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Abstract

This paper explains how multisensor data fusion and target identification can be performed within

the transferable belief model, a model for the representation of quantified uncertainty based on belief

functions. The paper is presented in two parts: methodology and application. In this part, we present

the underlying theory, in particular the General Bayesian Theorem needed to transform likelihoods into

beliefs and the pignistic transformation needed to build the probability measure required for decision

making. We end with a simple example. More sophisticated examples and some comparative studies are

presented in Part II. The results presented here can be extended directly to many problems of data fusion

and diagnosis.

Keywords: Belief functions, transferable belief model, General Bayesian Theorem, pig-

nistic probabilities, target identification, data fusion.

I. Introduction

Classically, uncertainty is represented by probability functions, but other models like

those based on belief functions have been proposed since a few years. Belief functions are

proposed to represent quantified uncertainty in a supposedly better way than probability

functions. Indeed the latter are not well adapted to represent states of full or partial

ignorance. The ability of belief functions to represent various types of uncertainty, ambi-

guity or imprecision in a flexible way is claimed by some people, correctly or not, to be

counterbalanced by a larger mathematical and computational complexity.

Most discussions for comparing the probability and belief function approaches are fo-

cusing on theoretical considerations and toys examples. Instead in this paper, we study a

practical example of target identification, considering it as a prototypical example of di-

agnostic process. We show how to apply the transferable belief model to such a problem,

comparing it to the probability model, its obvious contender.

The transferable belief model (TBM for short) has been developed to provide a model

for the representation of quantified beliefs. It is based on belief functions. It corresponds

to an interpretation of the model developed by Shafer in his book [1]. The model has

been presented in [2], (see also [3], [4]). The TBM intends to represent weighted opinions,

called here beliefs, and is not to be confused with the models based on lower probabilities.

Many tools are presented in Shafer’s book like the combination rules for distinct pieces

of evidence and the discounting factors. Since then, we have developed several concepts.
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Those useful for this presentation are:

• the open world concept [5] that acknowledges that the frame of discernment might not

be exhaustive, what implies that positive mass can be allocated to the empty set.

• the General Bayesian Theorem [6] that permits to transform likelihoods into belief func-

tions, and its closely related ballooning extension that corresponds to a deconditioning of

a belief function.

• the separation of a credal mental level where beliefs are held and a pignistic mental level

where beliefs are used for decision making [2]. The link between the two levels is achieved

by the pignistic transformation that permits the construction of the probability function

required to make decisions [7], [8].

• the least commitment principle [9], [10], [3] that justifies the selection of the belief

function that does not create unjustified beliefs.

• the disjunctive rules of combinations [6] needed to combine two pieces of evidence when

all we know is that at least one must be considered.

The computational efficiency of the belief function approach and its comparison with the

probability approach has been studied in [11], [12] on a problem of target identification.

The comparison is based on the number of identical data that must be collected in order to

reach a ‘firm’ decision. Unfortunately, these authors use belief functions in a way we feel

to be ad hoc. These authors conclude that the probability approach is more efficient. We

present in details how we consider belief functions should be applied to such problems. The

essential tools are the General Bayesian Theorem and the pignistic transformation. We

repeat the efficiency study of Buede and Girardi [12] and show, on the contrary, that the

transferable belief model approach is computationally more efficient that the probability

one, even if the gain is small.

Most of the theoretical material is scattered over many papers, often difficult to access.

So we feel it useful for the reader to regroup them here in a synthetic way. All details and

proofs can be found in the original papers.

This paper is organized as follows. In Section II, we present the general problem of target

identification by multisensors and the way the TBM can be used for such a purpose. We

present the theoretical concepts concerning the TBM that are necessary for the present
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problem of target identification. In Section III, we present the General Bayesian Theorem

that is central for the method we propose for target identification. In Section IV, we apply

the General Bayesian Theorem to a simple problem.

In the second part, we show through an example that the General Bayesian Theorem

and the probability solutions can be diametrically opposed indicating thus that the choice

of the model is not just an academic exercise, but an issue which consequences can be very

serious. We then reproduce in part the study presented in [11], [12] and show that the

TBM approach is computationally never less efficient that its probability analogous. In

the last three sections, we show how to use the TBM for multisensor target identification

problems, and conclude.

II. The Transferable Belief Model for Identification

A. Sensors and Identification

A sensor can be seen essentially as a piece of equipment that observes some data x

and transmits some ‘opinion’ about the actual value of a parameter of interest h. The

simplest form arises when x and h are in one-to-one correspondence. In that case the sensor

observes x and communicates the corresponding h. In more complex cases, the relation

between x and h is not that simple, and the relation between x and h is represented by

a set of probability distributions on x given h, one distribution for each possible value

of h. Let P (x|h) denote the probability measure on X given h ∈ H, where X and H

are the observation and parameter domains, respectively. After observing x, the sensor

communicates its opinion on the value of h under the form of a ‘likelihood’ vector. Let

l(h|x) denote the likelihood of the hypothesis h given the observed data is x: by definition

l(h|x) = P (x|h)1.

