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1. Introduction.

Recent research in automated reasoning have been oriented toward the implementation of
commonsense reasoning in AI. Such an enterprise could only succeed if uncertainty
could be mastered by appropriate approximate reasoning models (Lopez de Mantaras,
1990). Probability theory, the obvious candidate for modelling uncertainty, was seen as
too limited to express all forms of uncertainty.

New models have been developed based either on numerical methods (possibility theory,
theory of evidence, theory of the  certainty factor) or non-numerical methods (non-
monotonic logic, default logic, autoepistemic logic). Our discussion is focussed on
numerical approaches but could be extended to non-numerical approaches mutis
mutandis.

The great danger in computer implementation of approximate reasoning is the use of
inappropriate, unjustified, ad hoc models. Newcomers in the domain of commonsense
reasoning could be overwhelmed by the multitude of models.  Their reaction could be
either to accept one of them and use it in every context or to use all of them somehow at
random. Both attitudes are wrong.  The stubborn use of one model is inappropriate as
ignorance, uncertainty and vagueness are really different concepts. Random usage
usually leads to inappropriate matching.

This paper is a plea for the use of correct models. An understanding of the forms of
ignorance and the nature and the foundations of each model are required. Before using a
quantified model, we must

1) provide a meaning for the numbers, i.e. provide canonical examples where the origin
of the numbers can be justified
2) understand the fundamental axioms of the model and their consequences.  The choice
of axioms should be justified by "natural" requirements.
3) study the consequence of the derived models in practical contexts to check their
validity and appropriateness

A common error consists in accepting a model because it 'worked' nicely in the past.
This property is not a proof that the model is correct. Experimental results can only prove
that a model is wrong, not that it is correct. They only give hints about its value.

To illustrate our message, we present a survey of certain forms of ignorance and of the
mathematical models that have been suggested to quantify ignorance. We first present an
example of an inadequate model. We present the survey, and finish with a plea for future
studies covering the integration of the models.

1 The following text presents research results of the Belgian National incentive-program for fundamental
research in artificial intelligence initiated by the Belgian State, Prime Minister's Office, Science Policy
Programming. Scientific responsibility is assumed by its author. Research has partly been supported by
the DRUMS (Defeasable reasoning and Uncertainty Management Systems) project funded by EEC grants
under the ESPRIT II Basic Research Project 3085.
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2. Example

Certainty factors (Shortliffe and Buchanan, 1975) based models were probably the first
to be used in an expert system to quantify uncertainty.  Their use results from the
excellent insight that probability models are too restrictive to model quantified beliefs as
they appear in diagnostic contexts.  A piece of evidence e could support a hypothesis h
without necessarily supporting the complement of that hypothesis.  The authors rejected
the rule that

belief (h|e) = f(belief(¬h|e))

where belief(h|e) is the belief that hypothesis h is true given the piece of evidence e.  But
for lack of alternative models they created an ad hoc model based on measure of belief,
disbelief and what is known by now as certainty factors.  The aim was great, the result
was shaky.

Not only was he meaning of the numbers not supported but what was more, the models
did not satisfy some fundamental requirements. What does .7 mean in "my CF is .7"?
Why not .6 or .8? Some yardstick is required. For subjective probability theory, urns
provide a yardstick such as our belief that the next randomly selected ball is white is
equal to the proportion of white balls in the urn - an objective unassailable value.
Analogous canonical examples have also been developed for belief functions based
models (Shafer and Tversky, 1985).

As an example of the weakness of the model itself, suppose there are two rules IF E1
THEN H and IF E2 THEN H with certainty factor CF1 and CF2. The parallel
combination of CF1 and CF2 gives the combined CF12 for H given both pieces of
evidence:

(*) CF12 = CF1 + CF2 - CF1.CF2 if CF1 and CF2 are positive

CF1 + CF2 + CF1.CF2 if CF1 and CF2 are negative

 
CF1 + CF2

1 - min(CF1, CF2) if CF1.CF2 is negative

A natural requirement for any model for parallel combination is that the combination
should be associative. But the rules (*) are not associative.

