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Abstract

This paper explains how multisensor data fusion and target identification can be performed within

the transferable belief model, a model for the representation of quantified uncertainty based on belief

functions. In the first part, we present the underlying theory. Here, we present some illustrative examples

to clarify how we consider the transferable belief model should be used. Some simulations are presented

in order to compare the speed of these algorithms based on belief functions with the more classical ones

based on probability functions. The results show that the transferable belief model approach is in fact

never less efficient than the probability approach, contrary to previously published results. The results

presented here can be extended directly to many problems of data fusion and diagnosis.

Keywords: Belief functions, transferable belief model, General Bayesian Theorem, pig-

nistic probabilities, target identification.

I. Introduction

In the first part of this paper, we have introduced the transferable belief model a model

for the representation of quantified beliefs based on belief functions. We have explained

what are the essential tools used in the TBM for problems of target identification even

though they apply directly to data fusion and diagnosis problems. The tools are the

General Bayesian Theorem and the pignistic transformation. Our model mimics the prob-

abilistic approach except that every probability function is replaced by a belief function.

The latter being much more general than the former, we can handle degrees of uncertainty

hard to represent in probability theory. In particular we can represent the state of total

ignorance, what provides a solution to the problem of choosing the adequate prior in the

diagnosis process. With the TBM, a prior representing total ignorance is available and

can be used directly. Of course if justified priors are available, they are included in our

model that degrades nicely into the classical probability approach when all the ingredients

needed for such an analysis are available.

In the second part, section II, we show through an example that the General Bayesian

Theorem and the probability solutions can be diametrically opposed indicating thus that

the choice of the model is not just an academic exercise, but an issue which consequences

can be very serious. In section III, we reproduce in part the study presented in [1], [2] and

show that the TBM approach is computationally never less efficient that its probability

analogous. In the last three sections, we show how to use the TBM for multisensor
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target identification problems. We consider three cases of sequentially observed sensors

which results refine the previous ones. In Section IV, the likelihoods are known on non

overlapping subsets of the initial frame. In Section V, the likelihoods are known for every

element of a partition of the initial frame, but the granularity of the partition is finer

at each level. In Section VI, the likelihoods are generated by each sensor on partially

overlapping subsets of the overall frame. We conclude in Section VII.

For easier cross-referencing, equation numbers proceed throughout the two parts. Sec-

tion references starting with I- refer to part I of this paper.

II. Example 2. An Embarrassing Example Comparing the TBM with a

Probability Approach

We present now an example where the probability and the TBM approaches strongly

disagree. This example is useful is showing that the choice between the two models can

be essential in practice, and not just an intellectual game. The example cannot be used

to ‘prove’ that one of the two models is right or wrong, as neither common sense nor

rationality requirements can definitively help us in deciding which of the two diverging

conclusions we derive is the ‘correct’ one. Some hints about this choice are discussed at

the end of this section.

A. The Problem.

Suppose a set of sensors S1, S2 . . . SK which purpose is to identify friends from foes. For

each sensor, we know what is the probability that it is in working condition or broken.

Let pi = P (Si in Working Condition).

Let Xi be the domain of the data sensor Si can collect, with Xi = {xi, yi}. When in

working condition, the sensor is a perfect detector, i.e., xi is equivalent to Friend and yi

to Foe. When broken, we totally ignore how the sensor would react when observing a

friend or a foe.

For simplicity sake, suppose we have 30 sensors, and all sensors are either of high quality

(HQS) or of low quality (LQS), with sensors S1 . . . S11 ∈ HQS whereas S12 . . . S30 ∈ LQS.

For each Si ∈ HQS, pi = .99 and for each Si ∈ LQS, pi = .90.

The collected data is the vector data = (x1 . . . x10, y11, x12, y13 . . . y30), i.e., xi for i ∈
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{1, . . . 10, 12} and yi for i ∈ {11, 13 . . . 30}. So 10 out of the 11 high quality sensors and

one among the 19 low quality sensors support the target is a friend, the others support it

is a foe. What should we conclude after fusing these data? It is hard to decide as common

sense can hardly help. We show now that the TBM concludes with a probability of .91

that the target is a friend, whereas the probability analysis concludes with a probability

.92 that it is a foe. Values were of course chosen in order to get this enormous discrepancy.

Nevertheless such a discrepancy is quite embarrassing. It shows that selecting the model

deserves serious attention as conclusions can strongly depend on this choice.

Target Frd Foe

Si Status Wrk Brk Wrk Brk

P (Status) pi 1 − pi pi 1 − pi

Xi p(di) p(di) p(di|Frd) p(di) p(di) p(di|Foe)

xi 1 .5 pi + .5(1 − pi) 0 .5 .5(1 − pi)

yi 0 .5 .5(1 − pi) 1 .5 pi + .5(1 − pi)

TABLE I

Example 2. Probability Approach. For Sensor Si, values of p(di) where the Target T

can be Frd (for Friend) or Foe and Si Status can be Wrk (for Working) and Brk (for

Broken). pi is the probability Sensor Si Status is Wrk. The columns p(di|Frd) and

p(di|Foe) present the probability on Xi given the target is Frd or Foe, thus the

likelihoods given to the targets when the observed data is xi or yi, respectively.

B. Bayesian Analysis.

In order to proceed with a Bayesian analysis, we need first to assess α = P (xi|Si =

Broken, Friend) = P (xi|Si = Broken, Foe), where we accept that the behavior of the

broken sensor does not depend on the target’s nature. A strict Bayesian claims that a

probability can be assigned to any event, and thus that α can and must be assessed. The

most natural assessment here (and the one most users will apply in practice) is α = .5.

The Bayesian analysis proceeds then as follow. The relevant data are presented in Table

I. We must compute P (Friend|data) where data is the data = (d1 . . . d30) vector . We
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have:

P (Friend|data) ∝ P (Friend)P (data|Friend)

= P (Friend)
∏

i=1...30

P (di|Friend)

assuming the conditional independence of the data given the nature of the target.

We have then:

P (di|Friend) = P (di|Friend, Si = Working)P (Si = Working|Friend)

+ P (di|Friend, Si = Broken)P (Si = Broken|Friend)

= P (di|Friend, Si = Working)P (Si = Working)

+ P (di|Friend, Si = Broken)P (Si = Broken)

= P (di|Friend, Si = Working)pi

+ P (di|Friend, Si = Broken)(1 − pi)

assuming the fact the sensor is in working condition or not is independent of the nature

of the target. These values are displayed in the columns p(di|Frd) and p(di|Foe) of Table

I. Their numerical values are in the present example:

P (di|Friend) = 1 × .99 + .5 × .01 = .995 if Si ∈ HQS and di = xi

= .5 × .01 = .005 if Si ∈ HQS and di = yi

= 1 × .90 + .5 × .10 = .95 if Si ∈ LQS and di = xi

= .5 × .10 = .05 if Si ∈ LQS and di = yi

Given the observed data, we have:

P (Friend|data) ∝ P (Friend) × .99510 × .0051 × .951 × .0518 = 1.72339E − 26

Identically with foe, we get:

P (Foe|data) ∝ P (Foe) × .00510 × .9951 × .051 × .9518 = 1.92983E − 25

November 5, 2001 DRAFT



6

Assuming equi prior probability of Friend and Foe (P (Friend) = P (Foe) = .5), we get:

P (Friend|data) =
1.72339E − 26

1.72339E − 26 + 1.92983E − 25
= 0.08

P (Foe|data) =
1.92983E − 25

1.72339E − 26 + 1.92983E − 25
= 0.92

Hence the probability analysis using P (xi|Si = Broken, Friend) = P (xi|Si = Broken, Foe) =

.5 and an equi a priori probability on the nature of the target leads to the conclusion that

the target is a foe.

