
Recursive Classification of Multiple Objects Using

Discordant and Non-Specific Data

Branko Ristic† and Philippe Smets‡

Abstract

The problem of multiple object classification based on discordant and non-specific

data is considered. A general methodology for solving this problem is suggested and

a suboptimal single-scan algorithm, referred to as the the global nearest neighbour

(GNN), is implemented. The exact global dissimilarity measure, which is minimised

by the GNN algorithm, is derived within the framework of the belief function theory.

This measure, based on the plausibility of the global assignment, is related to the

degree of conflict as understood in the transferable belief model interpretation of the

belief function theory. The performance of the GNN algorithm was analysed by Monte

Carlo simulations using different variants of the basic algorithm. One of the variants

considered was the Bayesian GNN classifier. The results of this study suggest that the

GNN classifier based on the exact global dissimilarity measure performs by far the best

of the considered alternatives.
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‡ IRIDIA, Université libre de Bruxelles, Av. F. Roosevelt 50, CP 194/6, 1050 Bruxelles, Belgium;
tel: +32 (2) 344 82 96; email: psmets@ulb.ac.be



1 Introduction

This paper deals with the classification of an unknown number of objects, using the reports

that describe object classes in an uncertain manner. The reports are characterised by very

small probability of detection, meaning that on average a small fraction of objects is detected

and their characteristics reported at the time of sensing the environment. A sequence of in-

dependent reports (possibly from multiple sensors) is at disposal and the goal is to determine

the number and classes of objects.

The available reports for multi-object classification are characterised by two types of

uncertainty [1], [2]. The first type corresponds to the uncertainty due to randomness. For

example, if we were to select at random a ball from an urn with 4 red, 2 blue and 14 green

balls, there is a non-zero probability of selecting either of the three colours (all three are

possible). This type of uncertainty is therefore referred to as [1] the discord between the

alternatives, and is well known in the scientific and engineering literature: the primary tool

for dealing with the discord is the probability theory. Suppose we consider a universe with

a finite set of exclusive and exhaustive alternatives (hypotheses) Θ. The probability density

function (pdf) in this case is a weighted sum of Dirac delta functions. If all but one weights

in the pdf are equal to zero, the discord is zero, and there is no uncertainty (i.e. the pdf

describes a certain event). The highest discord corresponds to the case where all weights are

equal. The measure of discord is the Shannon entropy.

The second type of uncertainty is related to vagueness or imprecision of reports such

as the statement S: “The true hypothesis belongs to subset A of the universe Θ”, where

the cardinality of subset A (denoted as |A|) is greater than 1. In the extreme case, when

|A| = |Θ|, statement S is an expression of total ignorance. This type of uncertainty is
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referred to as non-specificity [1] or vagueness [2]. A few mathematical theories have been

developed recently to deal with non-specificity in addition to the discord, notably the belief

function theory [3] and the random set theory [4]. The probability theory is not formally

equipped to deal with non-specificity. Most probabilists argue, however, that non-specificity

can be dealt appropriately within the framework of the probability theory by using equi-

probability or the uniform density. This approach would then replace statement S (above)

by a statement Ŝ: “The probability density function over Θ is a weighted sum of Dirac delta

functions, where the weights of the elements in A are equal to 1/|A| and the others are zero”.

We will see in the paper that the described approach may lead to the loss of performance,

which should not be surprising: it replaces a non-specific (but correct) statement with a

specific but possibly incorrect statement. A generally accepted measure of non-specificity

was defined by Dubois and Prade [5].

The described problem of multi-object classification can be of importance for air surveil-

lance systems when objects are closely spaced so that their positional measurements are

of no value1, but their attribute reports (obtained for example by processing electromag-

netic emissions) are available for classification. The problem has many similarities with the

classical multi-object tracking problem [6], because sensor reports are not labelled and the

determination of the measurement origin (the so called data association problem) has to be

resolved. Similar issues have been encountered in mine detection [7], multi-sensor allocation

for submarine detection [8] and intelligence clustering [9].

The paper is organised as follows. Section 2 formulates the problem of multiple object

classification. Section 3 presents a review of the belief function theory which provides an

1Due to finite resolution and/or measurement errors.
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adequate framework for dealing with discordant and non-specific pieces of evidence. Sec-

tion 4 describes an adopted solution to multi-object classification. Section 5 is devoted to

dissimilarity for the global assignment. Some numerical results of multi-object classification

are reported and discussed in Section 6. The conclusions are presented in Section 7.

2 Problem Formulation

Suppose there is an unknown number M of objects in a given volume of interest. The

collection of objects is denoted by O = {1, 2, . . . , M}. Each object i ∈ O belongs to one

of the predefined class categories. The exclusive and exhaustive set of class categories (the

universal set) is given by:

Θ = {θ1, θ2, . . . , θN}. (1)

For simplicity we assume that the number of objects M is constant. The class of object

i ∈ O is denoted as θ(i) ∈ Θ.

At our disposal are sensors that are capable of measuring attributes or features that

relate to object classes. In the context of the air surveillance application, for example, we

could monitor a group of flying objects (in the surveillance volume of interest), and for

each detected object we could measure its characteristic features (e.g. its shape, kinematic

behaviour or its electromagnetic emissions). These features in general lead to discordant

and non-specific sensor reports. For example, an IFF sensor may report: “the object is not

friendly, with the probability of 0.7”. This report is discordant because its probability is

less than 1, but it is also non-specific, because a non-friendly object may be either neutral

or hostile2. Sensors in general detect objects with probability PD < 1 and in addition may

2Furthermore, a universal set that consists of three primary identification classes, i.e. {friendly, neutral

3



report false alarms with probability PFA. In this paper, however, we will restrict ourselves

to the PFA = 0 case.