This classical representation is based on the idea that for each h, the value that might

be observed is uncertain and this uncertainty can be represented by a probability measure

on X. If this probability measure results from the observation of the value of x for many h

objects, and if the sampling procedure used when collecting these data is well established

1This notation is unfortunate as it leads to confusions. It would have been better to write: if P (x|h) = a, then

l(h|x) = a. Likelihoods and probabilities share the same values, but a likelihood is not a probability as one might

erroneously deduce from the usual notation.
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so that probabilistic inference can be used in order to build P (x|h), the representation is

perfectly valid. In practice, a (hopefully random and representative) sample is used and

P (x|h) is equated to the proportion of x data observed in the sample. The validity of such

a simple procedure can be questioned and there are of course more sophisticated methods

to estimate P (x|h).

Nevertheless it might be argue that the uncertainty about x given h is not probabilist.

For instance, the sample might be neither random nor ‘representative’, or even worse,

it may happen there is no sample available. Non-probabilist representations have been

suggested, like those based on possibility or belief functions. In that case, the probability

measure P (x|h) is replaced by a conditional possibility function or a conditional belief

function defined on X for each h. We feel that the possibility approach is appropriate

when some fuzziness pervades the data or the hypothesis or our knowledge about P (x|h).

Fuzziness covers imprecision, whereas we are concerned here only with uncertainty [13].

In this study, there will be no fuzziness involved, all sets will be crisp, and therefore we

will not further consider possibility functions. Instead, we focus on belief functions.

B. Belief Functions for Uncertainty Representation

The idea of using belief functions to represent quantified uncertainty was first introduced

by Shafer [1] who was building his theory from Dempster’s research [14], [15], [16]. Later

Gordon and Shortliffe [17] coined the term ‘Dempster-Shafer theory’. Unfortunately, this

term turns out to be ambiguous as it covers essentially two models, one based on upper

and lower probability functions, the other on what we call the TBM. Missing to distinguish

between these models has created confusion in the literature [18].

In the first model, one assumes the existence of some probability measure, denoted P ,

that represents the uncertainty. Because of a lack of adequate information, all that is

available or known to the user about P is that it belongs to some family of probability

functions, denoted Π. The lower envelop of Π is defined as the function P∗ over X with

P∗(x) = minP∈ΠP (x). This lower envelop is usually called the lower probability function.

In the classical case, Π is convex in which case the lower envelop of Π fully describes the

set Π. This theory of imprecise probabilities is fully detailed in Walley [19]. In some cases

like those studied initially by Dempster and later by Kohlas and Monney in their hint
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model [20], this lower probability function is a belief function.

The second model, the TBM, does not consider any underlying probability function. It

accepts that uncertainty does not have to be additive as in probability theory, and that it is

represented by a belief function (that plays then the same role as the probability function

in the probability models). This model is close to what we feel Shafer presented in his

book [1], but to avoid confusion we have called it the TBM. The axiomatic justification

of the model can be found in [21], [22], and its description in [2], [4], [3]. How decisions

must be taken in the TBM is explained and justified in [7], [2] (see Section II-J).

The TBM not only represents quantified beliefs in a static way, but also its dynamic,

i.e., how beliefs change:

• when data are collected by several sensors and must be combined (see Section II-G on

combination rules)

• when data are collected from partially reliable sources and must be somehow discounted

(see Section II-H on belief discounting)

• when beliefs must be inverted in order to transform a belief over X given h ∈ H into

a belief over H given x ⊆ X, generalizing thus Bayes theorem (see Section III on the

Generalized Bayesian Theorem)

It might seem odd that sensors would produce their report in the form of a ‘belief’.

The term belief is strongly human oriented, and a sensor is usually anything but human.

The term ‘belief’ is maybe unfortunate in this context, but we feel that for historical

reasons we must keep it. Of course when we will state that a sensor believes something

given it knows something else, we only mean that the sensor has collected the ‘something

else’ and produced a belief function about the value of the ‘something’. No psychological,

philosophical or religious connotation must be given here to the term ‘belief’.

C. The Transferable Belief Model

The TBM is an interpretation of the so-called Dempster-Shafer theory. It is a model for

the representation of the quantified beliefs that results from the data collected by some

agent, a sensor in the present context. The beliefs concern the actual value h0 of some

variable. Let H be the set of possible values of that variable. In an identification problem,

H is the set of possible values that the object to identify can take. H is called the frame of
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discernment. Usually one assumes that h0 ∈ H (what we call the closed world assumption)

but we can also consider the case where H is not defined in an exhaustive way (open world

assumption).

The central element of the TBM is the basic belief assignment (bba), denoted m. For

A ⊆ H, m(A) is the part of belief that supports A (i.e. the fact that h0 ∈ A), and that,

due to a lack of information, does not support any strict subset of A. The initial total

belief is scaled to 1, and thus m(A) ∈ [0, 1], with
∑

A⊆H m(A) = 1. We do not require

m(∅) = 0 as in Shafer’s work.

