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Abstract. We develop a method to evaluate the reliability of a sen-
sor in a classification task when the uncertainty is represented by belief
functions as understood in the transferable belief model.

This reliability is represented by a discounting factor that minimizes
the distance between the pignistic probabilities computed from the dis-
counted beliefs and the actual values of the data in a learning set.

We then describe a method to tune the discounting factors of several
sensors when their reports are merged in order to reach an aggregated
report. They are computed so that together they minimize the distance
between the pignistic probabilities computed from the combined dis-
counted belief functions and the actual values of the data in a learning
set.

The first method produces the reliability of a sensor considered alone.
The second method considers a set of sensors, and weights each of them
so that together they produce the best predictor.

1 Introduction

The belief function theory, in particular the Transferable Belief Model (TBM),
is more and more used to represent and deal with uncertainty. It can be seen
as a generalization of subjective probability theory. The TBM allows to handle
data collected from partially reliable sensors. It can represent full, partial and
even total ignorance. The conjunctive rule of combination provides the tool to
aggregate the reports produced by several sensors in order to get their merged
report. It seems to be perfectly adapted for multisensor data fusion [14].

Sensors use different approaches and types of measurements and work in
different environments, and their reliability can vary from one to the other. One
way to take in consideration the reliability and applicability of a sensor consists
in weighing / discounting their reports.

In the TBM, a sensor reports about the actual value of a variable is rep-
resented by a belief function. The reliability of the sensor is represented by a



discounting factor, i.e., a coefficient that ‘weights’ the belief function produced
by the sensor. Reliability and discounting are linked by the idea that if a sensor
is felt as unreliable by the user, he/she will discount what the sensor states.
Discount can be understood as ‘partially disregard’. The smaller the reliability,
the larger the discounting. The discounting factor is a well defined concept in
belief function theory (see section 2.3), whereas reliability will be used unfor-
mally hereafter.

This paper addresses the problem of assessing the discounting factor to be
applied to the beliefs generated by the sensors. We develop two methods appli-
cable in two contexts. The first consists in assessing the discounting factor to be
applied to one sensor by comparing its report (represented by a belief function)
with the actual values. The second consists in assessing the values of the dis-
counting factor to be given to each of several sensors when their reports must
be merged. It is obtained by comparing the merged discounted belief function
with the actual values.

The first method concerns one sensor, the second concerns a group of sensors
who jointly must produce an aggregated decision.

It may seem odd that we speak of ‘beliefs held by a sensor’, but the term
belief is to be taken in a neutral way. No philosophical or psychological conno-
tation is to be introduced. It is just a tradition that the functions that represent
the sensor report are called ‘belief function’, hence the ‘belief’ term. Classically,
sensors produce likelihoods. Here we just replace the term likelihood by beliefs,
what enhances that we use belief functions and not probability functions.

This paper is composed as follows. We start by giving an overview of the
basics of the TBM. Next, we present the multisensor data fusion within the be-
lief function formalism. We then describe the two methods for assessing sensor
reliabilities and for tuning them. Each method is illustrated by an example ex-
plaining its unfolding.

In this paper, we speak of sensors, but all we present here can be applied di-
rectly to other problems, like expert opinion pooling. An expert is just a sensor,
and his/her opinion is equivalent to a sensor report. Data fusion and opinion
pooling are analogous.

Experts differ in level of expertise, some of them are more reliable than
others due to their better knowledge, training, experience, intelligence ... To
express their opinions, experts may use different background, methodology and
even knowledge. Hence, the necessity to consider the expert’s reliability when
receiving their opinions, and consequently these judgments must be appropri-
ately ‘discounted’.

Thus, the concepts of expert, opinion and expert opinion pooling are equiv-
alent to those of sensor, report and data fusion. The methods presented in this
paper can be applied directly to this other domain. Note that other researchers
have proposed to assess experts’ discounting factors within the belief function
theory, we basically mention the one developed by Zouhal and Denoeux [15].



2 Belief Function Theory

In this section, we briefly review the basics of the belief function theory as inter-
preted in the Transferable Belief Model (TBM). For a more detailed explanation
and other basics see [6, 10, 11].

2.1 Definitions

Let © be a finite set of elementary and mutually exclusive hypotheses related to
a given problem domain. It is called the frame of discernment. One value of ©,
denoted 6y, corresponds to the actual value of ©. This actual value is not known
by the belief holder (the sensor).

A basic belief assignment (bba) is a function m from the power set of O,
denoted 29, to [0, 1] verifying:

> om(4) =1 (1)

The basic belief mass (bbm) m(A) given to A C @ is the amount of belief
specifically assigned to the event 8y € A and that cannot support any subset of
© more specific than A.