A sequence of independent sensor reports (from possibly multiple sensors) is available

for classification. These reports are indexed by k = 1, 2, . . . , where k can be interpreted

as the time index of a report. Suppose a sensor providing a report at time k detected

Dk ≤ M objects, denoted as okjk
, jk = 1, . . . , Dk. For each detected object it provides a

partial (discordant and/or non-specific) knowledge about the actual class to which object

okjk
belongs.

This partial knowledge represents a weighted opinion expressed over the subsets of the

universal set Θ, and is denoted as mΘ
k {θ(okjk

)}, or simply mkjk
. For convenience, the weights

are scaled to 1, i.e.: ∑
A⊆Θ

mkjk
(A) = 1. (2)

Note that for A ⊆ Θ, mkjk
(A) is the part of the unit mass of the sensor opinion that

supports set A, but due to a lack of further information, does not support any strict subset

of A. Function mkjk
is a mapping of the power set over Θ (denoted as 2Θ) to [0, 1]. We will

see in the next section that function mkjk
plays a central role in the belief function theory.

A sensor report at k represents a collection:

Rk =
{
mkjk

, jk = 1, . . . , Dk

}
. (3)

We further assume that no single object is detected and reported more than once in Rk.

Conversely, each detection originates from a single object only.

and hostile}, is in practice only a coarsening of the universal set of all aircraft platforms. In this case, the

cardinality of a set of non-friendly objects is much higher than 2.
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The problem is to determine the number of objects M and the class of each object θ(i),

i = 1, . . . ,M . We want this to be done in a recursive manner, that is, sequentially at each

k = 1, 2, . . . , as the reports arrive. Note that it is possible that all objects are of the same

class, and inversely that all objects are of different classes.

3 A review of the belief function theory

3.1 Representation of partial knowledge

We adopt the framework and terminology of the belief function theory [3] as interpreted by

the transferable belief model (TBM) [10, 11], in order to provide a mathematical description

of discordant and/or non-specific knowledge about a class. In this framework, function mkjk

is referred to as the basic belief assignment (bba), and mkjk
(A) is interpreted as a fraction

of unit mass of belief which is allocated by a sensor in report Rk specifically to A ⊆ Θ, in

relation to the class of detected object okjk
. The subsets A of Θ such that mkjk

(A) > 0 are

referred to as the focal sets of this bba. The set of all focal sets of mkjk
is denoted by Fkjk

.

The universal set in the terminology of belief function theory is referred to as the frame of

discernment.

We will further simplify notation by dropping the subscripts of the bba and F. Some

special cases of bba’s are as follows:

• Certain bba represents perfect knowledge of the class – it has only one focal set whose

cardinality equals 1 (a singleton).

• Vacuous bba represents total ignorance – it has only one focal set, the universal set

Θ.
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• Bayesian bba represents a discordant but fully specific knowledge, i.e. all focal sets

are singletons. This bba corresponds to a probability function.

• A categorical non-specific bba represents a fully accordant (non-conflicting) but

non-specific knowledge – it has only one focal set A, such that 1 < |A| < |Θ|. Note

that statement S in the Introduction is an example of this type of the bba.

A bba with a zero mass given to the empty set, i.e. m(∅) = 0, is said to be normalised. In

this paper we will assume that sensors are supplying partial knowledge concerning the class

membership of detected objects as normalised bba’s.

A bba m can be equivalently represented by two non-additive fuzzy measures [1], a belief

function bel : 2Θ → [0, 1] and a plausibility function pl : 2Θ → [0, 1], defined as:

bel(A)
�
=

∑
∅�=B⊆A

m(B), ∀A ⊆ Θ (4)

pl(A)
�
=

∑
B∩A �=∅

m(B) = bel(Θ) − bel(Ā) ∀A ⊆ Θ (5)

respectively (Ā is a complement of A). According to (4), a normalised bba is characterised

by bel(Θ) = 1. The interpretation of these two functions is as follows: bel(A) represents the

total belief that is committed to A without also being committed to Ā; pl(A) corresponds

to the total belief which does not contradict A.

3.2 Combination of partial knowledge

Suppose we have two bba’s m1 and m2 on the same frame of discernment Θ, representing

two distinct pieces of evidence (sensor reports) about the object class. The joint impact of
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these two pieces of evidence can be expressed by the bba:

m1 ∩©2(A) = (m1 ∩©m2)(A) =
∑

B,C⊆Θ:B∩C=A

m1(B) · m2(C) (6)

for all A ⊆ Θ. Operation ∩©, referred to as the conjunctive rule of combination, is both

commutative and associative. It is important to know that the conjunctive combination of

two normalised bba’s m1 and m2 may result in a bba m1 ∩©2 with non-zero value of mass

given to the empty set. This quantity, denoted as

m1 ∩©2(∅) �
= (m1 ∩©m2)(∅) =

∑
B∩C=∅

m1(B)m2(C), (7)

is known as the degree of conflict between m1 and m2 because it represents the degree of

disagreement between the two sources of evidence. The normality condition may be imposed

on m1 ∩©2 by setting m1 ∩©2(∅) to zero and by dividing each mass m1 ∩©2(A), where A 	= ∅, by

1 − m1 ∩©2(∅). The conjunctive rule of combination with normalisation is referred to as the

Dempster’s combination and is denoted as ⊕.

3.3 Pignistic probability

The pignistic probability is the result of a mapping of a belief function m to a Bayesian

belief function, that is a probability function, denoted as BetP . For the singletons θi ∈ Θ

of the resulting Bayesian bba we have [11]:

BetP ({θi}) =
∑

θi∈A⊆Θ

1

|A|
m(A)

1 − m(∅) . (8)

The pignistic transformation (8) is linear and has some other useful properties [11], such as

that bel(θi) ≤ BetP (θi) ≤ pl(θi), if m(∅) = 0. Note that any Bayesian bba is invariant to

the pignistic transformation. The transformation of statement S (a categorical non-specific
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bba) to Statement Ŝ (a Bayesian bba) in the Introduction was carried out using the pignistic

transform. BetP is the probability measure that we use for decision making (betting) and

hence its name (pignus means a bet or a wage in Latin).