The degree of belief bel(A) is defined as: bel : 2H → [0, 1] with, for all A ⊆ H,

bel(A) =
∑

∅�=B⊆A

m(B) (1)

It quantifies the total amount of ‘justified specific’ support given to A. The term ‘justified’

means that B supports A, thus B ⊆ A, and the term ‘specific’ means that B does not

support A, thus B � A or equivalently B �= ∅.
The degree of plausibility pl(A) is defined as: pl : 2H → [0, 1] with, for all A ⊆ H,

pl(A) =
∑

B∩A�=∅
m(B) = bel(H) − bel(A). (2)

It quantifies the maximum amount of ‘potential specific’ support that could be given to

A. The term ‘potential’ means that B might come to support A without supporting A if

further piece of evidence is taken into consideration, thus B ∩ A �= ∅.
The functions m, bel and pl are in one to one correspondence. Two other useful func-

tions also in one to one correspondence with m are the commonality function q and the

implicability function b with:

q : 2H → [0, 1], q(A) =
∑

B:A⊆B

m(B), ∀A ⊆ H (3)

b : 2H → [0, 1], b(A) =
∑

B:B⊆A

m(B), ∀A ⊆ H (4)

= bel(A) + m(∅) (5)

Their meaning are not considered here, but they are computationally very useful to

combine two belief functions conjunctively for q or disjunctively for b.
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Useful inversion formulas are for all A ⊆ H:

m(A) =
∑

B⊆A

(−1)|A|−|B|bel(B), A �= ∅ (6)

m(∅) = 1 − bel(H) (7)

m(A) =
∑

A⊆B

(−1)|B|−|A|q(B) (8)

D. Notation

In order to enhance the fact that we work with non-normalized belief functions (m(∅)
can be positive), we use the notation bel and pl, whereas Shafer uses the notation Bel and

Pl. The latter two are kept for normalized belief and plausibility functions, i.e., where

m(∅) = 0.

Besides we use the next conventions that we have found convenient, even though they

might seem cumbersome in some cases. The full notation for bel and its related functions

is:

belH,�
S,t [FS,t](h0 ∈ A) = x.

It denotes that x is the value of the degree of belief provided by the sensor S at time

t that the actual value h0 of H belongs to the set of values A, where A is a subset of the

frame of discernment H and A ∈ � where � is a Boolean algebra of subsets of H. The

belief is based on the facts FS,t, where FS,t represents all facts taken into consideration by

the sensor S at time t.

In practice many indices can be omitted for simplicity sake. In this paper we assume

that: 1) � is 2H , the power set of H, 2) ‘h0 ∈ A’ is denoted as ‘A’, 3) S, t and/or H are

omitted when the values of the missing elements are clearly defined from the context. So

belH [F ](A) or even bel(A) are often used.

In the above notation, bel can be replaced by any of m, b, pl, q, etc... The indices

should made it clear what the links are. So mH,�
S,t [FS,t] and plH,�

S,t [FS,t] are the bba and the

plausibility function related to belH,�
S,t [FS,t].

Note that belH,�
S,t [FS,t] (as well as its simplified forms) denotes the belief function, and

can be understood as a finite vector of length |�|, which components are the values of

belH,�
S,t [FS,t](A) for every A ∈ �.
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E. Axiomatic Justifications

A study of rationality properties that should be satisfied by a function which purpose

is to quantify someone’s beliefs leads to the use of belief functions [22], [21] and to the

derivation of Dempster’s rule of conditioning [23], [24], [25]. From this construction, we

have derived (and often justified) many other concepts like:

• the conjunctive combination rule (that is Dempster’s rule of combination except for its

normalization) to compute bel[E1 ∧ E2] from bel[E1] and bel[E2] (see Section II-G).

• the least commitment principle: ‘never give more support than justified’ what means

that we should select the belief function which values of pl(A) are as large as possible for

every A ⊆ H, (see Section II-F).

• the General Bayesian Theorem to compute the belief function induced by the observation

x ⊆ X over the frame H from the set of conditional belief functions over the frame X

given every hi ∈ H. (see Section III).

• the pignistic transformation to build the probability function needed for taking ‘optimal’

decisions using the expected utility theory, (see Section II-J).

• very efficient algorithms, called the Fast Möbius Transforms, to transform any of m, b, bel, pl, q

into each others [26], [27], [28]. Versions for MatLab 5.2 can be downloaded from the web

site at: http://iridia.ulb.ac.be/˜psmets

The TBM is a largely extended model inspired by what is described in Shafer’s book

[1] (note that some of Shafer’s later papers enhance other interpretations).

F. Vacuous and Ballooning Extensions

F.1 The Least Commitment Principle.

Let two bba m1 and m2 be defined on a frame of discernment H. We say that m1 is

less committed than m2 iff:

pl1(h) ≥ pl2(h) ∀h ⊆ H

It means that m2 gives stronger support to each h ⊆ H than m1.
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F.2 The Vacuous Belief Function.

The least committed of all belief functions defined on H is the so called vacuous belief

function defined by pl(h) = 1, ∀h ⊆ H, or equivalently m(h) = 1 if h = H, and 0 otherwise.

F.3 The Vacuous Extension.

[1] Suppose a bba mH defined on a frame of discernment H, and let H ′ be a refinement

R of H, i.e., every element hi of H is mapped by R into one to several elements of H ′,

and their image on H ′ are the elements of a partition of H ′. It just means that H ′ is more

detailed than H. Suppose there is a bba mH on H. This bba can be extended on H ′ in

order to build a bba on H ′ that expresses the same information as contained in mH . This

transformation is called the vacuous extension of mH on H ′, denoted by mH↑H′
and its

values are given by:

mH↑H′
(h′) = mH(h) if h′ = R(h)

= 0 otherwise.

where R(h) is the image of h under R.