Strict Bayesian might argue that he α = .5 was not correct and that another value for α

must be used. This is not a serious problem here, as once the α is determined, it is always

possible to find a set of data so that the Bayesian and the TBM conclusions will diverge

as strongly as here.

One might argue that this strict Bayesian analysis is not an adequate probability anal-

ysis, and that we should perform a sensitivity analysis, i.e., we must consider all possible

values for α. The result is totally uninformative as we get P (Friend|data) varying from

0 (when α = 1) to 1 (when α = 0). So the sensitivity analysis leaves the user totally at

lost: all the data support is that the probability that the target is a Friend is anywhere

in [0, 1], a truism of course.

C. TBM Analysis.

The TBM analysis leads to a conclusion opposite to the one reached by the strict

Bayesian (and the practical - some would say naive - user). It proceeds as follows. We

must build the plausibility over {Friend, Foe} given each type of observation and each

sensor quality (see Table II). In the ‘working’ case, the sensors are perfect, hence the mass

1 on Friend with xi and on Foe with yi. When the sensor is ‘broken’, we are in a state

of total ignorance about what might be the target, hence a mass 1 is given to {xi, yi}
for both possible data. Table II presents the corresponding plausibility functions on Xi

(columns plXi), and the values of plXi [Frd] and plXi [Foe] taking into consideration the pi

values (they are the weighted average of the former).

In order to combine the data, we compute plH [data] = ∩©1...30pl
H [di]. This is easily
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Target Frd Foe

Si Status Wrk Brk Wrk Brk

P (Status) pi 1 − pi pi 1 − pi

Xi plXi plXi plXi [Frd] plXi plXi plXi [Foe]

xi 1 1 1 0 1 1 − pi

yi 0 1 1 − pi 1 1 1

xi, yi 1 1 1 1 1 1

TABLE II

Example 2. TBM Approach. For Sensor Si, values of pXi [T, Si Status] where the Target

T can be Frd (for Friend) or Foe and Si Status can be Wrk (for Working) and Brk (for

Broken). pi is the probability Sensor Si Status is Wrk. The columns plXi [Frd] and

plXi [Foe] present the plausibility on Xi given the target is Frd or Foe, thus the

likelihoods given to the targets when the observed data is xi or yi, respectively.

achieved using the commonality function qH [di] as:

qH [data](T ) =
∏

i=1...30

qH [di](T ), ∀T ⊆ H.

Table IV presents the details of this computation and the resulting pignistic probabilities

BetP . The TBM approach concludes that the target is a Friend with BetP (Friend) = .91.

Notice that if one had replaced the vector (1 1 1) of plXi by (.5 .5 1) in the Brk columns

of Table II, the results of the TBM analysis become the same is those of the probability

approach. So the source of the difference between the results of the two approaches

comes from the fact we represent total ignorance by equal probabilities in the probability

approach and by a vacuous belief function in the TBM approach. Which representation

is adequate is a matter of personal opinions.

D. Choosing between the two models.

As shown before, the two models, the Bayesian and the TBM, give totally opposite

conclusions, which is quite disquieting. Its origin has been found in the representation of

the uncertainty about how the sensor would react when broken: with probabilities, we use
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HQS : pi = .99 LQS : pi = .90

plH [xi] xi yi xi yi

Friend 1.00 0.01 1.00 0.10

Foe 0.01 1.00 0.10 1.00

H 1.00 0.010 1.00 1.00

TABLE III

Example 2. Values of the plausibility functions plH [di] over H = {Friend, Foe} given the

data = di according to the sensor quality. These data are computed from those in

Table II by applying the GBT.

HQS LQS

qH [xi] xi yi xi yi qH [data] BetP

∅ 1.00 1.00 1.00 1.00 1.00

Friend 1.00 0.01 1.00 0.10 1.0E-20 .909

Foe 0.01 1.00 0.10 1.00 1.0E-21 .091

H 0.01 0.01 0.10 0.10 1.0E-41

frequencies 10 1 1 18

TABLE IV

Example 2. Individual values of the commonality function qH [xi], and qH [data], the

result of their combination by the conjunctive combination rule. The column BetP

presents the pignistic probabilities over H.

the uniform distribution, and with the TBM, we use the vacuous belief.

We feel that we cannot leave each model stand against the other without giving read-

ers some help to choose among them. A possible answer comes from the study of the

informativity of the sources.

In the probabilistic setting, the entropy of Shannon has been defined in order to assess

and compare the informativity of distributions. The TBM can represent a broader range

of uncertainty, and the entropy of Shannon cannot be applied directly to bba’s. Some
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researches [3], [4], [5], [6], [7], [8] have been undertaken to try to measure the informativity

of a belief function.

According to these measures of uncertainty, the uniform distribution used in probability

theory is not the most uninformative among all the possible representations of absolute

uncertainty; it includes already ‘something’. On the contrary, the vacuous belief is always

the least informative.

Although still arguable, these views of uncertainty measures could help us to decide

what model is appropriate in presence of such a large uncertainty.

III. Computational Efficiency: Comparison with the Bayesian Model

We present an example inspired by [2] where the authors try to show that the use of

belief functions is computationally less efficient than the use of probability functions. In

fact, we show, with the same example, that the converse holds once belief functions are

used according to the theory developed here.

Using their approach, we will compare the number of identical observations required by

the probability model and the TBM so that the best hypothesis reaches a level of 0.99

probability.

A. Example 3. One Sensor, Theoretical Analysis

The first comparison involves one sensor. Let H = {h1, h2, . . . hn} denote a set of n

hypotheses, for instance the type of aircraft under observation. Hypothesis could be F15,

B 737, Sukkoi 21, Rafale, F18... One of these hypotheses, denoted h0, corresponds to the

actual one.

In order to determine the value of h0, a sensor, like an Electronic Support Measure

(ESM), makes an observation. Let X denote the set of possible values this observation

can take. Suppose the sensor measurement is x ∈ X. Table V presents the values of the

plausibility function given to the fact that the observation is x for each possible value of

H. These values are the likelihoods given to each hi ∈ H once the observation is x. For

simplicity sake, we use identical likelihoods for all hypotheses except the first one. Table

VI presents some of the values of the plausibility and belief functions induced by x on H.