3.4 Vacuous extension and the product space

Given a bba mX (superscript here denotes the domain, that is the universal set on which

the bba is defined), its vacuous extension on space X × Y , denoted mX↑X×Y is given by

mX↑X×Y (C) =




mX(A) iff C = A × Y,A ⊆ X

0 otherwise.

(9)

Given two bba’s mX
1 and mY

2 , their conjunctive combination on X × Y can be obtained

by combining their vacuous extensions on X × Y using (6). Formally:

mX
1 ∩©mY

2 = mX↑X×Y
1 ∩©mY ↑X×Y

2 (10)

We thus obtain

(mX
1 ∩©mY

2 )(C) =




mX
1 (A) mY

2 (B) iff C = (A,B), A ⊆ X,B ⊆ Y

0 otherwise.

(11)

4 Multi-Object Classification

4.1 General Methodology

The proposed general methodology for multi-object classification using discordant and non-

specific object description is shown in Figure 1. The most difficult part is to determine

at each k the origin of all detected objects up to time k. This block, referred to as data
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Figure 1: A scheme for multi-object classification

association, aims to partition the accumulated set of sensor reports {Rj; j = 1, . . . , k} =

{m�,j�
, � = 1, . . . , k, j� = 1, . . . , D�} into clusters, each cluster defining an object. A cluster

of bba’s concerning the same object and taking into account sensor reports R1, R2, . . . , Rk

is denoted as Mkj = {m1j1 ,m2j2 , . . . ,mkjk
}, where j = 1, . . . , Jk and j� ∈ {0, 1, 2, . . . , D�}.

In this notation j� = 0 means that object j has not been detected at scan � and m� 0 is then

a vacuous bba. A partitioning hypothesis thus forms Jk clusters. Number Jk is an estimate

of the number of objects M .

An optimal algorithm for data association would need to enumerate all possible parti-

tioning hypotheses and then to rank them based on some criterion to select the best.

Once data association is completed, the clustered measurements are combined by the

Dempster’s rule of combination in order to determine the object class. The result of this

combination is a (possibly non-specific) bba

m̄kj = m1j1 ⊕ m2j2 ⊕ · · · ⊕ mkjk
. (12)

concerning the class of object okj, j = 1, . . . , Jk.

Next one can apply the pignistic transform and find its maximum in order to make a
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decision about the class of okj as:

θ(okj) = arg max
θi

{
BetP ({θi})

}
. (13)

In order to further illustrate the data association problem consider the following example.

Example 1. Suppose that the frame of discernment is Θ = {�,�,♦,©}. Let the de-

tected objects and sensor reports be as shown in Figure 2, with k = 3 scans, PD < 1. All

sensor reports in this example consist of certain bba’s. The correct partition of bba’s in the

R1

m ( )=111 21m ( )=1

22m ( )=1

23m ( )=1

32m ( )=1

33m ( )=113

31m ( )=1

24m ( )=1

m ( )=112

m ( )=1

R2 R3

Figure 2: An illustration of data association problem for multiple object classification (certain

bba’s)

accumulated set of reports {R1, R2, R3}, i.e. the correct data association hypothesis, in this

case is as follows:

M31 = {m11,m22,m32} for �

M32 = {m12,m24,m31} for ©

M33 = {m13,m23,m30} for �

M34 = {m10,m21,m33} for ♦.

With discordant and non-specific measurements, however, the correct partition will not be

so obvious.
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The number of possible hypotheses in the data association grows exponentially with k;

this is a well known NP hard problem in the tracking community [6], [12]. Practical algorithm

for data association are therefore based on approximations and one such an approximation,

known as the global nearest neighbour (GNN) algorithm, is presented next.

4.2 GNN algorithm

4.2.1 Overview

The GNN algorithm [6] is a single-scan algorithm which selects only the best hypothesis

at scan k and discards the rest. Suppose this best hypothesis forms Jk clusters Mkj =

{m1j1 ,m2j2 , . . . ,mkjk
}, where j = 1, . . . , Jk and j� ∈ {0, 1, 2, . . . , D�}. Here the assumption

is that all bba’s of cluster Mkj have a common origin, which is object okj. The class of object

okj is described by bba m̄kj = ⊕k
ν=1 mνjν .

When a new report arrives at k + 1, Rk+1 =
{
mk+1,jk+1

; jk+1 = 1, . . . , Dk+1

}
, the GNN

algorithm builds an assignment matrix, whose elements are dissimilarity measures between

the description of the existing (current) objects at k, {m̄kj; j = 1, . . . , Jk} and the measure-

ments in report Rk+1. The choice of an appropriate dissimilarity measure will be discussed

in Section 5. An example of the assignment matrix is given in Table 1, with Jk = 4 and

Dk+1 = 3.

The goal of the GNN algorithm is to find the overall (global) minimum dissimilarity

assignment between the currently existing objects and the measurements of the new report.

This problem is known as the two-dimensional (2D) assignment problem, and has a long

history [6]. Several optimal algorithmic solutions, such as the Hungarian, Munkres, JVC and

auction algorithm, have been proposed for 2D assignment. These solutions only differ in the
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Table 1: Example of an assignment matrix (optimal solution in bold)

Current Detected

at k mk+1,1 mk+1,2 mk+1,3

m̄k1 0.15 0.12 0.18

m̄k2 0.35 0.10 0.12

m̄k3 0.17 0.15 0.20

m̄k4 0.35 0.25 0.30

computational efficiency, not in the final assignment. Note that 2D assignment algorithms

treat the global dissimilarity as the sum of the pairwise dissimilarities.