Furthermore (*) should never be applied if E1 and E2 are deduced from a common piece
of evidence E0 .  Suppose we have the following rules

IF E0  THEN E1
IF E0 THEN E2
IF E1 THEN H
IF E2 THEN H

where all certainty factors are 1. Let the certainty factor of E0 be α, then both E1 and E2

have certainty factor equal to α. A blind application of (*) leads to a certainty factor of

2α  - α2 for H.  The result is wrong as the set of four rules can be reduced into IF E0

THEN H with CF = 1, and therefore the certainty factor of H given E0 should be α.

This example shows the danger of using ad hoc models blindly.  The correct way is to
build a set of requirements and to build a model that satisfies these requirements as is
done in Heckerman (1986).
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3. Variety of ignorance.

Ignorance can be subdivided into 3 large categories : incompleteness, imprecision,
uncertainty (Bonissone and Tong, 1985).

Incompleteness covers cases where the value of a variable is missing.
Imprecision covers cases where the value of a variable is given but not with the
precision required.
Uncertainty covers cases where an agent can construct a personal subjective opinion
on a proposition that is not definitively established for him.

The distinctions between these categories are vague and it might be argued that
incompleteness is just an extreme form of imprecision (when nothing is known). The
following examples illustrate the three forms of ignorance.

Incompleteness. Suppose we have a database that should include marital status and
the name of the spouse, and on which the information is error-free.  Also suppose the
database contains the information "John is married" but the value of the variable "name
of spouse" is missing.  This information is incomplete since we do not know the name
of John's wife but what is available is precise (he is married) and certain (the information
is error-free).

Imprecision . Suppose the value of the variable "name of spouse" is "Jill or Joan".
This information is complete inasmuch as both marital status and the wife's name are
known, but it is imprecise because there is some ambiguity as to whom his wife is.  No
uncertainty is present here since the information is error-free.

Uncertainty. Suppose the information in the database were provided by some
untrustworthy person who said that "John's wife is Jill". The information is complete,
precise but uncertain since it might be wrong.

A major difference between these three forms of ignorance is related to the objective or
subjective component, as to whether the observer is involved or not. Incompleteness and
imprecision are objective forms of ignorance. They exist independently of the
observer: these properties belong to the data.  Uncertainty is a subjective form of
ignorance.  It appears when the observer is taken into account.  It is the observer that is
not certain about the available information. This information only induces some form of
partial knowledge or belief  in the observer.

Imprecision and incompleteness are context dependent.  When I invite guest to my
party and I only know "John is married" and his wife is "Jill or Joan", this imprecise
information is sufficient if I want to invite only married people, but insufficient if I want
to assign seats at the dinner tablein such a way that John will be sitting on the right of his
wife. Similarly, if I want to select people whose height is above 150 cm, information
like 'Paul's height is >170 cm' or 'Paul is tall' are sufficient, whereas if I want to select
only those taller than 175 cm, neither piece of information is sufficient.

Within the three categories of ignorance, one can describe many subcategories. The
following table presents the types of model, the types of ignorance and an example for
each subcategory.
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Incompleteness:
Combinatory Existential John is married, but his wife's

name is not given

Combinatory Universal: All computer scientists like pizza,
but their names are not available.

Imprecision:
Combinatory Disjunctive John's wife is Jill or Joan.

Combinatory Negation Jill is not John's wife.

Interval theory Interval valued Paul's height is
information between 170 and 180.

Fuzzy sets Fuzzy valued Paul is tall.
information

Possibility Theory Possibility the possibility  for Paul's height
(physical form) to be about 175 cm.

Uncertainty:
Probability Theory Probability the chance of it being "heads"
 Upper-Lower Probabilities when tossing a coin.