Suppose You make k independent observations. The result is the vector d = (d1, d2 . . . dk).
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data l(h1) l(h2) . . . l(hn)

x a b . . . b

TABLE V

Example 3. Likelihoods on H produced by the observation x.

H plH [x] belH [x]

h1 a a(1 − b)(n−1)

h2 b (1 − a)b(1 − b)(n−2)

h1, h2 a + b − ab (a + b − ab)(1 − b)(n−2)

h2, h3 2b − b2 (2b − b2)(1 − b)(n−2)

h1, h2, h3 a + 2b − 2ab − b2 + ab2 (a + 2b − 2ab − b2 + ab2)(1 − b)(n−3)

TABLE VI

Example 3. Values of pl and bel for some representative subsets of H, computed from

the likelihoods of Table V.

The domain of d is X × X . . . × X = Xk. Suppose each dj = x for j = 1, . . . k. So d can

be written as xk.

Table VII presents l(hi|d) with a and b being two positive reals in (0, 1) and a > b.

data l(h1|d) l(h2|d) . . . l(hn|d)

d ak bk . . . bk

TABLE VII

Example 3. Likelihoods on H produced by the observation d = (d1, d2 . . . dk) where dj = x

for j = 1, . . . k.

Based on the likelihoods of Table VII, we assess the beliefs about the value of h0.

A.1 Probability Approach

The initial knowledge state is total ignorance, so we assume an a priori probability

PH
0 (hi) = 1/n, ∀hi ∈ H.
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Suppose we have observed k times the data x. With the Bayes’s rule we compute the

probability at step k. Let xk represent the collected data, i.e., k times x, and Xk its

domain. We have,

PH [xk](h1) =
PXk

[h1](x
k)

PXk [h1](xk) + (n − 1)PXk [h2](xk)
(30)

=
ak

ak + (n − 1)bk
(31)

and for i = 2 . . . n,

PH [xk](hi) =
PXk

[h2](x
k)

PXk [h1](xk) + (n − 1)PXk [h2](xk)
(32)

=
bk

ak + (n − 1)bk
. (33)

The number of steps kP required by the Bayesian approach is the value of k such that:

ak

ak + (n − 1)bk
≥ 0.99.

kP is the smallest integer k with:

k≥
log(99(n − 1)

log(a/b)
.

A.2 TBM Approach

Suppose we represent the uncertainty with belief functions. The GBT needs plX [hi](x), i =

1 . . . n. As we only need these plausibilities on x, we can as well consider the space X as

made of two singletons, x, and x.

There are three ways the masses mX [h1] can be allocated on X.

case 1 case 2 case 3

mX [h1](x) = a mX [h1](x) = a − c mX [h1](x) = 0

mX [h1](x) = 1 − a mX [h1](x) = 1 − a − c mX [h1](x) = 1 − a

mX [h1](X) = 0 mX [h1](X) = c mX [h1](X) = a

In the three cases plX [h1](x) = a, so it does not matter for the GBT which of the three

forms is used. The same holds for mX [hi], i = 2 . . . n. The first case is the closest from
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the probability approach, and corresponds probably to the most common type of data

one can expect for application. It just means that the conditional beliefs over the data

are probabilistic in nature. The major difference between the GBT and the probabilistic

approach comes from the way the prior knowledge is represented, a vacuous a priori being

usable within the TBM whereas probability theory does not allow such a flexibility

To achieve the comparison, we need BetP (h1) after observing k data. Thanks to the

properties presented in Section I-III-D.2, all we need are the likelihoods given xk. They

are ak and bk. The bba on H is (see relation (22)):

mH [xk](h1) = ak(1 − bk)n−1

mH [xk](h1, h2, . . . hi) = akbk(i−1)(1 − bk)n−i

mH [xk](h2, . . . hi) = (1 − ak)bk(i−1)(1 − bk)n−i

or in general, ∀h ⊆ H

mH [xk](h) = ak|h1∩h|(1 − ak)1−|h1∩h|bk|h1∩h|(1 − bk)(n−|h1∩h|−1)

A.3 Computing BetP

We derive the equation for BetPH [xk] using the symbols as defined above.

Theorem III.1:

BetPH [xk](h1) =
ak

nbk

1 − (1 − bk)n

1 − (1 − ak)(1 − bk)n−1
(34)

Proof. Let ak = y, bk = z. By relation (21), we have:

BetPH [xk](h1) =
∑

h1∈h⊆H

mH [xk](h)

|h|(1 − mH [xk](∅)

=
1

(1 − mH [xk](∅))
∑

h⊆h1

y

1 + |h|z
|h](1 − z)n−1−|h|

=
1

(1 − mH [xk](∅))

n−1∑

i=0

y

1 + i

(
n − 1

i

)
zi(1 − z)n−1−i

=
y

(1 − mH [xk](∅))
1

nz
(1 − (1 − z)n)

mH [xk](∅)) = (1 − y)(1 − z)n−1

BetPH [xk](h1) =
y

nz

1 − (1 − z)n

1 − (1 − y)(1 − z)n−1
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�

A.4 Convergence Speed

We prove that the ratio BetPH [xk](h1)/P
H [xk](h1) is always larger than 1, thus that

the TBM converges faster than the probability model, contrary to what Buede and Girardi

[2] concludes.

Theorem III.2: BetPH [xk](h1) ≥ PH [xk](h1).

Proof. Let ak = y, bk = z. By relations (34) and (30), we have:

BetPH [xk](h1)

PH [xk](h1)
=

y

nz

1 − (1 − z)n

1 − (1 − y)(1 − z)n−1

y + (n − 1)z

y

To prove the ratio is larger than 1, we must show that

(1 − (1 − z)n)(y + (n − 1)z) ≥ nz(1 − (1 − y)(1 − z)n−1)

or equivalently that:

(1 − (1 − z)n)(y + (n − 1)z) − nz(1 − (1 − y)(1 − z)n−1) ≥ 0

which, after arithmetic manipulations, becomes equal to:

(y − z)(1 − (1 − z)n − nz(1 − z)n−1) ≥ 0.

As y ≥ z by hypothesis, we must only show that:

1 ≥ (1 − z)n + nz(1 − z)n−1.

This is equivalent to showing that:

1 ≥ (1 − z)n−1(1 + (n − 1)z)

1 − (1 − z)n−1 ≥ (n − 1)z(1 − z)n−1

1 − (1 − z)n−1

1 − (1 − z)
≥ (n − 1)(1 − z)n−1 as z ∈ [0, 1)

n−1∑

i=0

(1 − z)i ≥ (n − 1)(1 − z)n−1

n−1∑

i=0

(1 − z)−(n−i−1) ≥ n − 1
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As the n terms (1 − z)−(n−i−1) in the summation are larger or equal to 1 as z ∈ [0, 1),

their sum is larger than n, thus proving the inequality. �

The ratio BetPH [d](h1)/P
H [d](h1) is thus always larger than 1 when a > b, for all

k = 1, 2 . . . . Therefore the number of steps k needed so that BetPH [d](h1) ≥ .99 is never

larger than the number of steps needed so that PH [d](h1) ≥ .99.