F.4 Coarsening.

Suppose a bba mH′
defined on H ′. Let H be a coarsening of H ′, i.e., H ′ is a refinement

R of H. The bba induced on H by mH′
is denoted by mH′↓H , and the values of its related

belH
′↓H are:

belH
′↓H(h) = belH

′
(R(h)) ∀h ⊆ H

Marginalization is a special case of coarsening when H can be represented as the product

space of two variables X and Y , and the bba defined on X × Y is transformed into a bba

on X; indeed X is a coarsening of X × Y .

F.5 The Ballooning Extension.

[29], [6]
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Suppose a frame of discernment H and let H ′ be a subset of H. Suppose a bba mH′

defined on H ′ and we need a bba on H. The least committed bba on H such that its

conditioning on H ′ is mH′
is given by the so called ‘ballooning’ extension, denoted mH′

�H ,

and its values are:

mH′
�H(h) = mH′

(h′) if h′ ⊆ H ′, h = h′ ∪ H ′

= 0 otherwise.

The ballooning extension is useful when the received beliefs were build on a limited

frame and we discover that some alternatives had not been taken into consideration when

the sensor produced the bba on the limited frame. We can thus build a bba on the larger

frame from the one collected on the limited frame. It is repeatedly used to derive the

General Bayesian Theorem presented in Section III.

G. Conjunctive Combinations

Let E1 and E2 be two ‘distinct’ pieces of evidence and let mH [E1] and mH [E2] be the

bba’s they induce on H. Remember the symbols between [ and ] denote the pieces of

evidence taken in consideration when building the belief functions. We want to build the

bba that would result from the combination of the two pieces of evidence. There are two

families of combinations:

• the conjunctive combinations that build the bba given it is accepted that both sources

are fully reliable.

• the disjunctive combinations that build the bba given at least one source is accepted as

fully reliable but which one is so is unknown.

More complex combinations also exist but they are not considered here.

G.1 Conjunctive and Disjunctive Combinations

Let m1 and m2 be two bba’s on H induced by two distinct pieces of evidence. Then

their conjunctive combination m1 ∩©m2 (also denoted m1 ∩©2) is defined by:

m1 ∩©2(A) =
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ H (9)
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The same result can be conveniently expressed with the commonality function.

q1 ∩©2(A) = q1(A)q2(A) ∀A ⊆ H (10)

This rule is associative and commutative.

Dempster’s rule of combination is obtained by normalizing the result of the conjunctive

combination rule, i.e., by dividing all results by (1−m1 ∩©2(∅)). The result is denoted then

m1⊕2.

G.2 Conditioning

A special, but essential, case of conjunctive combination rule is the conditioning rule.

Let mA be so that mA(X) = 1 if X = A, and 0 otherwise. The result of the conjunctive

combination of m with mA produces a new bba m[A] with:

m[A](B) =
∑

C⊆A

m(A ∪ C) if B ⊆ A (11)

= 0 otherwise (12)

bel[A](B) = bel(B ∪ A) − bel(A), ∀B ⊆ H (13)

pl[A](B) = pl(A ∩ B), ∀B ⊆ H. (14)

This operation represents the impact of the information ‘h0 /∈ A’, which differs from

h0 ∈ A in the open world context as h0 might then not belong in H.

G.3 Useful Relations

We present first some relations relative to the conjunctive rule of combination that

are very useful to simplify computation and to understand the nature of the conjunction

operator (see Smets, [6]).
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Let m0 and m1 be two bba’s on H. Let m2 = m1 ∩©m0. For all h ⊆ H,

m2(h) =
∑

A∩B=h

m1(A)m0(B) (15)

=
∑

B⊆H

m1[B](h)m0(B) (16)

bel2(h) =
∑

B⊆H

bel1[B](h)m0(B) (17)

pl2(h) =
∑

B⊆H

pl1[B](h)m0(B) (18)

where m1[B], bel1[B], pl1[B] are the result of the conditioning of m1, bel1, pl1 on B ⊆ H,

respectively, using relations (12), (13) and (14).

G.4 Distinctness.

The concept of ‘distinct’ pieces of evidence is often left undefined. We propose that

it means that once the agent knows the bba m1 produced by one source of information,

what the agent knows about the bba that could be produced by the other source alone is

unchanged in comparison to what it was before the agent learns the value of m1 (see also

[30], [3]).

H. Discounting Beliefs

Suppose a source tells that the belief function on H is m, but the user, denoted You, is

not sure the source is really reliable (maybe it refers to another question than the one You

are interested in). Suppose You believe at level α that the source is reliable, and 1 − α it

is not, then Your belief m∗ on H becomes:

m∗(A) = α m(A), ∀A �= H (19)

m∗(H) = 1 − α + α m(H). (20)

This operation is called a discounting by Shafer [1]. Its interest comes from the possi-

bility to ‘discount’ sources of information when You feel they are not fully reliable.

Beware that combination and discounting do not commute, so the order with which

they are applied is important.
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I. Credal and Pignisitc Levels

The TBM is based on the assumption that beliefs manifest themselves at two mental

levels: the ‘credal’ level where beliefs are entertained and the ‘pignistic’ level where beliefs

are used to make decisions (from ‘credo’ I believe and ‘pignus’ a bet, both in Latin).

