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Abstract

This paper presents an algorithm for
building decision trees in an uncertain
environment. Our algorithm will use the
theory of belief functions in order to
represent the uncertainty about the
parameters of the classification problem.
Our method will be concerned with both
the decision tree building task and the
classification task.
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1 Introduction

Decision trees are one of the most widely used
classification techniques especially in artificial
intelligence. Their popularity is basically due to their
ability to express knowledge in a formalism that is
often easier to interpret by experts and even by
ordinary users.

Despite their accuracy when precise and certain data
are available, the classical versions of decision tree
algorithms are not able to handle the uncertainty in
classification problems. Hence, their results are
categorical and do not convey the uncertainty that
may occur in the attribute values or in the case class.

To overcome this limitation, Quinlan has developed
probabilistic decision trees [5] where his major
objective is to deal with examples characterized by
missing or imprecise attribute values. However
within his framework, only statistical uncertainty
induced by information arisen from random
behavior, is taken into account.

In this paper, we present a classification method
based on the decision tree approach having the
objective to cope with the uncertainty that may
occur in a classification problem and which is
basically related to human thinking, reasoning and
cognition.

Our algorithm will use the belief function theory as
understood in the transferable belief model (TBM)
[11, 12] and which seems offering a convenient
framework thanks to its ability to represent
epistemological uncertainty.

Moreover, the TBM allows experts to express partial
beliefs in a much more flexible way than probability
functions do. It also allows to handle partial or even
total ignorance concerning classification parameters.
In addition to these advantages, it offers appropriate
tools to combine several pieces of evidence.

This paper is composed as follows: we start by
introducing decision trees, then we give an overview
of the basic concepts of the belief function theory. In
the main part of the paper, we present our decision
tree algorithm based on the evidence theory. The
two major phases will be detailed: the building of a
decision tree and the classification task. Our
algorithm will be illustrated by an example in order
to understand its real unfolding.

2 Decision trees

Decision trees present a system using a top-down
strategy based on the divide and conquer approach
where the major aim is to partition the tree in many
subsets mutually exclusive. Each subset of the
partition represents a classification sub problem.



A decision tree is a representation of a decision
procedure allowing to determine the class of a case.
It is composed of three basic elements [14]:

- Decision nodes specifying the test attributes.

- Edges corresponding to the possible attribute
outcomes.

- Leaves named also answer nodes and labeled by a
class.

The decision tree classifier is used in two different
contexts:

1. building decision trees where the main objective
is to find at each decision node of the tree, the best
test attribute that diminishes, as much as possible,
the mixture of classes with each subset created by
the test.

2. classification where we start by the root of the
decision tree, then we test the attribute specified by
this node. The result of this test allows to move
down the tree branch relative to the attribute value of
the given example. This process will be repeated
until a leaf is encountered. So, the case is classified
by tracing out a path from the root of the decision
tree to one of its leaves [6].

Many algorithms have been developed for learning
decision trees. Among the most famous are those
suggested by Quinlan like ID3 [4] and C4.5 [7]. One
of the fundamental steps of these algorithms is the
selection measure applied to find the appropriate test
attribute at each decision node while growing the
tree.

Quinlan has defined a measure called information
gain [4] also referred to as the criterion gain
originally based on the information theory of
Shannon. The idea is to compute the information
gain of each attribute in order to find how well each
attribute alone classifies the training examples, then
the one presenting the highest value will be chosen.
In fact, this attribute generates a partition where the
instances classes are as homogeneous as possible
within each subset created by the attribute.

Let A be an attribute with k outcomes that partitions
the training set T of instances into k subsets Tm (m =
1..k).

Suppose there are n classes, denoted C1, … Cn, and

pi = 
freq(C ,T)

T

i
 represents the proportion of objects

in T belonging to the class Ci (i = 1...n).