This result contradicts the conclusions of Buede and Girardi [2]. The possible origin of

the discrepancy is discussed in Section III-D.

In fact the ratio is very close to 1 and the number of step are essentially the same in both

cases. In any case, this efficiency criterion cannot be used against the TBM approach.

Instead it could have been used against the probabilistic approach, were it not for the fact

that the difference is too small to produce a convincing argument against the probabilistic

approach.

In Table VIII, we compare the number of steps needed to reach a .99 threshold for

the pignistic probability (left term) or the posterior probability (right term). The TBM

is sometime a little more efficient, but the differences do not seem to be of practical

usefulness.

B. Example 4. Two Sensors Problem, Theoretical Analysis

Suppose we use two sensors S1 and S2 that observe the data x1 and x2, respectively.

Let the likelihoods they generate in such cases be:

• l1(hi) = a for i = 1 . . . j, and b for i = j + 1 . . . n

• l2(hi) = b for i = 1 . . . j − 1, and a for i = j . . . n

where a > b. So alone, the sensors cannot discriminate the hypothesis hj when it holds,

whereas together, they do it nicely.

The same data x1, x2 has been collected k times.
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P X [h1](x)

P X [h2](x) 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

0.10 4 4 4 4 3/4 3 3 3 3

0.12 5 4 4 4 4 4 3/4 3/4 3

0.14 5 5 5 4 4 4 4 4 3/4

0.16 6 5 5 5 4/5 4 4 4 4

0.18 6 6 5 5 5 5 4/5 4 4

0.20 7 6 6 6 5 5 5 4/5 4

0.22 8 7 6 6 6 5 5 5 4/5

0.24 9 8 7 6/7 6 6 5 5 5

0.26 10 8 8 7 6/7 6 6 5/6 5

0.28 11 9 8 8 7 6/7 6 6 5/6

0.30 12 10 9 8 8 7 6/7 6 6

0.32 14 12 10 9 8 7/8 7 6/7 6

0.34 16 13 11 10 9 8 7 7 6/7

0.36 19 15 12 11 9 9 8 7 7

0.38 22 17 14 12 10 9 8/9 8 7

0.40 27 19 15 13 11 10 9 8 8

0.42 35 23 17 14 12 11 10 9 8

0.44 47 27 20 16 13 12 10/11 9/10 9

0.46 72 34 23 18 15 13 11 10 9

0.48 147 44 27 20 16 14 12 11 10

0.50 - 63 33 23 18 15 13 12 10/11

TABLE VIII

Example 3. With n = 6, each pair of numbers r/s gives the values of k needed to get

BetPH [d](h1) ≥ .99 for r and PH [d](h1) ≥ .99 for s according to the values of a = PX [h1](x)

(columns) and b = PX [h2](x) (rows). When r = s, only one number is indicated. When

r 	= s, the two numbers are indicated.

Assuming the observations collected with the two sensors are independent, we can thus

compute the likelihoods for the joint data. They are:

l12(hi) = akbk for i = 1 . . . j − 1

= a2k for i = j

= akbk for i = j + 1 . . . n

We are thus back to the previous example, and the same proof shows that the pignis-

tic probabilities computed in the TBM converge faster than the posterior probabilities

computed in the probabilistic approach.
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C. Example 5. Numerical Comparison on a Practical Example

This part revisits the simulations used by Buede and Girardi [2]. We use the same

data described in their paper, and we compare the speed of convergence to the winning

hypothesis by two decision systems: the classical Bayesian approach and TBM approach.

Contrary to the results obtained by Buede and Girardi, the TBM-based algorithm will

never be slower than the Bayesian algorithm.

They simulate a problem of decision concerning an aircraft engagement. The aircraft

fled by the user detects another aircraft, and the question is to classify it. There are ten

possible aircrafts. Table IX presents the various hypothesis, their class and their nature.

Identity Type Class Nature

1 F15 Fighter Friend

2 F16 Fighter Friend

3 ATF Fighter Friend

4 B2 Bomber Friend

5 Mig27 Fighter Foe

6 Mig25 Fighter Foe

7 Mig29 Fighter Foe

8 Mig31 Fighter Foe

9 Tu26 Bomber Foe

10 Boeing Commercial Neutral

TABLE IX

The various hypotheses of the problem.

The user possesses a multisensor system to detect and recognize possible aircrafts: it

consists of an Electronic Support Measure (ESM), an Identification Friend or Foe (IFF)

and a Radar Sensors. We assume here that these three sensors have already been trained

on the possible aircrafts. Tables X, XI, XII present the confusion matrices, i.e., the

conditional probabilities about the sensor observation for each possible aircraft.

The ESM sensor has been trained to discriminate between the 10 types. The IFF sensor

can only discriminate between the two classes: Friend of Foe, and the Radar sensor can
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only distinguish between the three natures: Fighter, Bomber, or Commercial.

Claimed Actual aircraft

to be F15 F16 ATF B2 Mig27 Mig25 Mig29 Mig31 Tu26 Boeing

F15 0.526 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053

F16 0.053 0.526 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053

ATF 0.053 0.053 0.526 0.053 0.053 0.053 0.053 0.053 0.053 0.053

B2 0.053 0.053 0.053 0.526 0.053 0.053 0.053 0.053 0.053 0.053

Mig27 0.053 0.053 0.053 0.053 0.526 0.053 0.053 0.053 0.053 0.053

Mig25 0.053 0.053 0.053 0.053 0.053 0.526 0.053 0.053 0.053 0.053

Mig29 0.053 0.053 0.053 0.053 0.053 0.053 0.526 0.053 0.053 0.053

Mig31 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.526 0.053 0.053

Tu26 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.526 0.053

Boeing 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.526

TABLE X

Confusion matrix for the ESM sensor.

Claimed Actual aircraft

to be F15 F16 ATF B2 Mig27 Mig25 Mig29 Mig31 Tu26 Boeing

Friend 0.909 0.909 0.909 0.909 0.091 0.091 0.091 0.091 0.091 0.091

Not Friend 0.091 0.091 0.091 0.091 0.909 0.909 0.909 0.909 0.909 0.909

TABLE XI

Confusion matrix for the IFF sensor.

Claimed Actual aircraft

to be F15 F16 ATF B2 Mig27 Mig25 Mig29 Mig31 Tu26 Boeing

Fighter 0.833 0.833 0.833 0.083 0.833 0.833 0.833 0.833 0.083 0.083

Bomber 0.083 0.083 0.083 0.833 0.083 0.083 0.083 0.083 0.833 0.083

Commer. 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.833

TABLE XII

Confusion matrix for the Radar sensor.

For the experiment, we varied three parameters. There was a possible misassociation:

when detecting an aircraft, if a misassociation occurs, another aircraft is detected. The

probability of a misassociation is 0.0 or 0.2 or 0.4. It was also possible that a sensor could

not take a measure, sending in this case an empty information. An empty information was

modeled by a uniform distribution in the probability framework, and an vacuous belief

function in the TBM framework. The probability that a sensor could not send a message

ranges from 0 to 0.4 by 0.1 steps. The no-report problem could apply on each sensor
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separately, each pair of sensors and the three sensors simultaneously.

