
On Conditional Belief Function Independence

B. Ben Yaghlane1 Ph. Smets2 K. Mellouli1

1 AMID, University of Tunisia
{boutheina.yaghlane, khaled.mellouli}@ihec.rnu.tn

2 IRIDIA, Université Libre de Bruxelles
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Extended Abstract.

The concept of conditional independence has been extensively studied in probability
theory (see, for instance, [2], [3], [6], ...). Pearl and Paz [7] have introduced some basic
properties of the conditional independence relation, called ”graphoid axioms”. These ax-
ioms are satisfied not only by probabilistic conditional independence, but also by embedded
multi-valued dependency models in relational databases [8], by conditional independence
in Spohn’s theory of ordinal conditional functions [11], [4], by qualitative conditional inde-
pendence in Dempster-Shafer theory of belief functions partitions [9], and by conditional
independence in valuation-based systems (VBS) [10] capable of representing many different
uncertainty calculi.

The aim of this paper is to propose the new definitions of conditional independence
when uncertainty is expressed under the form of belief functions and then to discuss the
relationships between these definitions. The notion of conditional independence is given with
the conditional independence relations [6], [2], [3], which successfully depict our intuition
about how dependencies should update in response to new pieces of information.

This paper is organized as follows: we first recall the definition of probabilistic condi-
tional independence. Then, after extending the definition of evidential and cognitive inde-
pendence to the conditional case, we present our definitions of conditional non-interactivity
(section 1.3), conditional irrelevance (section 1.4) and conditional doxastic independence
(section 1.5) for belief functions. Finally, we present an axiomatic characterization for
conditional belief functions independence relations.

1 Conditional Belief Function Independence Concepts

The definitions of marginal independence for belief functions presented in Ben Yaghlane et
al. [1] can be extended to the case of conditional independence.

1.1 Probabilistic Conditional Independence

First, we present a meaning of the conditional independence concept in the probability
theory. For random variables X, Y, Z, and P a distribution on the space ΘX × ΘY × ΘZ

(or simply XY Z), we may write X �P Y | Z to denote that, X and Y are conditionally
independent given Z, with respect to P .

1



The usual definition of X �P Y | Z is in terms of the factorization of the conditional joint
probability distribution of (X, Y ) given Z.

There is another equivalent definition, which is more intuitive. This definition can be
interpreted as conditional irrelevance and it means that once the value of Z is specified,
any further information about Y is irrelevant to the uncertainty about X.

1.2 Evidential and Cognitive Conditional Independence

Following Kong [5], we define the notion of strong conditional independence of belief func-
tions as follows :

Definition 1 Given three variables X, Y, and Z. We say that X and Y are conditionally
independent given Z if and only if for all x ⊆ X, all y ⊆ Y, z ∈ Z:

plXY Z(x, y) = plXY Z↓XZ(x)plXY Z↓Y Z(y) (1)
belXY Z(x, y) = belXY Z↓XZ(x)belXY Z↓Y Z(y) (2)

where plXY Z↓XZ (resp. belXY Z↓XZ) and plXY Z↓Y Z (resp. belXY Z↓Y Z) are carried by XZ
and Y Z, respectively.

The weak (”cognitive”) conditional independence is derived straightforwardly if we only
consider the equation (1).

1.3 Conditional Non-Interactivity

For the definition of conditional non-interactivity for belief functions, we start from comput-
ing the belief of joint product XY Z. We marginalize on XZ and also on Y Z. We combine
these two marginals XZ and Y Z, and we want it to be equal to the initial one (on XY Z)
combined with the marginal on Z. The formal definition is given as follows:

Definition 2 Given three variables X, Y and Z, and m on XY Z. X and Y are non-
interactive given Z with respect to m, denoted by X ⊥m Y | Z, if and only if

mXY Z ⊕ mXY Z↓Z = mXY Z↓XZ ⊕ mXY Z↓Y Z (3)

The equation (3) corresponds to Shenoy’ factorization (see [10], lemma 3.1 (5) page
215). Note that Shenoy’ definition considers that the terms mXY Z↓XZ and mXY Z↓Y Z are
arbitrary and not necessarily the marginals of XY Z on XZ and Y Z, respectively. As
a consequence, with Shenoy’ definition, we loose the connection with the ”common sense
meaningful”.