Usually these two levels are not distinguished and probability functions are used to

quantify beliefs at both levels. The justification for the use of probability functions is

usually linked to ”rational” behavior to be held by an ideal agent involved in some decision

contexts [31], [32], [33]. This result is accepted here, except that these probability functions

quantify the uncertainty only when a decision is really involved.

At the credal level, we defend that beliefs are represented by belief functions. When a

decision must be made, the beliefs held at the credal level induce a probability function at

the pignistic level. This probability function is needed to compute the expected utilities,

and we call it the pignistic probability function, denoted by BetP . The transformation

between the belief function and the pignistic probability function is called the pignistic

transformation (see Section II-J).

One might argue that all that counts in practice are the decisions, not the beliefs, and

that the credal level is just an intellectual subtlety. This happens not to be the case as

the introduction of the credal level modifies the dynamic of the decisions. Indeed when

conditioning is applied, the pignistic transformation of the revised beliefs is not equal to

the revised probabilities computed in probability theory.

J. The Pignistic Probabilities for Decision Making

Suppose a bba mH that quantifies Your beliefs on H. When a decision must be made

that depends on the actual value h0 where h0 ∈ H, You must construct a probability

function in order to take the optimal decision, i.e., the one that maximizes the expected

utility. This construction is achieved by the pignistic transformation. Its nature and its

justification are defined in [7], [3], [2], [8].

Let BetPH denote the pignistic probability function You will use to bet on the alterna-

tives in H. BetPH is a function of H and mH ,

BetPH = Γ(mH , H).
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We show that the only transformation from mH to BetPH that satisfies some rationality

requirements is the so called pignistic transformation given by:

BetPH(h) =
∑

A:h∈A⊆H

mH(A)

|A|(1 − mH(∅)) , ∀h ∈ H (21)

where |A| is the number of elements of H in A.

It is easy to show that the function BetPH is indeed a probability function and the

pignistic transformation of a probability function is the probability function itself. We call

it ‘pignistic’ in order to avoid the confusion that would consist in interpreting BetPH as

a measure representing Your beliefs on H.

This approach has been shown to resist to the Dutch book argument used by the

Bayesians to justify the probabilist approach [2], [34].

III. The General Bayesian Theorem

In probability theory, Bayes theorem permits the computation of a probability function

over space H given the value of some variable x ∈ X from the knowledge of the probabilities

over X given each hi ∈ H, and some a priori probability function over H. The same idea

has been extended in the TBM context where we will build a belief function over H

given an observation x ⊆ X from the knowledge of the belief function over X given each

hi ∈ H and a vacuous a priori belief over H, i.e., an a priori describing a state of total

ignorance (therefore solving the delicate problem of choosing an appropriate a priori).

This generalization, called the General Bayesian Theorem (or GBT for short) has been

described in [29], [35], [6] and is also discussed in [36]. Identical results have been derived

independently by Appriou [37].

Incorporating an a priori information on H is achieved by combining the belief induced

by x on H with the a priori belief using the conjunctive combination rule.

A. The Probability Solution

Suppose the finite spaces X and H. Suppose that for each hi ∈ H, there is a probability

function on X, usually denoted P (.|hi) but for coherence reasons we denote it as PX [hi].

Furthermore suppose there is an a priori probability function p0 over H describing the

initial beliefs. The problem will be to determine what is the probability function induced
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on H if x ⊆ X is observed, given the set of conditional probability functions PX [hi] and

the a priori probability function p0 on H.

The a posteriori probability function over H given x, denoted here PH [x], is given by:

PH [x](hi) =
PX [hi](x)p0(hi)∑

hj∈H PX [hj](x)p0(hj)
, ∀hi ∈ H, x ⊆ X.

It can as well be written as:

PH [x](hi) =
l(hi|x)p0(hi)∑

hj∈H l(hj|x)p0(hj)

A constant a priori probability function is often accepted, even though this attitude

may be seriously questioned. In that case, one obtains essentially:

PH [x](hi) ∝ l(hi|x)

a relation that explains why likelihoods are often erroneously confused with probabilities.

When all the ingredients required by this theorem are available and justified, its ap-

plicability does not raise any problem. In practice, the likelihoods are usually justified,

and result from previous studies. The same cannot be said about the a priori probability

function p0. Too often p0 is ad hoc, if not arbitrary, in which case the applicability of

the theorem becomes questionable. The GBT was developed in order to answer to this

criticism.

B. The TBM Solution

The GBT performs the same task as the Bayesian theorem but within the TBM context.

The major point is that the needed a priori belief over H can be a vacuous belief function,

what is the perfect representation of total ignorance. We avoid thus one of the major

criticisms against the Bayesian approach. Of course, should some a priori belief over H

be available, it would be combined by the conjunctive combination rule with the result

obtained by the GBT.

For the GBT, all that is needed from the sensor after it observes x is the vector of

plausibilities plX [hi](x) for all hi ∈ H. In many cases, the conditional belief over X given

hi is in fact represented by a probability function, in which case plX [hi](x) = PX [hi](x).
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In order to keep with the tradition, we call plX [hi](x) the likelihood of hi given x, what

we denote by l(hi|x).