The information gain for an attribute A relative to
the training set T is defined as following [7]:

Gain(T, A) = Info(T) - InfoA(T)

where Info(T) =  -  p .log pi 2 i
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n

∑
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and Info (T) =  
T

T
Info(T )A

m
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k

m

=
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 Info(T) measures the average amount of information
needed to identify the class of a case in a training set
T, it is also called the entropy of the set T [7].
Info(Tm) is the same measure but computed from the
data in Tm. InfoA(T) is the weighted average of the
conditional entropies. It represents the same type of
measurement as Info(T) but after considering the
partition of T obtained by taking into account the k
outcomes of the attribute A. This attribute selection
criterion computes the difference between the
entropies before and after the partition, the largest
difference corresponds to the best attribute.

3. Belief function theory

In this section, the main concepts of the belief
function model are recalled [8, 11, 12].

3.1 Background

Let Θ be the frame of discernment representing a
finite set of elementary hypotheses related to a
problem domain. We denote by 2Θ the set of all the
subsets of Θ.

To represent degrees of belief, Shafer [8] introduces
the so-called basic belief assignments (called
initially basic 'probability' assignments, an
expression that has created serious confusion).  They
quantify the part of belief that supports a subset of
hypotheses without supporting any strict subset of
that set by lack of appropriate information [11]. A
basic belief assignment (bba) is a function denoted
m that assigns a value in [0, 1] to every subset A of
Θ.

This function m is defined here by:

m : 2Θ → [0,1] such that

m(∅ ) = 0 and    m(A) =  1
A ⊆
∑

Θ

The subsets A of the frame of discernment Θ which
m(A) are strictly positive, are called focal elements
of the bba.



The credibility Bel and the plausibility Pl are
defined by:

 Bel(A) =  m(B)
B A⊆
∑

Pl(A) =  m(B)
A B∩ ≠∅
∑

The quantity Bel(A) expresses the total belief fully
committed to the subset A of Θ. Pl(A) represents the
maximum amount of belief that might support the
subset A.

Within the belief function model, it is easy to
express the state of total ignorance. This is done by
the so-called vacuous belief function which only
focal element is the frame of discernment Θ. It is
defined by [8]:

m(Θ) = 1 and m(A) = 0 for A ≠ Θ.

 Assessments of the bba are explained in [11, 13].

3.2 Combination

Let Bel1 and Bel2 be two belief functions induced by
two distinct pieces of evidence. Let m1 and m2

denote their bba, respectively. The Dempster rule of
combination aims at building the bba that represents
the impact of the combined evidence. It is defined as
[8]:

∀ ⊆ ⊕

⊆ ∩
∑

 A  ,  m(A) =  (m   m )(A)
                            =  K. m (B).m (C)

1 2

1 2

B,C   B  C = A

Θ

Θ:

where K  =  1 -  m (B).m (C)1 1 2

B C=

−

∩ ∅
∑

K is the normalization factor (we work here under
the close world assumption [11]).

Dempster's rule of combination is a conjunctive rule:
it builds the bba when both pieces of evidence are
accepted. The dual of this conjunctive rule is the
disjunctive rule of combination [10] that builds the
bba representing the impact of two pieces of
evidence when we only know that at least one is to
be accepted, but we don't know which one. This rule
is defined as following:

∀ A⊆Θ ,  m m (A) = m (B).m (C)1 2 1 2

B,C   B  C =  A

∨
⊆ ∪

∑
Θ:

These rules of combination are commutative and
associative. Thus, the basic belief assignment
resulting from the combination of several pieces of
information can be computed easily by applying

repeatedly the rule and without worrying about the
order of combination.

The conjunctive and disjunctive rules of
combination generalize the AND and OR operators
of set theory. To see it, consider m1 and m2 such that
m1(A) = 1 and m2(B) = 1, what just translates the
fact that the first piece of evidence states for sure
that A holds, and the second that B holds. If we
know that both pieces of evidence are to be
accepted, then we know that A∩B holds (and
indeed, m1⊕ m2(A∩B) = 1). If we know only that at
least one piece of evidence is to be accepted and we
do not know which one, then we only know that
A∪ B holds (and indeed, m1∨ m2(A∪ B) = 1).

3.3 Decision making

The problem of decision making in the context of
the TBM is solved in [11].