We rerun all the simulations performed by Buede and found out that the number of

identical observations needed to reach a .95 a posteriori probability was always the same in

both approaches. We also discovered that the difference between the pignistic probability

and the Bayesian probability observed when reaching the .95 threshold was positive in

70% with the pignistic probability, being larger than the Bayesian probability and within

10e-10 in 30% (what looks more like a rounding error). The difference was never negative.

The largest difference encountered was 0.004. The TBM conclusions were always a little

bolder than the one reached by the Bayesian approach, even though the difference seems

really useless for any practical purpose.

These results indicate only that the claims made against the computational complexity

of the belief based model were inexact.

D. Origin of the difference

There are three essentials differences between our GBT solution and the solution pub-

lished in [1], [2], denoted hereafter the X solution.

• The interpretation of the confusion matrix data. In the X solution, the bba on H

satisfies: mH [x](hx) = l(x|hx) and mH [x](H) = 1 − l(x|hx) where hx ∈ H is the most

likely hypothesis under x, i.e., l(x|hx) > l(x|hk) ∀hk ∈ H, hk 	= hx. Its origin is not

explained. In the GBT solution, the computation of mH [x] is derived from the GBT, and

the GBT uses the same confusion matrix as the probabilists.

• The relation used in the X solution to compute mH [xn] after collecting n data (see ([1],

eq. (7.28) page 247), and [2], eq. (1) page 570, where uj must be read as u). The equation

is only correct if mH [x] is a simple support function, what happens for some of the cases

analyzed by the X solution. But in that simple case, mH [xn](hx) could be computed much

more efficiently by mH [xn](H) = (1 − l(hx|x))n and mH [xn](hx) = 1 − (1 − l(hx|x))n.

To show the inadequacy of the published equation in the more general case where only

singletons of the H domain and H itself receive positive bbm’s (what seems to be what

the X solution is supposed to handle), consider the case with H = {a, b}, mH [x](a) =

mH [x](b) = 1/4 and mH [x](a, b) = 2/4. Table XIII presents the value of the normalized

bba after collecting n times the same data x, with n = 2 and 3. The published equation
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gives for n = 3:

mH [x3](hx) =
1/4 [ (1/4 + 2/4)2 + 2/4 + (2/4)2]

2 ∗ 1/4 [ (1/4 + 2/4)2 + 2/4 + (2/4)2] + (2/4)3
=

21

50

whereas the solution obtained by Dempster’s rule of combination is 19/46.

• The X solution focuses on comparing the a posteriori probabilities with the belief

belH [xn](hx) computed in the X model instead of the pignistic probabilities. Basing deci-

sion on bel is usually not advised. In the GBT, we use the pignistic probabilities for the

comparisons, so comparing comparable objects.

These discrepancies lead to the published conclusions that we have shown to be incorrect.

H mH [x] mH [x2] mH [x3]

{a} 1/4 5/14 19/46

{b} 1/4 5/14 19/46

{a, b} 2/4 4/14 8/46

TABLE XIII

Computation of the normalized bba’s mH [xn] = ⊕i=1,... ,nmH [x] using Dempster’s rule of

combination.

IV. Example 6. Nested Sensors without Overlap

We analysis three cases of sequentially observed data collected by various sensors and

which results refine the previous ones. The cases vary according to which likelihoods are

known:

• the likelihoods are generated on non overlapping subsets of the initial frame, (section

IV),

• the likelihoods are generated on every element of a partition of the initial frame, but the

granularity of the partition is finer at each level (section V),

• the likelihoods are generated by each sensor on partially overlapping subsets of the overall

frame (section VI).

These three cases are practical cases we encountered, but rephrased and simplified for

the presentation. Their solutions illustrate how the GBT can be used in practice.
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We want to identify between three types of vehicles: Buses (h1 = B), Cars (h2 = C)

and Trucks (h3 = T ). There are two models of Buses, denoted h11, h12, two models of

Cars, denoted h21, h22 and two models of Trucks, denoted h31, h32 (see Figure 1).

Suppose we have 4 sensors. The first, denoted S0, measures the variable X0 that can dis-

tinguish between Buses, Cars and Trucks. So its frame of discernment is H0 = {h1, h2, h3}.
The second, denoted S1, measures X1 and can distinguish between the two models of

Buses. The third, denoted S2, measures X2 and can distinguish between the two models

of Cars. The fourth, denoted S3, measures X3 and can distinguish between the two models

of Trucks. Their frames of discernment of S1, S2, S3 are H1, H2, H3, respectively, where

Hi = {hi1, hi2}. The granularity of each frame of discernment is important. So the frame

of discernment H0 has three singletons. Similarly the frame of discernment H1 has two

singletons, and the same holds for H2 and H3. The overall frame of discernment H has in

fact six elements, the hij, i = 1, 2, 3, j = 1, 2. H0 is a coarsening of H, whereas H1, H2

and H3 are disjoint subsets of H.

The sensors S0, S1, S2, S3 produce the bba’s mHi , i = 0, 1, 2, 3, on their respective frames.

............................................................................................................................................................................................................................................

...................................................................

............................................................................................................................................................................................................................................

h1 h2 h3

S0 → mH0

Bus Car Truck
S1 → mH1 S2 → mH2 S3 → mH3

....................................................................................

....................................................................................

h11 h12

....................................................................................

....................................................................................

h21 h22

....................................................................................

....................................................................................

h31 h32

Fig. 1. Example 6. The tree of hypotheses and the domain of the four sensors with the beliefs they

produce.

As defined H1, H2 and H3 do not share a common refinement (they are not compatible

frames, see [9]), so conjunctive combination rules cannot be applied directly. In order

to get a bba on H, we build the ballooning extension (see Section I-II-F) of the mHi ’s

on H. For instance mH1(h11) will be extended on H so that it will be allocated to the

h11∪H2∪H3. By construction, these extensions share the same frame of discernment and

the combination rules can then be applied to them.
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When we state that S1 can distinguish between the types of buses, we mean also that

we have no idea whatsoever about how sensor S1 would react if it was facing a car or a

truck. This might occur if S1 had never been used to measure the X2 values on cars and

X3 values on trucks. Identical properties hold, up to permutation, for S2 and S3.

Suppose the four measurements are x0, x1, x2, x3. The four sets of likelihoods are pre-

sented in Tables XIV and XVI.

Bus Car Truck

h1 h2 h3

l(hi|x0) 0.60 0.40 0.10

BelH0 [x0] 0.41 0.18 0.03

PlH0 [x0] 0.77 0.51 0.13

TABLE XIV

Example 6. Likelihoods on H0 produced by the observations x0, , and the normalized

beliefs and plausibilities they induce on the singletons of H0.

H0 ∅ h1 h2 h1, h2 h3 h1, h3 h2, h3 h1, h2, h3

mH0 [x0] 0.22 0.32 0.14 0.22 0.02 0.04 0.02 0.02

TABLE XV

Example 6. The basic belief assignment on H0 given x0, computed from the likelihoods

of Table XIV.