The solution to the 2D assignment problem may not be trivial and this is illustrated

by the example of Table 1. Here, the globally optimal solution (indicated by bold numbers

in the table) pairs mk+1,1 with m̄k3, despite the fact that mk+1,1 is more similar to m̄k1.

Likewise, mk+1,2 is paired with m̄k1, although mk+1,2 is “closer” to m̄k2.

Once the global assignment is decided (using one of the mentioned algorithms), the bba’s

of detected objects at k + 1 are combined with bba’s of assigned existing objects at time k,

using the Dempster’s rule. In the example of Table 1 one would perform the combination as

follows:

m̄k+1,1 = m̄k1 ⊕ mk+1,2

m̄k+1,2 = m̄k2 ⊕ mk+1,3

m̄k+1,3 = m̄k3 ⊕ mk+1,1

m̄k+1,4 = m̄k4.
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4.2.2 The number of objects

When two objects belong to the same class, in general it does not imply that they are the

same object. Due to the lack of additional information, we will adopt the parsimonious

approach which asserts that the solution to the global assignment problem should involve

the smallest possible number of objects. In this way equality of classes becomes equality of

objects.

For the global assignment, the parsimonious approach will always try to assign all mea-

surements at k + 1 to the existing objects at k. This, however, may not be always possible,

because for some measurement to object pairings, the degree of conflict could be equal to

1.0. These associations are referred to as incompatible as their corresponding bba’s cannot

be combined by the Dempster’s rule (the effect of normalisation would be to divide by zero).

This process of eliminating some associations based on their incompatibility is known as

gating in the tracking literature [6]. Thus, we define a compatibility matrix κ = [κij], which

is of the same dimension as the assignment matrix, with elements

κij =




1 if mi ∩©mj(∅) < 1 − ε

0 otherwise,

(14)

where ε is a tuning parameter.

The number of objects, based on the parsimonious approach and the compatibility ma-

trix, is then given by:

M̂k+1 = Jk + Dk+1 − min

(∑
i

max
j

(κij),
∑

j

max
i

(κij)

)
(15)

For the assignment matrix of Table 1, the compatibility matrix is a matrix of ones and

M̂k+1 = Jk = 4.
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What remains in the proposed method of GNN for multi-object classification is to choose

the appropriate dissimilarity measure in the association matrix. This is the subject of the

next section.

5 Dissimilarity measures for the GNN algorithm

5.1 TBM solution

The basic assumption about our sensors is that two bba’s, if they originate from the same

class objects, are similar to one another and dissimilar otherwise. The more similar two

bba’s are, the more plausible it is that they originate from the same class objects. Thus we

will adopt a similarity measure based on the plausibility that measurement pairs originate

from the same class. A justification of this choice is given in Appendix.

5.1.1 Single assignment

We focus first on a simple case with a single assignment. We consider two objects, oi and

oj, and their respective normalised bba’s, mΘ{oi} and mΘ{oj}, based on distinct pieces of

evidence. The notation mΘ{oi} is adopted here to emphasize that this bba concerns object

oi; note that the domains of two bba’s, mΘ{oi} and mΘ{oj} are identical. The plausibility

that the two objects belong to the same class must be evaluated on the product space

Θ2 = Θ × Θ using the conjunctive combination of the vacuous extensions of mΘ{oi} and

mΘ{oj} [13]. From (11) it follows:

mΘ2{oi, oj} = mΘ{oi}↑Θ2 ∩©mΘ{oj}↑Θ2

. (16)
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Thus we have:

mΘ2{oi, oj}(C) =




mΘ{oi}(A) · mΘ{oj}(B) iff C = (A,B), A ⊆ Θ, B ⊆ Θ

0 otherwise.

(17)

This bba represents the joint belief about the actual class of each object.

The plausibility that the two objects oi and oj belong to the same class, i.e. θ(oi) = θ(oj),

according to (5) represents a sum of the masses mΘ{oi}(A) · mΘ{oj}(B), where A ∩ B 	= ∅.

Formally:

plΘ
2{oi, oj}

(
θ(oi) = θ(oj)

)
=

∑
A∩B �=∅

mΘ{oi}(A) mΘ{oj}(B) (18)

= 1 −
∑

A∩B=∅
mΘ{oi}(A) mΘ{oj}(B) (19)

= 1 −
∑

A∩B=∅
mΘ

i (A) mΘ
j (B) (20)

where in (20) we used for mΘ{oi} and mΘ{oj} a shortened notation mΘ
i and mΘ

j , respectively.

Based on the relationship (5) for normalised bba’s, pl(A) = 1− bel(Ā), we observe from (20)

that:

belΘ
2{oi, oj}

(
θ(oi) 	= θ(oj)

)
=
∑

A∩B=∅
mΘ

i (A) mΘ
j (B). (21)

Suppose we had assumed that two objects oi and oj belong to the same class. Then we

would have combined the two bba’s by the conjunctive rule of combination and the mass

given to the empty set would then be equal to:

mΘ
i ∩©j(∅) =

∑
A∩B=∅

mΘ
i (A)mΘ

j (B). (22)

From (21) and (22) it follows that

belΘ
2{oi, oj}

(
θ(oi) 	= θ(oj)

)
= mΘ

i ∩©j(∅), (23)
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that is

plΘ
2{oi, oj}

(
θ(oi) = θ(oj)

)
= 1 − mΘ

i ∩©j(∅). (24)

Equation (23) provides a meaning of the mass given to the empty set in the framework of

the TBM: the mass given to the empty set by the conjunctive combination rule applied to

two normalised belief functions is equal to the belief that the two objects do not belong to the

same class [13].