Possibility Theory Possibility the possibility that  Paul's height
(epistemic form) is about 175 cm.

Subjective Probabilities Credibility my degree of belief that cancer X
Belief functions is due to a virus.

Combinatorial models are not considered here. In practice, they cannot be solved
through brute force solutions because of the combinatorial explosion. Default logics and
other non monotonic logics have been proposed to solve these problems.

4. IMPRECISION-UNCERTAINTY

Among the numerical models proposed to cope with the various forms of ignorance, the
most used are the fuzzy sets theory, the probability theory, the upper and lower
probability theory, the possibility theory and the theory of evidence.

4.1. Fuzzy Sets Theory

Fuzziness is the property related to the use of vague predicates like in 'John is tall'.  The
predicates are vague, fuzzy because the words used to define them are themselves ill
defined, vague, fuzzy. The idea is that belonging to a set admits a degree that is not
necessarily just 0 or 1 as is the case in classical set theory. Intermediate values are
accepted in order to cope with borderline cases. It is different from probability and
randomness. Randomness talks about the certainty of whether a given element belongs
or not to a well-defined set. Fuzziness talks about the imprecision derived from the
partial membership of a given and well defined element to a set whose boundaries are not
sharply defined.  (Zadeh 1965, 1975, Dubois and Prade 1980)
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4 . 2 . Probability theory.

Probability theory is used to quantify the chance that an event might occur or the belief
that a proposition is true. Events occur or do not occur, propositions are true or false.
No vagueness is involved. Probability theory provides a metalanguage that quantifies the
chance that some events might occur or some propositions are true. Its adequacy for
random processes has been known for centuries. Its role for decision under risk is well
established (Degroot 1970). Bayesians postulate that models like this should be used to
quantify one's beliefs, but it is still an open question (Fine 1973).

4.3. Upper and Lower Probability

Among the models proposed to describe degrees of belief, Smith (1961, 1965) and
Good (1950, 1983) have postulated that one can often only claim that the probability
function that describes our degrees of belief belongs to a convex set P of probability
functions. This set  can be characterized by the so called upper and lower probabilities,
that is the maximal and minimal probability given to each proposition, where the
extremes are taken on the probability functions belonging to the convex set P.

A special case of upper and lower probabilities has been described by Dempster (1967,
1968). He assumes the existence of a probability function on a space X and a one to
many mapping M from X to Y. Then the lower probability of A in Y is equal to the
probability of the largest subset of X such that its image under M is included in A. The
upper probability of A in Y is the probability of the largest subset of X such that the
images under M of all its elements have a non empty intersection with A.

4 . 4 . Possibility-necessity

Incomplete information such as "John's height is above 170" implies that any height h
above 170 is possible and any height equal or below 170 is impossible. This can be
represented by a possibility function defined on the height domain whose value is 0 if h
< 170 and 1 if h is ≥  170 (with 0 = impossible and 1 = possible). Ignorance results
from the lack of precision, of specificity of the information "above 170" . Its
fundamental axiom is that the possibility of the disjunction of two propositions is the
maximum of the possibility of the individual propositions. (Zadeh 1978, Dubois and
Prade, 1985).

When the predicate is vague like in "John is tall', possibility can admit degrees, the
largest the degree, the largest the possibility. But even though possibility is often
associated with fuzziness, the fact that non fuzzy (crisp) events can admit different
degrees of possibility  is shown in the following example. Suppose there is a box in
which you try to put tennis balls. You can say: it is possible to put 20 balls in it,
impossible to put 30 balls, quite possible to put 24 balls, but not so possible to put 26
balls...These degrees of possibility are degrees of realizability and totally unrelated to
any supposedly underlying random process.