The TBM is based on a two level mental modals:

- The credal level where beliefs are entertained

and represented by belief functions.

- The pignistic level where beliefs are used to make
decisions and represented by probability functions
called the pignistic probabilities.

The link between these two functions is achieved by
the pignistic transformation that builds the pignistic
probability function, denoted BetP, induced by a
belief function. It is defined by:

BetP(B) =  m(A)
B  A

AA  

∩

⊆
∑

Θ

, for all B⊂Θ .

4. Decision tree using the belief function
theory

In this section, we detail our decision tree algorithm
based on the belief function theory. First, we present
the decision tree building phase, then the
classification phase. The two phases will be
illustrated by examples in order to understand their
unfolding.

4.1 Decision tree building phase

In this part, we define the main parameters of a
decision tree within the belief function framework,
then we present our algorithm for building such
decision trees.



Definition of decision tree parameters:

Our algorithm for building decision trees using the
theory of belief functions is based on an extension of
the ID3 algorithm [4] while taking into account the
uncertainty of some parameters related to the
classification problem. Thus, several differences will
be noted in the definition of the hypotheses on these
parameters and consequently in their treatment.

First, we have to define the structure of the training
set under this uncertain framework. This set is
generally composed of elements represented as pairs
(attributes, class) where for each example, we know
exactly the value of each one of its attributes and
also its assigned class which is unique.

Unlike the standard training set, we assume that it
may contain data where there is some uncertainty in
the knowledge of the classes. In other words, each
class of the training example may be uncertain or
even unknown, whereas the values of the attributes
characterizing each training example are known with
certainty. Generalizing by accepting also uncertainty
in the attributes' values is under development.

We propose to represent the uncertainty on the
classes of any training example by a basic belief
assignment defined on the set of classes related to
the problem. This bba, generally given by an expert,
represents the opinions-beliefs of this expert about
the actual value of the class for each case in the
training set.

Among the advantages of working under the belief
function framework, we notice that the two extreme
cases, total ignorance and total knowledge, are easily
expressed:

- When we do not have any information about the
classes of the example, the bba will be the vacuous
belief function defined by:

 m(Θ) = 1 and m(C) = 0 for C ⊂  Θ.

- When the class of the example is perfectly known,
it will be represented by the belief function:

 m(Ci) = 1 and m(C) = 0 for all C ≠ Ci, C ⊆ Θ , where
Ci is a singular class.

The latter case corresponds to the classical "certain"
context.

Once the structure of the training set is described,
the second important parameter to define in our
algorithm is the attribute selection measure that will
be used to find the appropriate test attribute at each
decision node in the tree.

This measure enables us to quantify the power of
discrimination of each attribute relatively to each
class. It allows optimizing the tree. In the literature
and even in practice, one of the selection measures
most commonly applied in decision trees is the
information gain criterion of Quinlan [4] [7].

Within our structure of the training set, we develop
an attribute selection measure based on the gain
criterion able to handle the uncertainty using the
belief function framework.

Let Belj be the belief function defined on the set of
possible classes. It represents the beliefs held by the
expert about the actual value of the class to which an
object Ij belongs.

Suppose a subset S of objects in the training set, and
suppose we select randomly one object in S with
equi-probability (generalization to more elaborated
sampling schema is immediate). The belief function
that represents our beliefs about the actual class to
which this randomly selected individual belongs to
is the average belief function taken over the object in
S.

Bel (C) =  

Bel (C)

SS

j

I  in Sj

∑

for any C subsets of Θ ={C1, …Cn}.

Note that the bba and the pignistic probabilities
related to this average belief function are
respectively equal to the average of the basic belief
assignments and the pignistic probabilities of the
objects in S. For any C subsets of Θ,

m (C) =  

m (C)

SS

j

I  in Sj

∑

BetP (C) =  

BetP (C)

SS

j

I  in Sj

∑

We propose the following steps to build the tree:

1. Compute the average pignistic probability
function BetPT taken over the training set T. Then
compute the entropy of the class distribution in T.
This value Info(T) is equal to:

Info(T) =  -  BetP (C )log BeP (C )
T i 2 T i

i 1

n

=
∑



Compute the information gain provided by each
attribute A as:

Gain(T, A) = Info(T) - InfoA(T).