5.1.2 Global assignment of multiple objects

First we consider the case where PD = 1, meaning that the number of detected objects is

constant. For this case we prove the following theorem.

Theorem 5.1 Suppose there are two collections of objects, O1 = {o1i : i = 1, . . . , n} and

O2 = {o2j : j = 1, . . . , n}. One’s belief regarding the class of object o1i ∈ O1 and o2j ∈ O2

is quantified by bba mΘ{o1i} = mΘ
1i and mΘ{o2j} = mΘ

2j, respectively. The global assignment

of objects in O1 to the objects of O2 is specified by an assignment vector V =
[
v1, . . . , vn

]T
,

where vi means that θ(o1i) = θ(o2vi
), for i = 1, . . . , n. The plausibility of global assignment

V is then given by:

plΘ
2n
(
θ(o1i) = θ(o2vi

) : i = 1, . . . , n
)

=
n∏

i=1

(
1 − mΘ

1i ∩©2vi
(∅)
)
. (25)

Proof. The plausibility of a global assignment must be evaluated on the product space Θ2n

by the conjunctive combination of vacuous extensions of bba’s mΘ
1i and mΘ

2i, i = 1, . . . , n.

The joint bba on Θ2n is given by:

mΘ2n{o11, . . . , o2n} = ∩©i=1,2 ∩©j=1,...,nmΘ↑Θ2n

ij . (26)
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Since the assignment is specified by n pairs, the plausibility that θ(o1i) = θ(o2vi
), for i =

1, . . . , n is expressed as:

plΘ
2n
(
θ(o1i) = θ(o2vi

) : i = 1, . . . , n
)

=
∑

i=1,...,n;Ai,Bvi⊆Θ;Ai∩Bvi �=∅

(
n∏

i=1

mΘ
1i(Ai) mΘ

2vi
(Bvi

)

)

=
n∏

i=1

∑
Ai∩Bvi �=∅

mΘ
1i(Ai) mΘ

2vi
(Bvi

)

=
n∏

i=1

plΘ
2{o1i, o2vi

}(θ(o1i) = θ(o2vi
)
)

=
n∏

i=1

(
1 − mΘ

1i ∩©2vi
{oi}(∅)

)
. (27)

The step from line 1 to line 2 above is based on the relation

∑
w1,w2

f(w1)g(w2) =
∑
w1

f(w1)
∑
w2

g(w2).

�

Note that 1 − plΘ
2n
(
θ(o1i) = θ(o2vi

) : i = 1, . . . , n
)

has the same form as the “meta-

conflict” which Schubert [14] used as a criterion for clustering non-specific data.

In the case when PD < 1 we deal with two collections of objects O1 = {o1i : i = 1, . . . , n1}

and O2 = {o2j : j = 1, . . . , n2} with possibly n1 	= n2. The smallest number of objects then

must be n = max{n1, n2}. Suppose for the argument sake that n1 < n2. Then we add

n − n1 “unobserved” objects to O1 so that |O1| = n. Added objects are represented by

vacuous bba’s, so that the pairwise assignment of objects in O2 to the added objects of O1

has plausibility equal to 1.0 (i.e. no conflict). The likewise procedure applies if n2 < n1.

After addition of objects to either O1 or O2, the cardinality of these two sets will be equal to

n and we can again apply Theorem 5.1. A similar procedure of adding objects to O1 and/or

O2 is necessary if the compatibility matrix has all elements in some rows or columns equal to
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Table 2: The basic belief assignments quantifying one’s belief about the class of objects in O1

and O2; e.g. mΘ
11({θ1, θ2}) = 0.7 and mΘ

23({θ4, θ5}) = 0.2

O1 O2

o11 o12 o21 o22 o23

F11 mΘ
11 F12 mΘ

12 F21 mΘ
21 F22 mΘ

22 F23 mΘ
23

θ1, θ2 .7 θ3, θ4 1. θ3, θ5 .6 θ1, θ4, θ5 1. θ1, θ2 .8

θ2 .3 Θ .4 θ4, θ5 .2

zero. The following example illustrates the case where n1 	= n2, with the full compatibility

between the objects in O1 and O2.

Example 2. Suppose Θ = {θ1, . . . , θ5}, n1 = 2 and n2 = 3. Table 2 presents five collected

bba’s mΘ
si, s = 1, 2, i = 1, ..., ns, and their respective focal sets Fsi. Table 3 presents the results

of six possible conjunctive combinations of the bba’s specified by Table 2. Table 4 presents

for each combination the value of the plausibility that two objects belong to the same class

(the values of 1 minus the mass given to ∅ by the conjunctive combination rule). The goal is

to select an assignment which maximises the product of plausibilities, while keeping the total

number of objects as small as possible. There are at least n = max{n1, n2} = 3 objects, so

we must add one object, o13, to O1. This added object is represented by a vacuous bba for

mΘ
13{o13}. Hence mΘ

13 ∩©2j(∅) = 0 for j = 1, 2, 3 and thus the entries in row o13 of Table 4 are

all ones. From Table 4 we observe that the two best assignments with 3 objects are achieved

by associating o11 with o23, o12 with o21 and o13 with o22 (the product is 0.80, assignment

vector V = (3, 1, 2)) or associating o11 with o23, o12 with o22 and o13 with o21 (the product

is 0.80, assignment vector V = (3, 2, 1)).
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Table 3: Pairwise conjunctive combination of the bba’s in O1 and O2. Focal sets are repre-

sented as binary numbers; e.g. 10100 and 11001 represent the sets {θ3, θ5} and {θ1, θ4, θ5},
respectively. Masses given to the conflicts are in bold.