The belief function (bel) represents the belief assigned to an event A C 6.
It is equal to the sum of bbm committed to the subsets of A. For each bba m,
there corresponds a belief function bel such that: bel : 2 — [0, 1], and defined
by:

bel(A)= Y m(B), VACO. (2)
0£BCA

A vacuous belief function is such that m(©) = 1 and m(4) = 0, VA C
O, A # O. It represents a state of the total ignorance.

2.2 Combination

Consider two pieces of evidence on the same frame © represented by the two bbas
my and msy, the joint bba quantifying the combined impact of these two pieces
of evidence is obtained through the conjunctive combination rule as follows [8]:

(m1 @mg)(A) = Z mi (B)mQ(C') (3)
B,CCO:BNC=A

where ® denotes the operator of conjunction. The classical Dempster’s rule of
combination is the conjunctive combination rule where the result is normalized
by dividing each term by (1 — (m1®m2)(0)). It is defined as:

(my ®ms)(4) = K. > my (B).ma(C) (4)
B,CCO:BNC=A



where

K'l=1- > my (B).ms(C) (5)

B,CCO:BNC=0

and
(m1 & m2)(0) = 0. (6)

K is called the normalization factor.

The conjunctive combination rule and Dempster’s rule of combination are
commutative and associative, so we can combine several belief functions itera-
tively and in any order.

2.3 Discounting

Reliability, i.e. our opinion about the ‘value’ of a sensor, varies from sensor to
sensor. The idea is to weight more heavily the reports produced by the ‘best’
sensors and conversely for the ‘bad’ ones. For a € [0, 1], let (1 — ) be the degree
of ‘confidence’ we assign to the sensor. It can be encoded into a bba defined on
the set {reliable, not reliable} such that [9]:

m(reliable) =1 —a  and  m(not reliable) = a (7)

Suppose the bba m on O represents the sensor report about the actual value
of ©. The result of combining the sensor report with the bba given in (7) is a
new bba, denoted m®, defined as:

m*(A) = (1 —a).m(A) for ACO (8)
m*(0) =a+ (1 —a).m(O) 9)

This operation is called a discounting by Shafer [6] and the coefficient « is
called the discounting factor. The larger «a, the closer m® is from the vacuous
belief function.

2.4 Pignistic Transformation

To make decisions in the TBM, we build a probability function BetP on @, called
the pignistic probability function, by applying the pignistic transformation [10].
It is defined by:

|ANB| m(B)
BetP(A) =  VACO (10)
2 B 1o



3 Multisensor Data Fusion with the TBM

Multisensor systems can be used for the detection, localization and recognition
of objects in a given area [1]. Handling information collected by different sensors
requires an evidence gathering process, called a multisensor data fusion process,
in order to get, hopefully, a ‘better’ information. The TBM offers a formal way
to combine sensor data what is achieved by the conjunctive combination rule.
As mentioned before, sensors do not usually have the same level of reliability,
so before pooling sensor reports (hence combining their belief functions), each
belief function should be discounted to take into account the sensor reliability
represented by the discounting factor. When these discounting factors are not
known, they must be assessed. We propose two methods for such an assessment,
which correspond to the two different contexts mentioned in the introduction.

4 Evaluating Sensor’s Reliability

4.1 Introduction

Finding an ’automatic’ method to assess the sensor’s reliability relative to a
given problem requires information regarding the judgments given previously by
the sensor concerning ’past’ events (related to the same problem) for which the
truth is known by us and not by the sensor. Then, a comparison between the
truth and the sensor’s judgments allows to derive the reliability of the sensor.

In practice, one domain where we can get this kind of information is rep-
resented by classification problems'. In such problems, we can get the sensor’s
reports on the classes to which an object belongs, a class otherwise well known
by us. In the following subsections, we focus on classification problems. The
method can easily be adapted to other domains, the underlying schema being
quite general.

4.2 The Framework

Let T be a set composed of n objects denoted by o; (§ = 1,2, ...,n). Each object
has to belong to one of the possible classes relative to the given problem. The
set of classes is defined by © = {61,6,,...,0,}. For each object o;, we know its
class, denoted ¢; with ¢; € ©, and the sensor produces a bba, denoted m@{oj}
on O, that represents its opinion on the actual value of c;.

5 Evaluating the sensor’s reliability

5.1 Introduction

Finding an ’automatic’ method to assess the sensor’s reliability relative to a
given problem requires information regarding the judgments given previously by

! Several classification methods have been developed using belief function basics like
the one proposed by Denoeux [2], and the one proposed by Elouedi and al. [3].



the sensor concerning ’past’ events (related to the same problem) for which the
truth is known by us and not by the sensor. Then, a comparison between the
truth and the sensor’s judgments allows to derive the reliability of the sensor.