Given the the likelihoods l(hi|x) for every hi ∈ H, then for x ⊆ X and for every A ⊆ H,

Smets [29] proves:

mH [x](A) =
∏

hi∈A

l(hi|x)
∏

hi∈A

(1 − l(hi|x)) (22)

belH [x](A) =
∏

hi∈A

(1 − l(hi|x)) −
∏

hi∈H

(1 − l(hi|x)) (23)

plH [x](A) = 1 −
∏

hi∈A

(1 − l(hi|x)) (24)

qH [x](A) =
∏

hi∈A

l(hi|x) (25)

Should You have some non vacuous beliefs on H, represented by mH [E0], then this belief

is simply combined with mH [x] by the application of the conjunctive rule of combination.

The GBT has been derived axiomatically by Smets [29], [35], [6] and by Appriou [37].

C. Computational Aspects

C.0.a bel and pl.. Realizing the classical (and sometimes unjustified) criticisms against

the computation load required when using belief functions, we produce the MatLab code

for computing the previous functions. By definition the vectors m, bel, pl and q are defined

on H. Their lengths are 2|H| and the position in the vector denotes the subset of H with

the convention they are binary ordered. So m(1) is the mass given to ∅, m(2) is given to

{h1}, m(3) to {h2}, m(4) to {h1, h2}, m(5) to {h3}, etc . . . This particular order allows

us to write computationally efficient - but memory greedy - algorithms.

Let lik denote the likelihood vector with lik(i)= l(hi|x). The algorithm to compute pl, m

and q according to relations (22), (24), and (25) is2:

2Suppose the vectors a = {a1, a2 . . . an} and b = {b1, b2 . . . bm} then in MatLab [a b] denotes the vector

{a1, a2 . . . an, b1, b2 . . . bm}.

November 5, 2001 DRAFT



18

m =prod(1-lik); pl = 1; q = 1;

for i =1:cardinalH

m=[m m*lik(i)/(1-lik(i))];

pl = [pl (1-lik(i))*pl];

q = [q lik(i)*q];

end

pl = 1-pl;

The bel vector is computed directly from the pl vector, using bel(A) = pl(H) − pl(A).

In case some likelihoods are 1, the set H is transformed into a new set H∗ so that

∀hi ∈ H∗, l(hi|x) < 1 and the computation is performed on H∗. The ballooning extensions

of these resulting functions from H∗ to H produces the correct results.

As far as in practice, users focus essentially on the belief and the plausibility given to

the elements hi of H, we produce some useful simplified formula. We have:

mH [x](∅) =
∏

hi∈H

(1 − l(hi|x)), (26)

then

mH [x](hi) = belH [x](hi) = mH [x](∅) l(hi|x)

1 − l(hi|x)
(27)

plH [x](hi) = qH [x](hi) = l(hi|x)) (28)

Algorithms can be simplified by eliminating those hi which plausibility is below some

threshold α. It consists in fact in a conditioning on Hα = {hi : l(hi|x) ≥ α} and applying

the algorithm on Hα which cardinality is usually much smaller then the one of H.

C.0.b BetP.. The computation of BetP can be done using the general formula, but given

the special nature of the bba mH [x], a more efficient algorithm can be defined. Let

s(i) =
∑

|A|=i

∏

hi∈A

l(hi|x).

Let m0 = mH [x](∅) be computed by relation (26). The MatLab code to compute BetP (hi)

is:
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x = 1; p = 1; cs = -1;

for k = 2:cardinalH

x = s(k-1) - lik(i)*x;

p = p + cs*x/k;

cs = - cs;

end

BetP(i) = lik(i)*p/(1-m0);

D. Some Properties

Some particular properties of the GBT are worth mentioning.

D.1 A Way to Derive the GBT

The GBT can be derived from the ballooning extensions (see Section II-F). We start

from the bba mX [hi] collected for hi ∈ H. We build its ballooning extension on X × H,

and then conjunctively combine these bba’s over the hi’s. The result is then marginalized

on H and is exactly the bba derived by the GBT.

Formally we have:

mH [x] = ( ∩©hi∈H mX [hi] �X×H)[x]↓H

= ∩©hi∈H (mX [hi] �X×H [x]↓H)

The combination can be performed before or after conditioning on x and marginalizing,

results are identical.

Furthermore, the bba mX [hi] �X×H [x]↓H happens to be a simple support functions3 on

H with a mass 1 − l(hi|x) given to hi and a mass l(hi|x) given to H [6].

D.2 Independent Observations

We consider the case of two ‘independent’ observations x defined on X and y defined

on Y , and the inference on H obtained from their joint observation.

3A Simple Support Function is a belief function where all bbm’s are null except for one set and the whole frame.
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Suppose the two variables X and Y are conditionally ‘independent’. If the beliefs over

X and over Y given hi ∈ H are represented by probability functions, it means that X and

Y are conditionally stochastically independent. In the more general case where the beliefs

over X and over Y given hi ∈ H are represented by belief functions, the ‘independence’

requirement becomes what is called the Conditional Cognitive Independence [6], [38]. In

both cases, the next property is satisfied;

l(h|x, y) = l(h|x)l(h|y) ∀h ∈ H, x ∈ X, y ∈ Y. (29)

where the likelihood is either the conditional probability or the conditional plausibility of

x given h.

