ε

fT[0,1](x, y)
y − x

dx dy,

(4)
for a ∈ [0, 1]. We do not put directly ε = 0 in (4)
in order to avoid division by zero.

Example 2. Consider the uniform density on
T[0,1], that is

fT[0,1] = 2, ∀x, y ∈ [0, 1], x ≤ y

Then using (4) we get

Betf(a) = −2[(1 − a) log(1 − a) + a log a]

for 0 < a < 1 (see Figure 4).
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Figure 4: Betf(a) generated by a uniform density
on T[0,1]

Generalisation to R. So far we have developed
belief functions on I[0,1], as it simplifies the pre-
sentation and allows for nice graphical represen-
tation in [0, 1] interval. However, all concepts di-
rectly apply when the frame of discernment is the



entire real axis R; one just needs to replace 0 (the
lower limit) with −∞ and 1 (the upper limit) with
+∞. Thus [0, 1] is replaced with (−∞,∞). Let
us denote by I the set of intervals on the real axis
R and by T the set of pairs (x, y) ∈ R

2 : x ≤ y.
Then we say that m, bel, q and pl are defined on
the Borel sigma algebra generated by I and f is
defined on T .

3 The least committed bbd

Suppose your domain knowledge is partial and
based only on some potential betting behaviour,
represented by the pignistic density function
Betf(a). Since the pignistic transform is many-to-
one transform, an infinite number of belief density
functions can induce the same Betf . These belief
funtions are said to be isopignistic. In order to
apply the belief function theory (in the continu-
ous domain) one needs to formulate a method of
building a belief density (BD) from the pignistic
density. The least commitment principle [11],[5]
suggests to choose among all iso-pignistic belief
densities, the belief density which maximizes the
commonality function q. As in the discrete case
[12], the q least committed belief density is a con-
sonant belief density. On the real axis R this
means that all focal sets on I are nested, i.e. can
be ordered in such a way that each focal interval
is contained by the following one.

We will further concentrate on a unimodal pignis-
tic density with a mode µ = arg maxa Betf(a).
The focal sets of the least committed (LC)
belief density are intervals [a, b] which satisfy:
Betf(a) = Betf(b). Consequently, for every fo-
cal interval of the LC-BD, [a, b], we have that
µ ∈ [a, b]. Another very important property of the
focal intervals of the LC-BD is that they form a
line on the triangle T . This line has the following
properties:

• It starts from (x, y) = (µ, µ); the plausibility
at this point is plI([µ, µ]) = 1.

• For all symmetrical pignistic densities Betf
(e.g. normal, Laplace, Cauchy), centered at
µ, this is a straight line given by:

y = −(x − 2µ) −∞ < x ≤ µ

Figure 5 shows the line of focal intervals in T for
(a) normal pignistic density with µ = 2.5 and σ =
1; (b) gamma pignistic density Betf(s) = s e−s,
(s > 0), with the mode µ = 1.

The relationship between Betf and any basic be-
lief density in general is expressed by (4). Let us

−1 0 1 2 3 4 5 6
−1

0

1

2

3

4

5

6

(µ,µ)

The line of

focal intervals

x

y

(a)

−1 0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

6

7

(µ,µ)

x

y
The line of

focal intervals

(b)

Figure 5: The focal sets of the LC belief density
(solid line in the upper triangle) induced by: (a)
normal pignistic density; (b) gamma pignistic den-
sity

denote the LC bbd (induced by Bel f) as ϕ(u)
where u ≥ 0. We have seen that the focal sets of
this bbd are points on a line in T , and u corre-
sponds to the distance from the point (µ, µ). Due
to this specific form of the LC bbd, the relation-
ship between Betf(s) and ϕ(u) has a much sim-
pler form than in (4). If s ≥ µ, then

Betf(s) =
∫ ∞

u=s

ϕ(u)
u − ū

du (5)

where ū is defined by the property that:
Betf(ū) = Betf(u). Note that ū is a function
of u. By differentiation of (5) we obtain that:

ϕ(s) = −(s − s̄)
Betf(s)

ds
(6)

The bbd ϕ(s) is always positive since:

(1) s ≥ s̄ and



(2) dBetf(s)
ds < 0 for s ≥ µ.