In practice, one domain where we can get this kind of information is rep-
resented by classification problems?. In such problems, we can get the sensor’s
reports on the classes to which an object belongs, a class otherwise well known
by us. In the following subsections, we focus on classification problems. The
method can easily be adapted to other domains, the underlying schema being
quite general.

5.2 The Framework

Let T be a set composed of n objects denoted by o; (j = 1,2, ...,n). Each object
has to belong to one of the possible classes relative to the given problem. The
set of classes is defined by @ = {61,6,,...,0,}. For each object o;, we know its
class, denoted ¢; with ¢; € ©, and the sensor produces a bba, denoted m@{oj}
on O, that represents its opinion on the actual value of c;.

5.3 Assessing the Discounting Factor

The first method considers one sensor for which we want to assess its reliability,
thus its discounting factor. This is done by comparing the bba produced by the
sensor about the class of each of the n objects with their actual classes.

If we knew the discounting factor a applicable to a sensor we would discount
the bba it generates by the discounting factor. So we would compute the bba
m®{o;} using relations (8) and (9).

If we had to decide which class objects o; belongs to, we would then com-
pute the pignistic probability from m®%{o0;}. Let the result be denoted by
BetP@’“{oj}. This probability function is then to be compared with the ac-
tual value c; of object 0;. Let the indicator function ¢ be defined as d;; = 1 if
¢j = 6; and 0 otherwise.

The distance between the pignistic probability computed from the discounted
sensor’s report and the indicator function ¢ is used as a measure of the reliability
of the sensor for what concerns object o;, and their sum over the n objects is
used as a measure of the overall reliability of the sensor. It is denoted Total Dist
and defined as:

n p

TotalDist =" Y (BetP®"{0;}(6;) — 6;.)°

j=1 i=1

We then define the reliability of the sensor as (1—« € [0,1]) where a minimizes
TotalDist, i.e., the a that makes the discounted opinions of the sensor as good
as possible, thus that makes the values of BetPQ’D‘{oj} as close as possible to
0j.4-

2 Several classification methods have been developed using belief function basics like
the one proposed by Denoeux [2], and the one proposed by Elouedi and al. [3].



5.4 Explicit Computation with Normalized Belief Functions

In the special but common case where all bbas are normalized (thus m(0) = 0),
it is possible to explicitate the value of o from the initial bba m®{o;}. Let
BetP®{0;} be the pignistic probability function computed from m®{o;}, hence
before discounting. The solution for « is given in the next theorem.

Theorem 1. Let a set of normalized bbas m@{oj} defined on the set of classes
O ={b.,...,6p} for objects 0j,j =1,... ,n. Let the indicator function d;; =1
if the object o; belongs to the class 8;, and 0 otherwise. The discounting factor
« that minimizes:

n p
TotalDist =3 Y (BetP®{0;}(6;) — 6;4)°
j=1 i=1

where BetP@’a{oj} is the pignistic probability function computed from the dis-
counted bba m®*{o;}, is given by:

2= iz (0 Betp@{oy’}(9i))-BetP9{Oj}(9i)))
n/p—= o1 Lio BetP®{o;}(0:)*

a = min(1, max(0,

Proof. Given m®{o;}, we have:

m®*{0;}(0) = (1 — a)m®{0;}(9) ifeco
=(1-a)m®{0;}(O) + ifg =0
The pignistic probability BetP®*{o;} computed from m®{o;} can be ex-

pressed as a function of the pignistic probability BetP®{o;} computed directly
from m®{o;}. For simplicity sake, we omit the {o;} index hereafter. One has:

BetP@ Z

0;:€0 |0|

O,a
Betp®e (g = Y "0

= ol

_ e
— Z % + a/p = (1 — a)BetP®(6) + a/p
6;e0

For simplicity sake, we write P;; = BetP®{0;}(6;). The term to be minimized
becomes:

n p

TotalDist =y Y (BetP®*{0;}(6;) — 6;:)* = > _((1 —)Py;j + a/p — 6;:)°

j=1 i=1 Jst



Its extremum is reached when its derivative is null, hence when:

d TotalDist

=2 Z a)Py; + a/p —6;)(—=Fij + 1/p) (11)
ocz —om/p-i—ZéﬂP”+(1—a)n/p+om/p—n/p (12)
:Z— l—a Pij —om/p—i—ZéjiPij (13)

25,050 — Pij) Py
n/p— Z]z Pz%

Thus, a =
O

Once the discounting factors are computed for several sensors, the observed
values can be used to order several sensors: the smaller the value the better the
sensor. It could be used to select optimal sensors. It can also be used to discount
the reports produced by the sensor in the future.