We first compute the bba mH0 [x0] on H0 given x0 from the likelihoods produced by S0

(i.e., the line l(hi|x0) of Table XIV). The resulting bba is presented in Table XV. Its

computation is done by applying equation (22). So

mH0 [x0](h1) = .60 × (1 − .40) × (1 − .1) = .32

For each sensor Si, i = 1, 2, 3, we compute mHi �H [xi], the ballooning extension of mHi [xi]

on H.
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Bus i = 1 Car i = 2 Truck i = 3

h11 h12 h21 h22 h31 h32

l(hij|xi) 0.45 0.55 0.90 0.10 0.40 0.70

BelHi [xi] 0.27 0.40 0.89 0.01 0.15 0.51

PlHi [xi] 0.60 0.73 0.99 0.11 0.49 0.85

TABLE XVI

Example 6. Likelihoods on H1, H2, H3 produced by the observations x1, x2, x3, , and the

normalized beliefs and plausibilities they induce on the singletons.

We conjunctively combine these three bba and (the vacuous extension of) mH0 [x0]:

mH [x0, x1, x2, x3] = ( ∩©i=1,2,3 mHi �H [xi]) ∩© mH0 [x0]
↑H .

This last bba is the final bba on H built from all collected data.

For practical applications, the computation can be strongly speed up as, in practice,

we hardly need all bbm, but only bel and pl (and maybe BetP ) on the elements of H.

Table XVII presents these end results for these elements, i.e., the normalized Bel and Pl

functions.

The analysis of the data show that S0 supports that the target is a Bus (h1), but after

collecting all data, it appears that the h21 is probably the best supported target type (thus

not a Bus). The data were purposely selected in order to enhance this embarrassing result.

In practice, the data leave us essentially embarrassed in choosing between h11, h12 and h21,

the other alternatives having been eliminated.

These data also enhance the danger of premature decision making. Suppose we apply an

iterated procedure by first observing S0’s data, and decide them to collect only S1’s data

as far as the first step leads us to consider the target was a Bus. It would save the cost

of collecting S2 and S3’s data, but the end result would have been erroneous, as the h21

hypothesis would have been rejected, whereas it seems nevertheless the best hypothesis in

the present case. This illustrates the dilemma between cost reduction obtained by taking

intermediate decisions versus larger expenses resulting from delayed decisions with ‘better’

results.

November 5, 2001 DRAFT



23

In practical applications where cost reduction is an issue, a pre-posterior sensitivity

analysis has to be realized at each step in order to decide if collecting further data would

affect the results and are worth the effort. The method is essentially mimicking the strategy

followed by the Bayesians. We don’t explore this methodology further here, but it can

‘easily’ be performed within the TBM.

Comments. It might be worth mentioning that the same results are obtained if we

define the domain of sensors Si, i = 1, 2, 3, as H, and describe the belief over Xi given

the hij /∈ Hi as a vacuous belief function over Xi. In that case the likelihoods l(hij|xk)

are 1 if i 	= k. We then apply the GBT on these three sets of likelihoods and proceed

with three belief functions defined on the same frame H. The computation load would be

much heavier in that case as we would work on unnecessarily large frames. Nevertheless,

this latter approach enhances the fact that we are really ignorant about what might be

Xi when sensor Sk face object in Hi, k 	= i. The vacuous belief function provides exactly

the right representation to describe such a state of ignorance.

h11 h12 h21 h22 h31 h32

BelH [x0, x1, x2, x3] 0.104 0.156 0.240 0.003 0.006 0.000

PlH [x0, x1, x2, x3] 0.397 0.485 0.530 0.059 0.059 0.103

BetPH [x0, x1, x2, x3] 0.231 0.300 0.364 0.028 0.025 0.052

TABLE XVII

Example 6. Normalized beliefs and plausibilities and pignistic probabilitys induced on

the singletons by x0, x1, x2, x3.

V. Example 7. Sensors in a Hierarchical Tree

As in Section IV, we want to identify vehicles. They can be categorized in three types:

Buses (h1), Cars (h2) and Trucks (h3). Each type can be subdivided according to the

auto-maker: Buses can be VanHool (h11) or Mercedes (h12), Cars can be VW (h21), Audi

(h22) or Ford (h23), Trucks can only be GMC (h31). For each auto-maker, there are two

models of vehicles (hij1, hij2), like ‘Beetle’ and Passat for VW, A4 and A6 for Audi . . .

Figure 2 presents the tree describing the relation between the hypotheses.
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............................................................................................................................................................................................................................................

...................................................................

............................................................................................................................................................................................................................................

h1 h2 h3 H ′′ = Type: S1 → mH′′
1

Bus Car Truck
....................................................................................

....................................................................................

h11 h12

.........................................................................................................................

...................................................................

.........................................................................................................................

h21 h22 h23

...................................................................

h31 H ′ = Maker: S2 → mH′
2

VanHool Mercedes VW Audi Ford GMC
........................................................................

........................................................................
h111 h112

........................................................................

........................................................................
h121 h122

........................................................................

........................................................................
h211 h212

........................................................................

........................................................................
h221 h222

........................................................................

........................................................................
h231 h232

........................................................................

........................................................................
h311 h312H = Model: S3 → mH

3VH1 VH2 MB1 MB2 Btl Pst A4 A6 Esct Tns GM1GM2

Fig. 2. Example 7. The tree of hypotheses and the domain of the three sensors with the beliefs they

produce.

There are three sensors, denoted S1, S2, S3 which measure the values of the three vari-

ables X1, X2, X3, respectively. S1 is able to distinguish between the three types, S2 between

the 6 auto-makers, and S3 between the 12 models. It means that

• the frame of discernment H = {hijk : i = 1 . . . 3, j = 1 . . . ni, k = 1, 2} where hijk is one

of the 12 models.

• there is a coarsening H ′ = {hij : i = 1, 2, 3, j = 1 . . . ni} of H where the elements of H ′

are the 6 auto-makers.

• there is a coarsening H ′′ = {hi : i = 1, 2, 3} of H ′ where the elements of H ′′ are the 3

types.

• S1 reports likelihoods on the types (H ′′), S2 on the maker (H ′) and S3 on the model (H).

It results from the fact that, for S1, we only know the probability over X1 given h1, h2 and

h3. We have no information about what would be these probabilities given more refined

hypothesis, like for instance h11. So S1 reports only likelihoods on H ′′. Similarly S2 reports

likelihoods on H ′, and S3 on H.

• we denoted by mH′
1 , mH′

2 and mH
3 the bba induced by the three sensors S1, S2, S3, respec-

tively.

The practical aim is to compute the normalized beliefs, plausibilities and pignistic prob-

abilities for the singletons of H (the models) considering all available likelihoods. The

computation could be done in a straightforward manner by vacuously extending mH′
2 and

mH′′
1 on H, and conjunctively combining the three bba’s so defined on H. But this is not
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computationally efficient as it means we would have to work on the space 2H . A more

efficient algorithm can be described that needs only to produce the full bba on H ′. As

one can expect that the cardinality of the antepenultimate level in a tree is really smaller

that the one of the last level, the computational benefit can be serious.