For model based classification problems, we apply
the generalised Bayes theorem [11] which requires
to compute the plausibility function from the bbd.
Since the LC bbd is a consonant belief function,
with the property that its focal sets are the points
along a line in T , we can write:

pl(x) =
∫ ∞

x

ϕ(a) da (7)

= −
∫ ∞

x

(a − ā) [Betf(a)]′ da (8)

The limits of integration in (7) reflect the fact
that only the focal intervals with the property
x ≤ a ≤ ∞ will have a non-empty intersection
with x. Using the differentiation rule: (uv)′ =
uv′ + uv′ and the property of our unimodal bbd:
limx→∞ Betf(x) = 0 we obtain:

pl(x) =(x − x̄)Betf(x)

+
∫ ∞

x

(
1 − dā

da

)
Betf(a) da (9)

Example 3. Suppose the pignistic density is a
normal density, i.e. Betf(x) = N (x;µ, σ). In
order to work out the LC bbd ϕ(x) and its corre-
sponding plausibility pl(x) we make the standard
substitution y = (x−µ)/σ. In this case y− ȳ = 2y
and thus dȳ/dy = −1. Application of (6) and (9)
yields for y ≥ 0:

ϕ(y) =
2y2

√
2π

e−y2/2 (10)

pl(y) =
2y√
2π

e−y2/2 + erfc(y/
√

2) (11)

where erfc(s) = 2√
π

∫ ∞
s

e−t2dt. It follows than:
ϕ(x) = ϕ(y)/σ and pl(x) = pl(y). The two func-
tions are shown in Figure 6 for µ = 1 and σ = 1.5.

Example 4. Let Betf(x) be an exponential
density:

Betf(x) =

{
1
θ e−(x−a)/θ x ≥ a

0 x < a
(12)

Using the substitution y = (x− a)/θ we note that
the LC bbd is a Gamma density: ϕ(y) = ye−y for
y ≥ 0. The plausibility is then pl(y) = (1+ y)e−y.
As before, ϕ(x) = ϕ(y)/θ and pl(x) = pl(y).

4 Application to model-based
target classification

In order to demonstrate an application of the the-
ory presented above, let us consider one of the
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Figure 6: The LC bbd ϕ(x) (thin line) and its
plausibility pl(x) (thick line), corresponding to
Betf(x) = N (x; 1, 1.5)

most difficult problems in military air surveillance:
correct identification of non-cooperative flying ob-
jects in the surveillance volume. In general three
groups of target attributes (features) are exploited
for identification, those based on target shape,
kinematic behaviour and electro-magnetic (EM)
emissions [1]. Let us consider a simple example
where the aim is to classify targets into one of the
three platform categories [7]:

Class 1 - Commercial planes;

Class 2 - Large military aircrafts (such as trans-
porters, bombers);

Class 3 - Light and agile military aircrafts
(fighter planes).

4.1 Speed as a target feature

We will assume that the only available target fea-
ture is its speed (a kinematic feature obtained
from the radar) [2], [16]. The speed profiles for
our three classes can be described by Table 2 [2]:

Table 2: Speed intervals for three air platform cat-
egories (in km/h)

Target class Min Max
Commercial (c1) 560 885
Bomber (c2) 400 725
Fighter (c3) 525 950

First we present target classification using the
Bayesian classifier, which is followed by the Be-
lief function classifier.



Bayesian analysis. In order to apply the
Bayesian classifier we must adopt a suitable proba-
bility density function of the speed conditioned on
the class. Various possibilities are applicable, such
the uniform, beta, Gaussian, etc. Let us adopt
the Gaussian densities, with the parameters se-
lected in such a way that P{smin < x < smax} =
0.99876, where [smin, smax] is the speed interval
given in Table 2. Figure 7 shows the distribution
of speed feature conditioned on the class. The hy-
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Figure 7: Adopted pdf models (Gaussian) of target
speed, conditioned on the class

pothesis space is defined as C = {c1, c2, c3}. The
Bayesian classifier (assuming the uniform prior for
classes) will compute the probability of class ci

(i = 1, 2, 3) given feature x as:

P{ci|x} = α p(x|ci) (i = 1, 2, 3) (13)

where α is a normalisation constant. Figure 8 dis-
plays the class probabilities P{ci|x} computed for
a range of speed values x ∈ [400, 1000] km/h.

Belief function analysis. The belief function
analysis can start from the very same pdf mod-
els adopted for the Bayesian analysis (Figure 7).
However, their meaning is different. Since our
probabilistic knowledge is very scarce and incom-
plete (we just know the speed limits for each target
class) these models are now considered as pignis-
tic densities of speed x conditioned on class ci,
denoted as Betf(x|ci). The first step is to build
the least committed belief function over the ob-
servation space which corresponds to Betf(x|ci),
followed by the application of the Generalised
Bayesian Theorem (GBT) [10], [3]. The key here
is to compute likelihoods l(ci|x) = pl(x|ci), which
is done using equation (9). Then the GBT yields
for every subset A ⊆ C the following bba:

m(A|x) =
∏

ci∈A

pl(x|ci)
∏

ci∈Ā

[1 − pl(x|ci)] (14)
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Figure 8: Bayesian analysis: class probabilities
conditioned on target speed x