5.5 The Simplified Equivalent

Usually, probabilities are easier to understand than discounting factors. So one
way to get a feeling of what represents the value a of a discounting factor,
we consider a highly simplified case where there are just 2 objects that can be
either a or b. Both are a’s. You are sure that object 1 is a, but have a probability
m < 0.5 that object 2 is @ and 1 — 7 that it is b. So you are right for object 1 and
quite wrong with object 2 (with probability 1 — 7). If 7 was known, we could
compute its related discounting factor by applying the previous relations. When
7 is unknown but « is known, we can compute the value of 7 that underlies «
in our simplified schema. We have: a € [0, 1], compute

3 — 20 —V1+4a — 402
4 — 4o

T =

This is the value 7 that would produce « in the simplified schema where we
deal with only two objects and two classes and where the sensor is only uncertain
about the class of one object. This 7 represents the probability that the sensor
is correct and that would induced a discounting factor equals to a.

5.6 Example 1

Suppose there are two sensors Sy, Sy applied to classify aerial targets. The
possible classes are: @ = {Airplane, Helicopter, Rocket}. In order to find the
degree of reliability of these two sensors, table 1 presents their reports on the



classes of 4 objects where their classes are known by us (a part of a learning
set), but not by the sensors S, S». At the first row of the table, we have the
actual class of each object, then we present the two sensors’ bbas on the classes
of these objects (since they do not know the truth).

Table 1. The sensors’ bbas and the truth

Truth Airplane Helicopter Airplane Rocket
Sl 01 02 03 04
0 0 0 0 0
Airplane 0 0 0 0
Helicopter 0 0.5 0.4 0
Rocket 0.5 0.2 0 0
Airplane U Helicopter 0 0 0 0
Airplane U Rocket 0 0 0.6 0.6
Helicopter U Rocket 0.3 0 0 0.4
Airplane U Helicopter U Rocket 0.2 0.3 0 0
Sz 01 02 03 04
0 0 0 0 0
Airplane 0 0.3 0.2 0
Helicopter 0 0 0 0
Rocket 0 0 0 0
Airplane U Helicopter 0.7 0.4 0 0
Airplane U Rocket 0 0 0 0
Helicopter U Rocket 0 0 0.6 1
Airplane U Helicopter U Rocket 0.3 0.3 0.2 0

Assume that the discounting factors assigned to the two sensors S; and S
are respectively oy and as.

Let’s focus on the first sensor, we have to update the bbas relative to the
objects 01, 02, 03 and o4 by taking into account a;. We get:

m?{al{ol}(Rocket) =0.5(1—aq), m?l’al{01}(HelicopterURocket) =0.3(1—
ar), mg* {01 }(0) = 0.2 + 0.8y

m?l’al{@}(Helicopter) = 0.5(1 — ay), m?l’al{c)g}(Rocket) = 0.2(1 — ay),
mg " {0:}(0) = 0.3 + 0.7,

m?l’m{03}(Helicopter) = 0.4(1 — ay), m?l’m{O;;}(Airplane U Rocket) =
0.6(1 — ar), m$ " {03}(0) = oy

m?l’m{m}(AirplaneURocket) =0.6(1—ay), mgl’al{04}(HelicopterURocket) =

0.4(1 — ay), mS* {04 }(0) =

1
The corresponding discounted BetP relative to the first sensor is summarized
in this following table:



Table 2. S;’s discounted BetPs

S1

01

02

03

04

Airplane
Helicopter
Rocket

0.07 — 0.271
0.22 — 0.12ay
0.72 + 0.380y

0.10 — 0.23a1
0.60 +0.27an
0.30 — 0.03a1

0.30 — 0.03a1
0.40 + 0.07an
0.30 — 0.03a1

0.30 — 0.03a1
0.20 — 0.1301
0.50 +0.17;

For example the computation of BetPSQI’al{ol}(Heliocpter) is done as fol-

lows: BetPsel’al{ol}(Heliocpter) 0'3(1276”) + 2240801 — .22 — 0.1204

Using the different values of BetPs, the whole distance relative to the sensor
S1 will be equal to:

4 3

TotalDist = Z Z(BetP@’m{oj}(Oi) - 5j,i)2

j=1 i=1

Hence
Total Dist = 0.41a3 — 0.560; + 2.81;

Minimizing TotalDist under the constraint 0 < a; < 1 gives as a result
a1 = 0.68. Hence, the discounting factor to be given to sensor S; by taking into
account its opinions on the classes of the objects o0;, j = 1,2,3,4, is equal to
0.68.