2. Our task is at first to define InfoA(T) for each
attribute. The idea is to apply the same procedure as
in the computation of Info(T), but restricting
ourselves to the set of objects that share the same
value for the attribute A and averaging these
conditional information measures.

 For each attribute value am, we build the subset Tm
made of the cases in T whose value for the attribute
is am.  We compute the average belief function
BelTm, then apply the pignistic transformation to it in
order to compute the pignistic probability BetPTm.
From it, we compute Info(Tm) where Tm represents
the training subset when the value of the attribute A
is equal to am.

3. InfoA(T) will be equal to the weighed sum of the
different Info(Tm) relative to the considered
attribute. These Info(Tm) will be weighted by the
proportion of each attribute value in the training set.

Info (T) =  
T

T
Info(T )A

m
m

m=1

k

∑

= ∑∑- 
T

T
BetP (C ).log BetP (C )

m

T i 2 T i

i=1

n

m=1

k

m m

4. Once the different attribute information gains are
computed, we choose the attribute with the highest
value of the information gain.

In addition to the attribute selection measure, two
other major parameters have to be defined:

- The partitioning strategy : Since we deal with
symbolic attributes, it simply consists in creating an
edge for each attribute value.

- The stopping criterion: It allows to stop the
development of a path and to declare the node as a
leaf. That is, it determines whether or not a training
subset should be further divided. For our algorithm,
we propose as a stopping criterion the following
alternatives:

1. If the treated node includes only one object, then
the node is declared as a leaf characterized by the
same bba of this object which is already defined in
the training set.

2. If there is no further attribute for testing or if the
gain criterion for the remaining attributes is less than
zero, then the node is a leaf where its bba will be the
result of conjunctive combination of the objects' bba

belonging to the same leaf by applying Dempster's
rule.

The choice of the conjunctive rule is based on the
idea that every object in a leaf belongs to the same
class. So in the simplified case where there are only
two objects in a leaf and all we know is that one is A
or B and the other B or C, then we can conclude that
the objects of that leaf are B's, hence the conjunctive
rule.

Unlike the standard decision tree where each leaf is
labeled by a unique class, our method assigns to
each leaf a bba expressing the mass of beliefs on the
different classes of the frame of discernment.

Decision tree building algorithm:

Let T be a training set composed by objects
characterized by l symbolic attributes (A1, A2,…, Al)
and that may belong to the set of classes Θ = {C1,
C2,…, Cn}. For each object Ij (j = 1.. p) of the
training set will correspond a basic belief assignment
expressing the quantity of beliefs exactly committed
to the subsets of classes.

Our algorithm which uses a Top-Down Induction of
Decision Trees (TDIDT) approach, will have the
same skeleton as an ID3 algorithm [4]. Their steps
are described as follows:

1. Generate the root node of the decision tree
including all the objects of the training set.

2. Verify if this node satisfies or not the stopping
criterion:

•  If yes, declare it as a leaf node and compute
its corresponding bba as we mentioned in the
last section.

•  If not, look for the attribute having the
highest information gain. This attribute will be
designed as the root of the decision tree related
to the whole training set.

3. Apply the partitioning strategy by developing an
edge for each attribute value chosen as a root. This
partition leads to several training subsets.

4. Repeat the same process for each training subset
from the step 2 while verifying the stopping
criterion. If this latter is satisfied, declare the node as
a leaf and compute its assigned bba, else repeat the
same process.

5. Stop when all the nodes of the latter level of the
tree are leaves.



We have to mention that we get the same results as
ID3 if all the bba are 'certain'. That is when the class
assigned for each training example is unique and
known with certainty.

Example 1:

Now, we present a simple example illustrating our
decision tree building algorithm within a belief
function framework.

Let T be a small training set (see table 1). It is
composed of five objects characterized by three
symbolic attributes defined as following:

Eyes ={Brown, Blue}; Hair = {Dark, Blond};

Height = {Short, Tall}

As we work in a supervised learning context, the
possible classes are already known. We denote them
by C1, C2 and C3.