O2

o21 o22 o23

F21 m21 F22 m22 F23 m23

10100 0.60 11001 1.00 00011 0.80

O1 11111 0.40 11000 0.20

F11 m11 F m11 ∩©21 F m11 ∩©22 F m11 ∩©23

o11 00011 0.70 00000 0.60 00000 0.30 00000 0.20

00010 0.30 00010 0.12 00001 0.70 00010 0.24

00011 0.28 00011 0.56

F12 m12 F m12 ∩©21 F m12 ∩©22 F m12 ∩©23

o12 01100 1.00 00100 0.60 01000 1.00 00000 0.80

01100 0.40 01000 0.20

A full justification for the use of the proposed TBM similarity measure based on the

plausibility of the global assignment is illustrated in Appendix for the example in Table 2.

Theorem 5.1 provides the global similarity measure for a 2D assignment V . The goal

of GNN algorithm is to find the assignment which would maximise (25). Note that the

right-hand-side of (25) represents a product of pairwise plausibilities. Since the standard 2D

assignment algorithms (Munkres, auction, etc) minimise the global dissimilarity considered

as a sum of pairwise dissimilarities, we define an additive global dissimilarity measure of an

assignment based on (25) as follows:

D = − log
[
plΘ

2n
(
θ(o1i) = θ(o2vi

) : i = 1, . . . , n
)]

(28)

=
n∑

i=1

divi
(29)
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Table 4: The plausibility that object o1i and object o2j belong to the same class; o13 is the

unobserved object added to O1. The best association vector with n = 3 objects is either

(3, 1, 2) (meaning that o11 is associated with o23, o12 with o21 and o13 with o22) or (3, 2, 1).

O2

O1 o21 o22 o23

o11 0.40 0.70 0.80

o12 1.00 1.00 0.20

o13 1.00 1.00 1.00

where

dij = − log
(
1 − mΘ

1i ∩©2j(∅)
)
. (30)

Thus in creating an assignment matrix (as the one in Table 1) we use (30) to fill up its

entries. In this way we can apply one of the standard 2D assignment algorithms to solve the

data association.

5.2 Other proposed measures

The additive pairwise dissimilarity measure between mΘ
i and mΘ

j , defined by (30), has a

theoretical justification via the plausibility of class equivalence, as explained earlier.

Several alternative pairwise dissimilarity (or distance) measures have been proposed re-

cently in the framework of the belief function theory.

• Jousselme et al. [15] define a distance measure between mi and mj as follows:

dij
�
=

√
1

2

(
< mi,mi > + < mj,mj > −2 < mi,mj >

)
(31)

where

< mi,mj >=
∑
A∈F

∑
B∈F

mi(A)mj(B)
|A ∩ B|
|A ∪ B| (32)
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is referred to as the scalar product between two bba’s.

• The Euclidean distance is also defined by (31), but the scalar product takes the form:

< mi,mj >=
∑
A∈F

∑
B∈F

mi(A)mj(B). (33)

For Bayesian bba’s, the Euclidean and the Jousselme distances are identical.

• Tessem [16] proposed a distance measure to quantify the quality of belief function

approximations. His distance measure between mi and mj is defined as:

dij
�
= max

θ�

|BetPi(θ�) − BetPj(θ�)| (34)

where BetPi is the pignistic probability corresponding to bba mi.

• Blackman and Popoli [6, p.620] argue that the distance between two bba’s must in

some way include the ignorance factor. Following [17] they define a pairwise additive

dissimilarity measure as:

dB
ij

�
= −2 log[(1 − Kij)/(1 − Kmij)] + Ii + Ij − IjIj (35)

where Kij = mΘ
1i ∩©2j(∅), Kmij = max{Kii, Kjj}, and Ii =

∑
A∈F mi(A)(|A|−1)/(|Θ|−1)

is the ignorance factor. Since distance dB
ij can have negative values, we discard it as

being unsuitable for our application.

6 Numerical simulations

Numerical simulations have been carried out in order to quantify the performance of the

proposed method for multiple object classification. The performance analysis has been
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Figure 3: Performance analysis scheme

carried out using a number of Monte Carlo trials in the general scheme shown in Figure

3. Two types of sensors are available for collecting a sequence of reports Rk. Sensor type

1 is providing non-specific bba characterisation of detected objects with cardinality being

the sensor parameter. Sensor type 2 is providing purely Bayesian bba’s (that is probability

functions). The multiple object classification algorithm in Figure 3 has 5 different versions,

all based on the GNN algorithm and the global dissimilarity measure given by (29).

Version C-dist is using in (29) the TBM pairwise dissimilarity measure, defined by (30);

Version J-dist is using in (29) the Jousselme distance defined by (31) and (32);

Version E-dist is using in (29) the Eucledian distance, defined by (31) and (33);

Version T-dist is using in (29) the Tessem’s distance (34);

Version Pignistic is somewhat different from the others, since it first applies the Pignistic

transform (8) to the bba’s of report Rk in order to transform them into the Bayesian

bba’s. Subsequently it applies the GNN algorithm for multi-object classification, using

the Euclidean distance in (29). This version is effectively a Bayesian classifier, it is
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applying the probability theory to solve the problem, even when the sensor reports

are non-specific pieces of evidence (recall statements S and Ŝ in Introduction). If the

probability theory is indeed capable of dealing with non-specific measurements, this

version of multi-object classification algorithm should not be worse then any other in

the described experimental set-up.

Measurements from sensor 1 and 2 are generated in a random manner in order to carry out

Monte Carlo simulations. Munkres algorithm has been applied to perform the 2D assignment.

6.1 Sensor 1: non-specific data

The bba’s from Sensor 1 are always simple support functions, with 95% of the belief mass

given to A ⊂ Θ, and the remaining 5% to the universal set Θ. Subset A always contains the

true class of a detected object, i.e. if oi is detected and its class is θ(oi) = θn then θn ∈ A.