Applying the same procedure for the beliefs given by the second sensor (Ss),
we get as = 0.52 as the discounting factor of this sensor. Thus sensor S; is (a
little) better than sensor Sj.

Just to get an idea about what represents the two discounting factors (see
section 5.5), their equivalent in the highly simplified schema of 2 objects produce
m values of 0.21 and 0.28, respectively, what can be understood as ‘the sensors
are really not good, and the second is just a little better then the first’. This is
indeed what the data also show.

6 Tuning Sensors’ Reports

Evaluating sensors within this second framework is based on taking into account
the sensors’ bbas together and not independently as we have done in the previous
section.

The idea is to build the best predictor from a set of available sensors. Bad ones
should be discounted more than good ones. The present method is applicable
when the main objective is to get the best aggregated report induced from those
given by the sensors.

This requires assessing the ‘best’ values of the discounting factors to be allo-
cated to each sensor knowing that their discounted ‘beliefs’ will be merged.

The ‘best’ discounting factors are those that will make the pignistic proba-
bilities induced by the conjunctive combination of the discounted bba’s as close



as possible from the actual values, just as done in the previous section. Such
process is named tuning sensors’ reports.

In order to derive the optimal set of discounting factors, we apply the follow-
ing steps. Suppose we knew the discounting factors, we would then:

— For each bba m?k {o;}, discount it by its discounting factor ay, given to the

sensor Si,. We get mg;a’“ {0;}. This process will be applied for the bba given
by the sensor for each object.

— For each object o; (j = 1,...,n), combine the different discounted bba’s by
applying the conjunctive rule. We get:

m®{o;} =m% " {0;}O......... Omg**{o;} (14)

m®{o;} is a joint bba representing the induced belief on the class to which
object o; belongs computed by taking into account the data collected from
all the sensors.

— Compute the corresponding BetP®{o;} (relative to the bba m®{o;}) rep-
resenting the pignistic probability on the class of object o;.

— For each object o;, compute the distance between BetP@{oj} and the real
class of 0;. This distance is defined by:

p

DiSt{O]’} = Z(BetPO’a{oj}(Gi) — 6]'71')2

i=1

where d;; = 1 if ¢; = 6; and 0 otherwise.
— Compute Total Dist as follows:

TotalDist = Z Dist{o;} (15)
j=1
This variable depends on the discounting factors ay, as, ..., a.

— In order to find the optimal discounting factors, we have to minimize Total Dist
on the a’s under the constraints 0 < o, < 1, Vv € {1,.., k}

Ezample 2. Let’s use the same data in the example 1 (see table 1). Let’s
apply our second method on the two sensors’ reports by assuming that we want
to get the merged report.

Once S;’bbas and Sy’bbas are discounted, we get respectively m?l’al{oj}
and m%”{o]’} where j = 1,2, 3,4, which are linear functions of the discounting
factors. For each object oj,we compute the joint bba m®{o;}:

o o, o,
m®{o;} = mg**{0;}@mg;**{0;}

where the a terms are at most of the form [[,_, ;a; where I is the number
of sensors (I = 2 in the present case).



The corresponding discounted Bet Ps relative to the these bbas are also linear
functions of the same product terms. The value of Dist{o;} relative to the
objects, as wells as Total Dist are quadratic functions of the previous product
terms.

So its minimization on the a; is very simple and can be achieved by any mini-
mization program. Even when we work more than two sensors, any minimization
program can give the different values of «.

In the present case, a; = 0.28 and as = 0.12. It should be enhanced that
the a coefficients computed in this second method should not be assimilated to
those computed with the first one. Here we want the a so that the multisensor
is ‘optimal’, whereas in the first method, we compute « in order to evaluate the
individual sensor quality.

7 Conclusion

In the TBM, degrees of reliability to give to sensors are represented by discount-
ing factors. In this paper, we have presented one method for assessing these
discounting factors in a classification context where we to have at our disposal a
learning set where the classes of the object are perfectly known and when each
sensor is considered alone.

We have also present a tuning method by which each sensor in a group of
sensors is partially discounted so that the overall set of sensors is optimal.

These methods are presented by studying a classification problem. They can
easily be extended to other problems of prediction. All that is required is a
learning set and a distance between the prediction and the actual values.

We have presented operational methods to assess the discounting factors in
two contexts. It will be useful for any problem of multisensor data fusion [14].
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