The GBT could be applied in two different ways.

Let plH [x] and plH [y] be computed by the GBT (with a vacuous a priori belief on H)

from the likelihoods obtained from x and y, separately. They are then combined by the

conjunctive rule of combination in order to build plH [x, y].

We could as well consider the likelihoods directly obtained from the joint observation

x, y, using the product rule (29). We then compute plH [x, y] from them using the GBT.

Both results are the same. This property is essential and in fact at the core of the

axiomatic derivations of the rule.

D.3 New Hypothesis

The mass given to the empty set by the application of the GBT can receive a nice

and useful interpretation. Suppose we accept that H is not exhaustive, thus there are

unthought-of hypotheses. Let h∗ denote all of them. Then mH [x](∅) is equal to belH∪h∗
[x](h∗),

thus the degree of belief that the data x supports that none of the hypothesis in H holds,

and that we are facing a case where a new previously unthought-of hypothesis must be

considered. Identically we have for all h ⊆ H:

belH∪h∗
[x](h ∪ h∗) = belH [x](h) + mH [x](∅),

belH∪h∗
[x](h) = 0.

This result is what the GBT produces if we add an extra hypothesis h∗, and define

belX [h∗] as the vacuous belief function. This is the natural solution, as it is obvious
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that the user knows nothing about the conditional beliefs over the data when the actual

hypothesis belongs to h∗, the set of unthought-of hypotheses.

D.4 The Bayesian Degradation

If for each hi ∈ H, plX [hi] is a probability function PX [hi] on X, then the GBT for

|hi| = 1 becomes:

plH [x](hi) = P (x|hi), ∀x ⊆ X.

That is, on the singletons hi of H, plH [x] reduces to the likelihood of hi given x. The

analogy stops there as the solution for the likelihood of subsets of H are different.

If, furthermore, the a priori belief on H is also a probability function p0(h), then the

normalized GBT becomes:

belH [x](A) =

∑
hi∈A P (x|hi)p0(hi)

∑
hi∈H P (x|hi)p0(hi)

= P [x](A)

i.e. the (normalized) GBT reduces itself into the classical Bayesian theorem (as it should).

This explains the origin of its name.

D.5 Most Plausible and Most Probable Hypothesis

Suppose we know plX [hi](x) for all x ⊆ X and all hi ∈ H. Data x ⊆ X is collected

and want to select which hypothesis hi ∈ H is ’best supported’ given the observed data.

Two strategies have been proposed, one based on selecting the hypothesis with the largest

pignistic probability (see Section II-J), the other based on selecting the most plausible

hypothesis [37], [39]. It happens that the selected hypothesis is the same for both ap-

proaches.

Theorem III.1: Given x ⊆ X and plX [hi](x) for all hi ∈ H, let plH [x] be the plausibility

function defined on H and computed by the GBT (relations (22) to (25)), and BetPH [x]

be the pignistic probability function constructed on H from plH [x] (relation (21)), then:

BetPH [x](hi) > BetPH [x](hj) iff plX [hi](x) > plX [hj](x).

Proof. Let l(hk|x) = plX [hk](x). Suppose l(hk|x) < 1 for all hk ∈ H. Let rk =

l(hk|x)/(1 − l(hk|x)) and α =
∏

hk∈H(1 − l(hk|x)). Then by the GBT (see relation (22)),
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we have for h ⊆ H:

mH [x](h) =
∏

hi∈h

l(hi|x)
∏

hi∈h

(1 − l(hi|x)) = α
∏

hk∈h

rk.

With K = 1
1−mH [x](∅) , we have BetPH [x](hi):

BetPH [x](hi) = K
∑

h⊆hi

1

|h| + 1
mH [x](hi ∪ h)

= αK ri

∑

h⊆hi

1

|h| + 1

∏

hk∈h

rk

= αK
∑

h⊆hi∪hj

∏

hk∈h

rk (
ri

|h| + 1
+

ri rj

|h| + 2
) where j �= i

In that case:

BetPH [x](hi) − BetPH [x](hj) = α K
∑

h⊆hi∪hj

∏

hk∈h

rk (
ri

|h| + 1
− rj

|h| + 1
)

= α K(ri − rj)
∑

h⊆hi∪hj

∏

hk∈h

rk (
1

|h| + 1
)

As rk ≥ 0, the product terms are non negative, and so is their sum. The sum is positive

as the term with h = ∅ has a product equal to 1. Hence the sign of the difference is the

same as the sign of ri − rj:

BetPH [x](hi) > BetPH [x](hj) iff ri > rj.

As ri > rj iff l(hi|x) > l(hj|x), i.e., iff plX [hi](x) > plX [hj](x), the largest value of

BetPH [x](hν) is obtained for the hypothesis hν for which plX [hν ](x) is maximal.

If for k ∈ H0, l(hk|x) = 1, then every positive bbm on H is given to a superset of

h0, and thus the pignistic probabilities given to the hk ∈ H0 are equal and maximal.