The cardinality of subset A is fixed and greater than 1; this is a sensor parameter. Other

elements of A are selected at random with a uniform density.

Figure 4 shows the classification results for the five variations of the GNN algorithm

(described above). The parameters used in simulations are as follows:

PD = 0.3, |Θ| = 6, O = {1, 2, 3} θ(1) = θ2, θ(2) = θ3, θ(3) = θ5. (36)

The cardinality of focal set A ⊂ Θ was fixed at 3. The performance curves in Figure

4 represent the average percentage of correctly classified objects (PCCO), with averaging

done over 500 Monte Carlo runs. The abscissa is index k = 1, 2, . . . .

From Figure 4 we observe that version C-dist performs the best, followed by J-dist, T-

dist and the Pignistic version. By far the worst is the performance of the E-dist version.
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Figure 4: Multi-object classification performance using non-specific sensor reports with car-

dinality 3

The results confirm that the TBM similarity measure based on the plausibility of object-

measurement pairings is the best for data association. We also note that the Bayesian

classifier (represented by the version “Pignistic”) is inadequate: the equi-probabilistic trans-

formation of a non-specific piece of evidence to a specific piece of evidence is just an approx-

imation which results in a degraded performance.

Similar results to those shown in Figure 4 were obtained for cardinality of focal set A

equal to 2, 4, 5, etc. The cardinality only affects the rate of increase of the PCCO: the larger

the cardinality the smaller the rate of increase.

6.2 Sensor 2: specific discordant data

The bba’s from Sensor 2 are Bayesian bba’s (that is probability distributions), simulated

using the Dirichlet distribution [18]. The probability density of the Dirichlet distribution for
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variables θ = [θ1, . . . , θN ] is determined by a parameter vector u = [u1, . . . , uN ]. This vector

defines the mean and the variance of the distribution. Denoting u0 =
∑N

i=1 ui, we have:

E{θi} =
ui

u0

var{θi} =
(u0 − ui)ui

u2
0(u0 + 1)

(37)

for i = 1, . . . , N . If object o� ∈ O has been detected, the components of parameter vector u

are selected as follows:

ui =




UT if θ(o�) = θi

UF otherwise

(38)

where UT > UF (otherwise the sensor would be worthless). In simulations we use UT = 5

and UF = 1.8. This type of sensor is sometimes specified by a confusion matrix [19]. In our

case, the confusion matrix would be diagonal with the diagnosticity factor (the ratio of the

diagonal and off-diagonal values) equal to UT /UF ≈ 2.78.

Figure 5 shows the classification results obtained using the same parameters as before,

specified by (36). We compare the same five variations of the GNN algorithm, using the

PCCO as the performance measure. Note, however, that for sensor 2 which supplies the

Baysian bba’s, the J-dist, E-dist and the Pignistic version of the GNN algorithm become

identical. The PCCO curves are obtained by averaging over 500 Monte Carlo runs.

From Figure 5 we conclude that once again the version C-dist performs the best, while

this time the worst performance is obtained using the Tessem’s distance. The result is

somewhat surprising because the bba’s reported by sensor 2 are Baysian bba’s, and hence

one would expect the probabilistic approach (version Pignistic) to perform at least as well as

the C-dist version. However, it does not – even in this case it is advantageous (although to a

lesser degree than in the case with Sensor 1) to use the plausibility (conflict) as a similarity

(dissimilarity) measure in data association.
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Figure 5: Multi-object classification performance using specific discordant evidence reports

We have further observed (figures not presented) that if we increase the diagnosticity fac-

tor of Sensor 2, all considered algorithms exhibit similar performance. Higher diagnosticity

essentially means smaller discordance and therefore easier classification.

Similarly, for the classification of a single object using discordant but specific data, all

considered algorithms perform the same. This observation is in the stark contrast to that

reported in [19], because the authors of [19] carried out an unfair comparison: they did not

provide the same input data to the Bayesian and to the belief function based classifier. From

this unfair comparison they drew wrong conclusions3; for further explanation see [20].

3In [19], the Bayesian classifier was supplied with the Bayesian bba’s (specific discordant data), while

the belief function classifier was given nonspecific discordant data (simple support functions with two focal

sets).
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7 Conclusions

The paper studied the problem of multiple object classification based on discordant and

non-specific data. A general methodology for solving this problem is suggested based on

the transferable belief model, a model developed to represent uncertainty using the belief

functions. A suboptimal single-scan algorithm, referred to as the the global nearest neigh-

bour (GNN), is adopted for data association. The exact dissimilarity measure of a global

assignment in the GNN context was derived. The performance of the GNN algorithm using

several alternative dissimilarity measures was analysed by Monte Carlo simulations. One of

the variants considered was the Bayesian GNN classifier. The results of this study suggest

that the belief function theory based GNN classifier, which maximises the plausibility of the

global assignment, performs by far the best among the considered alternatives. It appears

that when dealing with non-specific and highly discordant data, multiple object classification

using the Bayesian probabilistic approach is not appropriate.

Future work will extend the presented concepts to a multi-scan multi-object classification

algorithm (as opposed to the single-scan GNN algorithm), via the concept of multidimen-

sional data assignment [6, Sec.7.3],[21].

A A justification of the TBM similarity measure

There are many possible ways to define a global similarity measure in addition to the one

given by the right-hand side of eq.(25). Some seemingly viable solutions, for example, are:

S1 = 1 −
n∑

i=1

mΘ
1i ∩©2vi

(∅) or S2 = 1 − max
i

{
mΘ

1i ∩©2vi
(∅)} .
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By working out in detail the example of Table 2 on a Θ5 space, we derive the score of

the assignment which happens to be exactly the same as the similarity measure of eq.(25),

proposed by Theorem 5.1. In this way we justify the choice of the global similarity measure

based on the plausibility of a global assignment. We could derive the same result for the

general case, but the equations would become very messy and difficult to follow. We feel

that working out an example is more readable and convincing.