For each object Ij (j = 1..5) belonging to the training
set T, we assign a bba mj expressing our beliefs on
its actual class. These functions are defined on the
same frame of discernment Θ = {C1, C2, C3}.

Table1: Training set T

Ij Eyes Hair Height Classes

I1 Brown Dark Short m1

I2 Brown Dark Tall m2

I3 Blue Blond Tall m3

I4 Blue Dark Tall m4

I5 Blue Dark Short m5

where

m1(C1) = 0.3; m1(C1 ∪  C2) = 0.4; m1(Θ) = 0.3;

m2(C2) = 0.5; m2(C1 ∪  C2) = 0.2; m2(Θ) = 0.3;

m3(C1) = 0.8; m3(Θ) = 0.2;

m4(C2) = 0.1; m4(C3) = 0.3; m4(C2 ∪  C3) = 0.2;
m4(Θ) = 0.4;

m5(C2) = 0.7; m5(Θ)  = 0.3;

In order to find the root relative to the decision tree,
we have to compute the average belief function BelT

related to the whole training set T. BelT and its
corresponding bba mT are presented in the following
table (see table 2):

Table 2: Computation of BelT and mT

∅ C1 C2 C3 C1∪ C2 C1∪ C3 C2∪ C3 Θ
BelT 0 0.22 0.26 0.06 0.6 0.28 0.36 1

mT 0 0.22 0.26 0.06 0.12 0 0.04 0.3

The pignistic transformation of mT gives as results:
BetPT(C1) = 0.38; BetPT(C2) = 0.44; BetPT(C3) =
0.18;

Hence

Info(T) =  -  BetP (C )log BeP (C ) 1.496
T i 2 T i

i 1

3

=
∑ =

Once the entropy related to the whole set T is
calculated, the second step is to find the information
gain of each attribute in order to choose the root of
the decision tree.

Let's illustrate the computation for the eye attribute.

Let BelTbr
 be the average belief function relative to

the objects belonging to T and having brown eyes
whereas, BelTbl

 for the ones having blue eyes. mTbr
,

mTbl
, BetPTbr

 and BetPTbl
 are respectively the bba and

the pignistic probability relative to the values brown
and blue of the eyes (see table 3 and table 4).

Table 3: Computation of BelTbr
, mTbr

, BelTbl
, mTbl

∅ C1 C2 C3 C1∪ C2 C1∪ C3 C2∪ C3 Θ
BelTbr

0 0.15 0.25 0 0.7 0.15 0.25 1

mTbr
0 0.15 0.25 0 0.3 0 0 0.3

BelTbl
0 0.27 0.27 0.1 0.54 0.37 0.43 1

mTbl
0 0.27 0.27 0.1 0 0 0.06 0.3

Table 4: Computation of BetPTbr
, BetPTbl

C1 C2 C3

BetPTbr
0.4 0.5 0.1

BetPTbl
0.37 0.4 0.23

Info (T) =  -  
2

5
BetP (C ).log BetP (C ) -

 
3

5
BetP (C ).log BetP (C ) = 1.4732

eyes T i

i 1

3

2 T i

T i

i 1

3

2 T i

br br

bl bl

=

=

∑

∑
Thus Gain(T, Eyes) = Info(T) - Infoeyes(T) = 0.0228;

By similar analysis for the hair and height attributes,
we get:

Gain(T, Hair) = 0.1876; Gain(T, Height) = 0.0316;

According to the gain criterion, the hair attribute will
be chosen as the root of the decision tree and
branches are created below the root for each of its
possible value (Dark, Blond).



So, we get the following decision tree (see figure 1):

Figure 1: First generated decision tree

We notice that the training subset Tblo contains only
one example, thus the stopping criterion is satisfied.
The node relative to Tblo is therefore declared as a
leaf defined by the bba m3 of the example I3.

For the subset Tda, we apply the same process as we
did for T until the stopping criterion holds.