Simultaneously, plX [hk](x) is always less or equal to 1, so the hypothesis hk ∈ H0 are

those with a maximal plausibility, hence the theorem. �

This property is very useful when the only purpose is to take a decision and the a priori

belief on H is vacuous. Indeed all computation can be avoided as all that is needed is

plX [hk](x). Of course, the whole computation is still needed when expected utilities and
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other results are required. This result does not hold when a non vacuous a priori belief

on H is introduced.

IV. Example 1: A Simple Example of Data Fusion

In order to illustrate the use of the GBT and the pignistic transformation, we present

a simple problem of target identification by two sensors. Our examples are inspired by

those in [12].

Let S1 and S2 be two sensors, an Electronic Support Measure (ESM) and a Radar sensor,

respectively. Let X and Y be the domains of the data they can observed, respectively. Let

H = {F, M, B} be the set of possible targets where the letters denote a F-15, a Mig-27

and a Boeing 747 aircraft, respectively. Table I presents the values of the conditional

plausibility functions for x ⊆ X and y ⊆ Y , where x and y are the observations made by

the two sensors, respectively. Table II presents the computation performed by the GBT.

We list the plausibility function induced by data x on H (line plH [x]), and its related bba

(line mH [x]) and commonality function (line qH [x]). For instance,

plH [x](F, M) = 1 − (1 − .7)(1 − .4) = .82

We do the same with data y. We then conjunctively combine the two belief functions

by a pointwise multiplication of their commonality functions (line qH [x, y]). We then

present the bba (line mH [x, y]) and the normalized belief (line BelH [x, y]) and plausibility

functions (line PlH [x, y]) ‘ related to the commonality function and that result thus from

the conjunctive combination of the belief functions induced on H by x and by y. Finally

Table III presents the pignistic probability functions computed after collecting data x

alone, data y alone and data x and y jointly. For example,

BetPH [x](F ) = (.378 + .252/2 + .041/ + .028/3) / (1 − .162) = .638

The ESM sensor supports the hypothesis that the object is a F-15, whereas the Radar

sensor supports that it is a Boeing. But together, they support more strongly that the

object is a F-15. This fits with what Table I tells. Hypothesis M and B are each rejected

by one sensor, and F is the only hypothesis somehow supported by both sensors. For

comparison purposes we also present in Table III what would be the posterior probabilities
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obtained with the same data using equi a priori probabilities on H. Results are very similar

in this case. Such a similarity is not always encountered as shown in the next section where

the TBM conclusions and the probability conclusions diverge completely.

Sensor data F M B

ESM x .7 .4 .1

Radar y .5 .2 .6

TABLE I

Example 1. Values of the conditional plausibility functions on x ⊆ X and y ⊆ Y given

the 3 hypotheses F , M and B in H. x and y are the observations made by the ESM and

the Radar Sensors, respectively.

V. Conclusions

We have explained how to use the transferable belief model for problems of target iden-

tification, data fusion and diagnosis. The transferable belief model is a model developed

to represent quantified uncertainty based on belief functions. The major components of

the model needed for the present problems are the General Bayesian Theorem that per-

mits to pass from the likelihoods to the posterior beliefs, and the pignistic transformation

that permits the construction of the probabilities needed for decision making. These two

essential components have received full justifications in [2], [6].

The method we present in fact mimics exactly what is done in probability theory except

that every probability function is replaced by a belief function. The latter is more flexible

than the former and is able to represent forms of uncertainty difficult to realize within the

framework of probability theory. This flexibility allows in particular to solve the problem

of the choice of an adequate prior encountered with the classical probabilist approach.

Indeed belief functions can represented all forms of uncertainty, from total ignorance to

full knowledge. Probability functions occupy an intermediate level in that domain.

The second part of this paper explains how the transferable belief model can be used in

practice. It also discusses computational efficiency issues.
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H ∅ F M B F, M F, B M, B F, M, B

plH [x] 0 0.7 0.4 0.1 0.82 0.73 0.46 0.838

mH [x] 0.162 0.378 0.108 0.018 0.252 0.041 0.012 0.028

qH [x] 1 0.7 0.4 0.1 0.28 0.07 0.040 0.028

plH [y] 0 0.5 0.2 0.6 0.6 0.8 0.68 0.84

mH [y] 0.16 0.16 0.039 0.24 0.04 0.24 0.060 0.06

qH [y] 1 0.5 0.2 0.6 0.1 0.3 0.12 0.06

qH [x, y] 1 0.35 0.08 0.06 0.028 0.021 0.004 0.001

mH [x, y] 0.562 0.302 0.048 0.035 0.026 0.019 0.003 0.001

BelH [x, y] 0 0.691 0.111 0.081 0.862 0.817 0.200 1

PlH [x, y] 0 0.799 0.182 0.137 0.918 0.888 0.308 1

TABLE II

Example 1. Computation performed by the GBT in order to compute the belief and

plausibility functions on H given the x and y data.
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Intelligence 6, P. P. Bonissone, M. Henrion, L. N. Kanal, and J. F. Lemmer, Eds. 1991, pp. 401–416, North

Holland, Amsterdam.

[27] R. Kennes and Ph. Smets, “Fast algorithms for Dempster-Shafer theory,” in Uncertainty in knowledge bases,

B. Bouchon-Meunier, R. R. Yager, and L. A. Zadeh, Eds. 1990, pp. 14–23, Springer Verlag, Berlin.
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