Let S = {1, 2} and Fsi = {Tsiν : ν = 1, ..., Nsi} be the set of focal sets of mΘ
si, where

s = 1, 2, i = 1, . . . , ns, and mΘ
si is the bba reported by sensor s about i-th object that it

detected. Let TSl = {Tsiνsi
: s ∈ S, i = 1, ..., ns} ∈ Θn1+n2 be a set of focal elements, one per

bba. The five bba’s from Example 2 are produced by distinct pieces of evidence and we

can thus combine their vacuous extension on Θ5 by the conjunctive combination rule:

mΘ5

S = ∩©s=1,2 ∩©i=1,...,ns
mΘ

si
↑Θ5

.

Consider the product term

mθ5

S (TSl) =
∏
s∈S

ns∏
i=1

mΘ
si(Tsiνsi

) (39)

where S = {1, 2} and l = 1, 2..., L =
∏

s∈S

∏ns

i=1 Nsi = 8.

This mass mΘ5

S (TSl) supports that the actual classes of the objects osi belong to Tsiνsi
,

respectively:

θ(osi) ∈ Tsiνsi
; s ∈ S, i = 1, . . . , ns.

The bba mΘ5

S is the joint belief about the actual classes of the five objects before considering

they can be associated.

Next we define a compatibility matrix at the focal set level. Fix l in TSl = {Tsiνsi
: s ∈

S, i = 1, ..., ns} where Tsiνsi
is a focal element of mΘ

si. A compatibility matrix of the focal
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sets CSl = [cij] is a n1 × n2 matrix where cij ∈ {0, 1} and cij = 1 if T1iν1i
∩ T2jν2j

and zero

otherwise.

Table 5 presents the 8 masses computed from relation (39), and for each of them their

corresponding compatibility matrices. In all cases except the fifth with mass 0.036, we need

n = 3 objects. For the fifth case, n = 4 objects are needed as o11 is not compatible with any

of the three objects o2j.

With 3 objects, we can generate 6 assignment vectors. For the 4 object case, we need 3

assignment vectors (the other correspond just to a permutation of objects o13 and o14 which

do not exist in O1, and the only focal set of their bba is Θ. The set of possible assignment

vectors based on n = 3 objets and those relevant for the case with n = 4 objects are listed

in Table 6.

Table 7 presents for each mass and each assignment vector, the focal set of the 3 or 4 final

objects. For example, consider assignment number 3 (assignment vector V (3) = (2, 1, 3), in

shortened notation 213). The mass m(1) = 0.336, for assignment 3, is given to θ(os1) = θ3

and θ(os2) = θ1 and θ(os3) = θ1 or θ2. Similarly mass m(5) = 0.144, given assignment

7 (4123) is given to θ(os1) = θ3 and θ(os2) = θ1 or θ4 or θ5 and θ(os3) = θ1 or θ2 and

θ(os4) = θ2. Mass m(1) = 0.336 under assignment 1 (123) is allocated to the empty set. The

bottom row of Table 7 represents the conflict corresponding to each of the nine association

vectors, and computed by summing the masses m(i) corresponding to the empty sets. For

example, the conflict of V (1) = (1, 2, 3) is a sum 0.336 + 0.084 + 0.144 + 0.036 = 0.60. It is

important to note that associations V (4) = (3, 1, 2) and V (6) = (3, 2, 1) are characterised by

the smallest amount of conflict among those with n = 3 objects. This, however, is exactly the

same result as the one obtained by Theorem 5.1 and described in Example 2; the appendix
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Table 5: The eight compatibility matrices with their masses and the list of assignment vectors

V (�) induced by them and listed in Table 6

m = .336 θ3, θ5 θ1, θ4, θ5 θ1, θ2 V (�)

θ1, θ2 0 1 1 3 4 6

θ3, θ4 1 1 0 7 8

m = .084 θ3, θ5 θ1, θ4, θ5 θ4, θ5

θ1, θ2 0 1 0 3 5

θ3, θ4 1 1 1 7 8 9

m = .224 Θ θ1, θ4, θ5 θ1, θ2

θ1, θ2 1 1 1 1 3 4 6

θ3, θ4 1 1 0 7 8

m = .056 Θ θ1, θ4, θ5 θ4, θ5

θ1, θ2 1 1 0 1 2 3 5

θ3, θ4 1 1 1 7 8 9

m = .144 θ3, θ5 θ1, θ4, θ5 θ1, θ2

θ2 0 0 1 1 2 3 5

θ3, θ4 1 1 0 7 8 9

m = .036 θ3, θ5 θ1, θ4, θ5 θ4, θ5 Θ

θ2 0 0 0 1

θ3, θ4 1 1 1 1 7 8 9

m = .096 Θ θ1, θ4, θ5 θ1, θ2

θ2 1 0 1 1 4 6

θ3, θ4 1 1 0 7 8

m = .024 Θ θ1, θ4, θ5 θ4, θ5

θ2 1 0 0 1 2

θ3, θ4 1 1 1 7 8 9
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Table 6: The overall score for each assignment vector V (�)

�
∏3

j=1(1 − mjvj
(∅)) assignment vector V (�)

1 0.40 1 2 3

2 0.08 1 3 2

3 0.70 2 1 3

4 0.80 3 1 2

5 0.14 2 3 1

6 0.80 3 2 1

7 1.00 4 1 2 3

8 1.00 4 2 1 3

9 0.20 4 3 1 2

explains the origin of the criterion used in (25).
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