In the present example, suppose the three sensors have observed x1, x2, x3, respectively.

Let l denote the corresponding likelihoods. So we have three sets of likelihoods:

• l1(hi) for hi ∈ H ′′

• l2(hij) for hij ∈ H ′

• l3(hijk) for hijk ∈ H

Let mH
123 denotes the bba obtained on H after conjunctively combining the bba’s pro-

duced by the three sensors, and mH′
12 the one on H ′ produced by combining sensors S1 and

S2.

mH′
12 = mH′

2 ∩©mH′′↑H′

1

mH
123 = mH

3 ∩©mH′↑H
12

In appendix, we detail successively the computation of plH123, bel
H
123 on the singletons of

H and mH
123(∅), the latter being needed for normalizing the end results.

A. Computation for the Example

Tables XVIII and XIX present some details of the computation for the case presented in

Figure 2. The object is an VH1 (h111). We use likelihoods of .1 for the wrong hypothesis,

and .4 for the correct ones (see Table XVIII). We do not detail the subsets of h2 and h3

as the values are all the same as those given in the columns h2 and h3. The terms belH
′′

1

and plH
′′

1 are computed from l1 by equations (23) and (24). The bba mH′′
1 corresponding

is detailed in Table XIX in the column mH′′↑H′

1 . In that last table, we also presented the

masses mH′
2 computed from l2, and the masses obtained by conjunctively combining mH′′

1

and mH′
2 into mH′

12 (the small masses are not presented). Table XVIII presents then the

beliefs and plausibilities on the singletons of H ′ and H. Finally, the normalized results

on the singletons are displayed at the line BelH123 and PlH123. The hypothesis VH1 (h111)

is strongly supported, VH2 (H112) get a small support, and all other hypotheses can be
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neglected. We don’t present the pignistic probabilities as they are always between Bel

and Pl, and thus they would hardly bring any useful detail in the present context.

In conclusion, together the three sensors point strongly toward the fact the vehicle is

a VH1. The purpose of this numerical example is only to illustrate the computation

procedure and as such the data do not deserve a more detailed analysis.

H ′′ h1 h2 h3 m(∅)
l1 .4 .1 .1

belH
′′

1 .324 .054 .054 .486

plH
′′

1 .4 .1 .1

H ′ h11 h12 h2j h3j

l2 .4 .1 .1 .1

belH
′

12 .139 .023 .006 .008 .786

plH
′

12 .16 .04 .01 .01

H h111 h112 h121 h122 h2jk h3jk

l3 .4 .1 .1 .1 .1 .1

belH123 .056 .009 .003 .003 .001 .001 .913

plH123 .064 .016 .004 .004 .001 .001

BelH123 .65 .11 .03 .03 .01 .01

PlH123 .73 .18 .05 .05 .01 .01

TABLE XVIII

Example 7. Value of bel and pl for the singletons of H ′′, H ′ and H, and their normalized

values Bel and Pl on H. Rightmost column gives the masses given to ∅ used for

normalization.

VI. Example 8. Sensors on Partially Overlapping Frames

We present here a case of non compatible frames and a method to extend the conjunctive

combination rule in order to handle non compatible frames with some partial overlap. The

solution is a ‘careful’ solution. This topic has been studied in [10], [11], [12] who discuss

the present careful solution but also present other bolder solutions (see also [13]).
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h11 h12 h21 h22 h23 h31 mH′′↑H′

1 mH′
2 mH′

12

0 0 0 0 0 0 .486 .364 .786

1 0 0 0 0 0 .236 .139

0 1 0 0 0 0 .039 .023

1 1 0 0 0 0 .324 .026 .015

0 0 1 0 0 0 .039 .006

0 0 0 1 0 0 .039 .006

0 0 0 0 1 0 .039 .006

0 0 0 0 0 1 .054 .039 .006

0 0 1 1 1 0 .054

1 1 1 1 1 0 .036

1 1 0 0 0 1 .036

0 0 1 1 1 1 .006

1 1 1 1 1 1 .004

1.0 .782 .987

TABLE XIX

Example 7. Subsets of H ′ with the bba’s mH′′
1 extended on H ′, mH′

2 and their conjunctive

combination. The subsets with mH′
12 small than .001 are omitted. The 6 leftmost

columns represent subsets of H ′ with the 1 indicating which elements belong to the

subset. At bottom line, sum of the masses displayed.

Suppose a sensor S1 that has been trained to recognize h1 objects and h2 objects and a

second sensor S2 that has been trained to recognize h2 objects and h3 objects (like h1 =

airplanes, h2 = helicopters and h3 = rockets). Sensor S1 never saw an h3 object, and we

know nothing on how S1 would react if it was observing an h3 object. Beliefs provided by

S1 are always on the frame of discernment {h1, h2}. The same holds for S2 with h1 and

h3 permuted.

A new object X is presented to the two sensors. Both sensors S1 and S2 express their

beliefs as mH′
1 and mH′′

2 , the first on the frame H ′ = {h1, h2}, the second on the frame
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H ′′ = {h2, h3}. How to combine these two bba’s into a bba mH
12 on a common frame

H = {h1, h2, h3}?
The careful solution consists in ballooning extending each bba on the frame H and then

conjunctively combining them.

In this example the first sensor supports that X is h1, whereas the second claims that

X is h2. If X had been h2, how comes the first sensor did not say so? So the second sensor

is probably facing an h1 and just states h2 because it does not know what an h1 is. So we

feel that the common sense solution is X = h1, what is confirmed by BetPH
12 , the pignistic

probability computed from mH
12, as its largest value .655 is given to h1.

Just to enhance the simplicity of the belief function solution, we examine what might

be an Bayesian solution of this problem. Suppose the two sensors S1 and S2. Sensor S1

generates a probability function on H, denoted PH
1 , but we only know P1 = PH

1 [H ′], the

value of PH
1 after conditioning it on H ′. The same holds for sensor S2 with P2 = PH

2 [H ′′].

We must aggregate P1 and P2 in order to derive a probability function on H. The major

issue is in the reconstruction of PH
1 and PH

2 from P1 and P2. It means how to ‘de-condition’

a probability function on H when all you know is the result of its conditioning on some

strict subset of H. There are infinitely many solutions. Introducing the maximum entropy

principle leads to a solution strongly linked to the insufficient reason principle and suffers

of all the well known weaknesses of this principle. How probabilists would solve that

problem is surely not obvious. To get a working solution, they will probably introduce

artificial extra assumptions in order to be able to use the probability model.

VII. Conclusions

The transferable belief model (TBM) has been proposed as a mathematical model to

represent quantified beliefs. It covers the same domain as the one covered by Bayesian

probabilities, but instead of using an additive measure, it quantifies beliefs by a belief

function. The TBM is more general than the Bayesian model as the latter is a special

case of the first. The TBM provides a more flexible way to represent uncertainty, and can

nicely represent any form of partial up to total ignorance.