The final decision tree induced by our algorithm is
given by (see figure 2):

Figure 2: The final decision tree

4.2 Case's classification

Once the decision tree is constructed, the following
phase will be the classification of unseen examples
referring to as new objects.

On one hand, our algorithm is able to ensure the
standard classification where the unseen example
attribute values are assumed to be certain.

As in an ordinary tree, it consists on starting from
the root node and repeating to test the attribute at
each node by taking into account the attribute value
until reaching a leaf.

Contrary to the classical decision tree where a
unique class is attached to the leaf, in our decision
tree, the unseen example classes will be defined by a
basic belief assignment related to the reached leaf.

In order to make a decision and to get the probability
of each singular class, we propose to apply the
pignistic transformation to the basic belief
assignment related to the reached leaf, and to use
this probability distribution to compute the expected
utilities required for optimal decision making.

On the other hand, as we deal with an uncertain
context, our classification method allows also
classifying unseen examples characterized by
uncertainty in the values of their attributes.

In our method, we assume that new examples to
classify are not only described by certain attribute
values but may also be characterized by means of
disjunction values for some attributes. They may
even have attributes with unknown values.

The idea to classify such objects is to look for the
leaves that the given example may belong by tracing
out all the possible paths induced by the different
attribute values. In the case of unknown values, all
the branches relative to the considered attribute will
be taken into account.

As a consequence, the unseen new example may
belong to many leaves where each one is
characterized by a basic belief assignment function.
These bba must be combined in order to get beliefs
on the example's classes. The disjunctive rule of
combination developed by Smets [10] seems
offering a suitable context since it supposes that at
least one path is true.

Indeed consider the simplified case where there are
two leaves in which the new object can belong, and
all objects in leaf 1 are A's, and all those in leaf 2 are
B's. Then all we can conclude is that the new object
is A or B, hence the disjunctive rule.

The induced bba from the disjunctive rule can be
transformed into a probability function by applying
the pignistic transformation. This allows knowing
the probability that the new example belongs to each
singular class of the given problem.

Example 2:

Let's continue example 1 and assume that an unseen
example is characterized by:

Hair = Dark; Eyes = Blue or Brown; Height = Tall.

Using the decision tree (see figure 2) relative to the
training set T, gives us two possible leaves for this
case:

- The first leaf characterized by m2 as a b.p.a. This
leaf is induced by the path corresponding to dark
hair, brown eyes and tall as height.

Hair

Tda:
I1, I2, I4, I5

Tblo:
I3

Dark Blond

Hair

Eyes m3

Dark Blond

Brown Blue

HeightHeight

m2

Tall TallShort Short

m1 m4 m5



- The second is the one corresponding to the path
defined by dark hair, blue eyes and tall as height.
This leaf is labeled by the b.p.a m4

By applying the disjunctive rule of combination, we
get m24 = m2 ∨  m4 defined by:

m24(C2) = 0.05; m24(C1 ∪  C2) = 0.02; m24(C2 ∪  C3) =
0.25; m24(Θ) = 0.68;

Thus, the unseen example classes are described by
m24. Applying the pignistic transformation on m24

gives us:

BetP24(C1) = 0.24; BetP24(C2) = 0.41; BetP24(C3) =
0.35;

It seems that the most probable class for this
example to belong is C2 with the probability of 0.41.

5 Conclusion

In this paper, we propose an algorithm to generate a
decision tree under uncertainty within the belief
function framework.

The interest of the TBM appears essentially in its
ability to cope with partial ignorance, and at the
level of the leaves conjunctive and disjunctive rules
can be used in a coherent way as they provide
conjunctive and disjunctive aggregation rules.

First, we have interested to the decision tree building
phase by taking into consideration the uncertainty
characterized the classes of the training examples.
Next, we have ensured the classification task of new
examples where some of their attribute values are
assumed to be uncertain.

Either in the decision tree building task or in the
classification task, the uncertainty is handled within
the theory of belief functions which presents a
convenient framework for coping with lack of
information.

Our future researches aims at extending this method
in order to treat more uncertainty especially those
held in the attribute values.
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