Finally the last step is to apply the pignistic trans-
form to m(A|x) to compute the pignistic class
probabilities:

BetP{ci|x} =
∑

A : ci∈A

1
|A|

m(A|x)
[1 − m(∅|x)]

(15)

The resulting pignistic class probabilities are
shown in Figure 9, for a range of speed values
x ∈ [400, 1000] km/h.
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Figure 9: Belief function analysis: pignistic class
probabilities conditioned on target speed x

Comparing Figures 8 and 9 one can observe sim-
ilar performance of both classifiers for speeds less
than 650 km/h and greater than 770 km/h. How-
ever, in the range [650, 770] km/h, where the pdf
of class 1 and 3 overlap, the Bayesian classifier
favours class 1, while the Belief classifier is unde-
cided between 1 and 3. We argue that being unde-
cided makes more sense, because the most likely
observation of speed, for both class 1 and 3, falls



in this region. A similar effect will be illustrated
and discussed in the next subsection.

4.2 Acceleration as a target feature

Suppose the only available target feature is its
maximum acceleration, denote as a (usually ob-
served during a certain interval of time). Target
acceleration can be useful [6] because it is related
to target maneuverability. For class 1, the accel-
eration is rarely higher than 1g (where g = 9.81
m/s2 is the gravitation due to gravity), because
the acceleration higher than ±1g causes sickness in
passengers. Targets of class 2 sometimes perform
mild evasive manoeuvres but their maximum ac-
celeration (due to their size) is rarely higher than
±4g. Targets of class 3 are light and agile, with
highly trained pilots - the maximum acceleration
of modern fighter planes can go up to ±7g. The
steady-state of acceleration, however, for all three
classes of targets is zero. This is so because a con-
stant velocity flight (i.e. with zero acceleration)
ensures the minimum fuel consumption and the
least stress for a pilot.

As before, we model the pdf of the feature
(maximum acceleration) conditioned on the class,
p(a|ci), i = 1, 2, 3. A reasonable model is a zero-
mean Gaussian density with three different values
of standard deviation, as shown in Figure 10 (the
unit of target acceleration is g). Standard devia-
tions of Gaussian densities are adopted as follows:
σ1 = 0.4g, σ2 = 1.6g and σ3 = 2.8g. These values
are selected to ensure that P{|a| < γ} = 0.99876,
where γ = 1g ,4g and 7g for class 1, 2 and 3 re-
spectively.
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Figure 10: Adopted pdf models of target accelera-
tion conditioned on the class

The classification results (for acceleration values
in the interval [−3g, 3g]) are shown in Figures 11
and 12 for the Bayesian and the belief function
classifier, respectively. Observe that for small ac-
celerations (|a| < 0.25g), the Bayesian classifier
decisively declares a target to be of class 1, while
the belief function classifier does not favour any
class. Again we argue that for the available prior
knowledge about targets and accelerations, be-
ing undecided for small accelerations makes more
sense: small accelerations are not a distinguishing
feature between the classes.

The crux of the belief function analysis is that
the LC plausibility pl(a|ci) is close to 1 if ac-
celeration a approximately equals the mode of
p(a|ci) (see Section 3). Interestingly, a some-
what similar classification result can be obtained
in this example using an ad-hoc fudge in the
Bayesian classifier, by replacing densities p(a|ci)
with p(a|ci)/max{p(a|ci)} [4]. The proposed
framework of belief function theory (the least com-
mitment principle, generalised Bayesian theorem,
pignistic transform), however, provides a sound
theoretical basis for target classification without a
need for any fudge.
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Figure 11: Bayesian analysis: class probabilities
conditioned on acceleration

5 Conclusions

The paper presents a theoretical framework of the
belief function theory in the continuous domain,
where the frame of discernment is the real axis R

(or its segment). When the probabilistic descrip-
tion of observations in the continuous domain is
incomplete, we represent it by the pignistic prob-
ability density. When the pignistic density is uni-
modal, the focal sets of the least committed belief
function which corresponds to this density, form
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Figure 12: Belief function analysis: class proba-
bilities conditioned on acceleration

a line in R
2. This greatly simplifies the relation-

ships between the basic belief density, pignistic
density and the plausibility function. The theory
has been applied to the model-based target clas-
sification, where observations of target speed and
acceleration (in the continuous domain) are used
as a feature. The classifier based on the belief
function theory appears to be very simple to im-
plement and produces results which are arguably
more meaningful than those obtained using the
Bayesian classifier.

For n-dimensional measurement space (e.g. speed
and acceleration considered as a joint measure-
ment) we would need to extend the theory to
the case where the frame is R

n. If features are
independent, extending the theory to R

n would
be manageable. If features are not independent,
a transformation into new independent features
would be first required.
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