In addition, Studeny [12] notice that the definition of conditional belief function non-
interactivity 1 is not consistent with marginalization. This means that it may happen for
two bba’s m1 and m2 on XZ and Y Z, respectively, which are consonant (i.e. mZ

1 =mZ
2 )

there exists no bba m on XY Z such that mXY Z↓XZ=m1, mXY Z↓Y Z=m2 and X ⊥m Y | Z.
We explain this objection by an example.

1Studeny uses the term ”conditional independence” rather than ”conditional non-interactivity”
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1.4 Conditional Irrelevance

In order to present the definition of conditional irrelevance for belief functions, we first
introduce a concept of the set of mY Z indistinguishable on Z under mXY Z .
Building the set

Given m on XYZ and any mY Z on YZ
Let m∗ = (m ⊕ mY Z)↓Z

Find all m’ on YZ so that (m ⊕ m′)↓Z = m∗

Denote this set as RZ(mY Z).
This family corresponds to the set of pairs of belief functions indistinguishable on Z under
mXY Z . The formal definition of this set is:

Definition 3 For any mXY Z , and any bba m1, m2, we have (m1, m2) ∈ RZ(mXY Z) iff
(mXY Z ⊕ m1)↓Z = (mXY Z ⊕ m2)↓Z

Once the set RZ(mXY Z) is built, we define the notion of conditional irrelevance as
follows :

Definition 4 Given three variables X, Y and Z, and m on XY Z. Y is irrelevant to
X given Z with respect to m, denoted by IRm(X, Y | Z), if and only if ∀mY Z ,∀m′ ∈
RZ(mXY Z)

(m ⊕ m′)↓XZ ∝ (m ⊕ mY Z)↓XZ (4)

1.5 Conditional Doxastic Independence

The notion of doxastic independence in conditional case can be defined as follows :

Definition 5 Given three variables X, Y and Z, and m on XY Z. X and Y are doxastically
independent given Z with respect to m, denoted by X �m Y | Z, if and only if m satisfies

• IRm(X, Y | Z)

• ∀m0 on XYZ : IRm0(X, Y | Z) ⇒ IRm⊕m0(X, Y | Z)

Theorem 1 Given three variables X, Y and Z, and m on XY Z. X and Y are doxastically
independent given Z with respect to m (X �m Y | Z) if and only if X and Y are non-
interactive given Z with respect to m (X ⊥m Y | Z).

2 Conditional Belief Function Independence Relations

The intuitive meaning of conditional independence is when we say that a random variable
X is independent to Y given Z, denoted by X � Y | Z, we mean that once the value of Z
has been specified, any further information about Y is irrelevant to uncertainty about X.

The properties of conditional independence can be considered as a rules’ set useful to
infer new independence relations from an initial set. They are also important when we need
a graphical representation of dependencies [6].

In this section, we present the conditional independence properties for belief functions.
For the proofs, we use the definition of conditional non-interactivity.
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Definition 6 Let X, Y, Z and W be disjoint subsets of U, and a mass m over the product
space. Then we define the following properties:

Symmetry X ⊥m Y | Z ⇔ Y ⊥m X | Z

Decomposition X ⊥m Y ∪ W | Z ⇒ X ⊥m Y | Z

WeakUnion X ⊥m Y ∪ W | Z ⇒ X ⊥m Y | W ∪ Z

Contraction X ⊥m Y | Z and X ⊥m W | Y ∪ Z ⇒ X ⊥m Y ∪ W | Z

Intersection X ⊥m Y | Z and X ⊥m Z | Y ⇒ X ⊥m Y ∪ Z

The conditional non-interactivity relation satisfies symmetry, decomposition, weak union,
contraction, and intersection. So it is a graphoid.
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