The TBM fits perfectly for the problem of multisensor data fusion thanks to the various

tools that are part of the model: the combination rules that permit the conjunctive or
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H mH′
1 mH′′

2 m
H′

�H
1 m

H′′
�H

2 mH
12 plH12 BetPH

12

h1 .6 .42 .90 .655

h2 .1 .7 .07 .32 .190

h3 .2 .02 .30 .155

{h1, h2} .3 .7 .21 .98

{h1, h3} .6 .2 .24 .93

{h2, h3} .1 .1 .01 .58

{h1, h2, h3} .3 .1 .03 1

TABLE XX

Example 8. Basic belief assignment mH′
1 and mH′′

2 on two partially overlapping frames,

with their ballooning extensions on the common frame H and their conjunctive

combination mH
12 on H with its related plausibility and pignistic probability functions.

disjunctive combination of belief functions induced by various distinct pieces of evidence,

the General Bayesian Theorem that permits belief inversion just as the Bayesian theorem

is used for probability inversion, and the pignistic transformation that permits to build

the probability measure needed once decision is required (but that does not ‘represent’

the beliefs themselves). For multisensor data fusion, the likelihoods are the conditional

plausibility functions , the General Bayesian Theorem is used to derive the beliefs on the

hypothesis space from the likelihoods, the conjunctive combination rule is used to com-

bine the a posteriori beliefs induced on the hypothesis space by the various observations

(admitted as usual to be conditionally independent), and the pignistic probabilities are

used to transform the overall beliefs into a probability measure in order to make decision

by maximizing expected utilities.

A nice property brought by the TBM when compared with the classical Bayesian ap-

proach consists in the ability to use an a priori belief that represents really total ignorance,

avoiding thus the classical problems encountered by the Bayesians when it comes to select

and justify the required a priori probabilities. An example is given (see Section II) that

illustrates the problem of choosing between the TBM and the Bayesian approaches, as
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the results are diametrically opposed depending on the used approach. The divergence

results in fact from the introduction of the a priori probabilities needed in the Bayesian

approach. This example is given in order to enhance that the choice of the model is a

serious matter as it might strongly influence on the results.

We present also some illustrative examples on how the TBM should be used in multi-

sensor data fusion for target identification problems.

Authors have often raised the issue that the use of belief functions, as done in the TBM,

is computationally inefficient when compared with the probability model. These criticisms

were often based on what we feel were inappropriate uses of the TBM. We reproduce these

studies and show that, in the examples used by Buede and Girardi [2], the TBM is never

less efficient and sometimes even more efficient that its contender, the probability model.

For the problem of multisensor data fusion, the TBM seems to offer a serious alternative

to the probability model. To decide which model is the best is delicate as the term ‘best’

is hardly clearly defined. Nevertheless some very encouraging results have been obtained

in real life contexts by [14], [15], [16], [17] for a problem of multisensor antipersonnel mine

detection.

Other applications related to the use of the TBM for data fusion problems and detections

have been developed in [18], [19], [20], [21], [22], [23], [24], [25] and a very fruitful TBM

based method for discriminant analysis has been introduced by Denœux and his group

[26]. Ayoun and Smets [27] study the problem of the number of targets under observation,

a problem that precedes the identification phase.

VIII. Appendix

A. Computing plH123

This computation is very easy. We have by (18):
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plH123(hijk) =
∑

h⊆H

plH3 (hijk ∩ h) mH′↑H
12 (h)

=
∑

h⊆H′

plH3 (hijk ∩ h↑H) mH′
12 (h)

= plH3 (hijk)
∑

hijk∈h⊆H′

mH′
12 (h)

= plH3 (hijk) plH
′

12 (hij)

and

plH
′

12 (hij) =
∑

h⊆H′

plH
′

2 (hij ∩ h) mH′′↑H′

1 (h)

=
∑

h⊆H′′

plH
′

2 (hij ∩ h↑H′
) mH′′

1 (h)

= plH
′

2 (hij)
∑

hij∈h⊆H′′

mH′′
1 (h)

= plH
′

2 (hij) plH
′′

1 (hi)

hence

plH123(hijk) = plH3 (hijk) plH
′

2 (hij) plH
′′

1 (hi)

Expressed in likelihoods, it becomes:

plH123(hijk) = l3(hijk)l2(hij) l1(hi).

This computation is so direct that if there is a time problem, one could discard all

those hijk where plH123(hijk)/ maxhν∈H plH123(hν) is less than a given threshold. Then the

computation for belH123 and mH
123(∅) is done on a smaller frame, thus faster.
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B. Computing mH
123(∅)

Using relations (16) and (12), we get:

mH
123(∅) =

∑

h⊆H

mH
3 [h](∅) mH′↑H

12 (h)

=
∑

h⊆H′

mH
3 [h↑H ](∅) mH′

12 (h)

=
∑

h⊆H′

bH
3 (h

↑H
) mH

12(h)

where

bH
3 (h

↑H
) =

∏

hijk∈h

(1 − l3(hijk))

The last terms are efficiently computed by storing the terms

t(n) =
∏

hijk∈hij

(1 − l3(hijk), n =
i−1∑

i′=1

ni′ + j, ∀hij ∈ H ′,

and then combining them with the next MatLab algorithm.

bel = 1;

for i =1:cardinalH ′

bel=[bel bel*t(i)];

end

The computation of mH
12 may be done by expanding vacuously mH′′

1 on H ′ and combin-

ing it with mH′
2 , using the Fast Möbius Transforms (see Section I-III-C) and relation (10).

Their computation corresponds to the heavier task in the whole computation and requires

the application of the Fast Möbius Transforms on a vector of length 2|H
′|, (which is much

smaller than the 2|H| encountered if one was not using the present algorithm). Compu-

tation is trivial for |H ′| ≤ 15. For much larger values, the algorithm must be adapted in

order to benefit from the special structure of the bba’s derived from the GBT.
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C. Computing of belH123

We have:

belH123(hijk) =
∑

h⊆H

belH3 [h](hijk) mH′↑H
12 (h)

=
∑

h⊆H′

(belH3 (hijk ∪ h
↑H

) − belH3 (h
↑H

)) mH′
12 (h)

where

belH3 (hijk ∪ h
↑H

) − belH3 (h
↑H

) = 0 if hijk ∈ h

= x(h) if hijk ∈ h

and

x(h) =
∏

hijk �=hν∈h

(1 − l3(hν)) −
∏

hν∈h

(1 − l3(hν))

= (
1

1 − l3(hijk)
− 1)

∏

hν∈h

(1 − l3(hν))

=
l3(hijk)

1 − l3(hijk)

∏

hν∈h

(1 − l3(hν))

and thus

belH123(hijk) =
l3(hijk)

1 − l3(hijk)

∑

h:hijk∈h⊆H′

mH
12(h)

∏

hν∈h

(1 − l3(hν))

The terms mH
12(h) were computed is Section VIII-B.

D. Computation of Normalized BelH123 and PlH123

It is done by dividing all terms in belH123 and pllH123 by 1 − mH
123(∅).
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