Two forms of (continuous valued) possibility have been described: the physical
and the epistemic. These 2 forms of possibility can be recognized by their different
linguistic uses: it is possible that and it is possible for (Hacking 1975). When I say
it is possible that  Paul's height is 170, it means that for all what I know, Paul's height
may be 170. When I say it is possible for Paul's height to be 170, it means that
physically, Paul's height may be 170. The first form, 'possible that', is related to our
state of knowledge and is called epistemic. The second form, 'possible for', deals with
actual abilities independently of our knowledge about them. It is a degree of realizability.
The distinction is not unrelated to the one between the epistemic concept of probability
(called here the credibility) and the aleatory one (called here chance). These forms of
possibilities are evidently not independent concepts, but the exact structure of their
interrelations is not yet clearly established.
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Necessity is defined by the dual property: the necessity of a proposition A is the
complement (to 1) of the possibility of not-A.

4.5. Credibility: the transferable belief model.

Information can induce in us some subjective, personal credibility (hereafter called
belief) that a proposition is true.  Its origin lies either in the random nature of the
underlying event or in the partial reliability that we give to the source of information.

In the first case, one ends up with a probability function if one accepts the frequency
principle (Hacking 1965) that, given the chance that a random event X might occur is
p, our degree of belief that it will occur is p.

IF chance(X)=p THEN belief(X) = p

This is fundamental for the classical bayesian model, as it relates chance and belief.

When randomness is not involved, there is no necessity that credal states (the
psychological level where beliefs are entertained) have to be quantified by probability
functions. (Levi 1984). The coherence principle advanced by the bayesians to justify
probability functions is adequate in a context of decision (Degroot 1970), but it cannot be
used when all one wants to describe is a cognitive process. Beliefs can be entertained
outside any decision context. In the transferable belief model (Smets 1988) we
assume that beliefs at the credal level are quantified by belief functions (Shafer 1976).
When decisions must be made, our belief at the credal level induces a probability
function at the so-called 'pignistic' level (the level at which decisions are made). This
bona fide probability function will be used in order to make decisions using expected
utilities theory. Relations between belief functions and pignistic probabilities are given in
Smets (1989).

5. Combining models of ignorance.

The various forms of ignorance can be encountered simultaneously and it is necessary
that we be able to integrate them. In common-sense reasoning, two forms of ignorance,
sometime three, are often encountered in the same statement. Just to give an idea of the
problem, consider the following example of generalized modus ponens.

I strongly believe that it is somehow possible that 'If a father is tall,  then his son is
usually quite tall'.
I believe that  it is more or less true that 'Paul is quite tall'.
What can I say about the height of his son.

This example is evidently too complex to be encountered in practice, but it includes most
forms of ignorance..

To deal with problems like this, beliefs, possibilities, fuzziness need to be combined,
and a set of metalanguages must be constructed. Care must be given however to
what are the domains of each operator. For instance, probability deals with two
domains, the set of propositions (as are usually mentioned) and the truth domain (that is
usually disregarded as it contains only two elements, but must be considered once fuzzy
propositions are accepted).

The first problem is to see the connections between the probability theory in its
frequency approach and the physical possibility theory.  The next problem is to see the
connections between subjective probability functions, belief functions and epistemic
possibility functions.  Finally, one must establish the connections between the physical
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properties and the epistemic properties. There is the further the problem of extending all
these theories when the propositions involved are fuzzy.

Almost no work has yet been done in this area. But its importance for datafusion is
obvious: when several sensors provide information, how do we recognize the nature of
the ignorance involved and select the appropriate model,  how do we collapse them into
more compact forms, how do we combine them, how do we take into consideration the
redundancies, the correlations  and the contradictions. All these problems must be
studied and the implementation of potential solutions tested.

Understanding of the meaning of statements and their translation into
appropriate models is delicate, if not hazardous. For example, how do we translate
"usually bald men are old". Which of P(bald|old) or P(old|bald) is somehow large?
"When x shaves himself, usually x does not die". Which conditioning is appropriate:
Pl(dead|shaving) or Pl(shaving|dead)?  Is it a problem of plausibility or possibility?
These examples are just illustrative of the kind of problems that must be addressed.
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