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1. Introduction.

Dempster-Shafer's model aims at quantifying degrees of belief. But there are so many
interpretations of Dempster-Shafer's theory in the literature that it seems useful to present the
various contenders in order to clarify their respective positions.

We shall successively consider the classical probability model, the upper and lower
probabilities model, Dempster's model, the transferable belief model, the evidentiary value
model, the provability or necessity model.

None of these models has received the qualification of Dempster-Shafer. In fact the transferable
belief model is our interpretation not of Dempster's work but of Shafer's work as presented in
his book (Shafer 1976, Smets 1988).  It is a 'purified' form of Dempster-Shafer's model in
which any connection with probability concept has been deleted.

Any model for belief has at least two components: one static that describes our state of belief,
the other dynamic that explains how to update our belief given new pieces of information. We
insist on the fact that both components must be considered in order to study these models. Too
many authors restrict themselves to the static component and conclude that Dempster-Shafer
theory is the same as some other theory. But once the dynamic component is considered, these
conclusions break down. Any comparison based only on the static component is too restricted.
The dynamic component must also be considered as the originality of the models based on
belief functions lies in its dynamic component.
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2. The probability model.

In probability theory, the static component consists of the assessment of a probability

density p on the elements of Ω such that p: Ω→[0, 1], ∑
ω∈Ω

  p(ω)  =  1 .

Degrees of belief on subsets of Ω are quantified by a probability distribution P:2Ω→[0, 1] such

that ∀ω∈Ω , P({ω}) = p(ω) and ∀ A, B”Ω with A∩Β=Ø, P(A∪ B) = P(A) + P(B)

The dynamic component is the conditioning rule: when you learn that B”Ω is true (and if
P(B)≠0), P is updated into the conditional probability distribution P(.|B) defined on 2Ω as

P(A|B) = 
P(A∩B)

P(B)

3. Upper and lower probabilities models

An upper and lower probabilities model is identical to the probability model except inasmuch as
it acknowledges that some probabilities might be unknown. Let Π  be the set of all those

probability distributions compatible with the available information. Instead of building a meta-
probability distribution on Π  as strict bayesians would recommend, one considers critical

values - usually the extremes - of the various probabilities one is interested in. Various forms of
partially known probability models can be described. Often Π is a convex set of probability

distributions (Kyburg 1987) uniquely defined through its upper and lower probabilities
functions P* and P* where

∀ A”Ω P*(A) = sup P∈Π  P(A) P*(A) = inf P∈Π  P(A)

When Π  contains only one element, the model reduces itself into the classical probability

model.

In the classic upper and lower probabilities model, the static component consists in defining
the upper probability distribution P* or the lower probability distribution P*, both from 2Ω to

[0, 1].  Both approaches are identical as P*(A) = 1 - P*( A) ∀ A”Ω. For each P in Π, one has:

for all A”Ω,   P*(A) ≤ P(A) ≤ P*(A)

The dynamic component is the conditioning process. Conditioning on B”Ω is obtained by
considering each probability distribution P in Π, and conditioning them on B. Let ΠB be the

resulting set of conditional probability distributions:

 ΠB = { PB : ∀ A”Ω PB(A) = P(A|B) = 
P(A∩B)

P(B)  , P∈Π }

The upper and lower conditional probabilities functions are the upper and lower limits of these
conditional probabilities:



for all A”Ω, P*(A|B) = infPB∈Π B PB(A) = infP∈Π  P(A|B)      = 
P*(A∩B)

P*(A∩B)+P*( A∩B)

P*(A|B) = supPB∈Π B PB(A) = supP∈Π  P(A|B) = 
P*(A∩B)

P*(A∩B)+P*( A∩B)

These equations have been recently studied by Planchet (1989) and Fagin and Halpern (1990).

4. Dempster's model.

Dempster (1967) introduced a special form of upper and lower probabilities model. For the
static component of the model, he considers a space X endowed with a probability
distribution PX and a mapping M from space X to space 2Y. Let M(x) denotes the image of x
under M for x∈ X. He defines upper and lower probabilities distribution P* and P* on 2Y such

that for all A”Y:
P*(A) = PX(M*(A))

and P*(A) = PX(M*(A))
where M*(A) = {x: x∈ X, M(x)”A, M(x)≠Ø}

and M*(A) = {x: x∈ X, M(x)∩A≠Ø}.

The functions P* and P* are a belief and a plausibility function, respectively (see §5).

Let PY be the (unknown) probability distribution on 2Y induced by PX and the mapping M.
One way to derive P*(A) consists in writing

P*(A)  = inf ∑
x∈ X

   PY(A|x).PX(x) ∀ A”Y

where the inf is taken over all possible values of the PY(A|x). One has PY(A|x) = 1 whenever
M(x)”A and anything in [0,1] otherwise. The minimum is obtained by taking PY(A|x) = 0
whenever possible. Hence:

P*(A) = ∑
x:M(x)”A

   PX(x) = PX(M*(A)).

For the dynamic component of the model, two types of conditioning can be considered. The
first is related to upper and lower probabilities theory:

P*(A|B)  = inf  

∑
x∈ X

   PY(A∩B|x).PX(x)

∑
x∈ X

   PY(B|x).PX(x)
  = 

P*(A∩B)

P*(A∩B)+P*( A∩B)



where the inf is taken over all possible values of the PY(A|x). This conditioning, hereafter
called the G-conditioning, corresponds to the solution described in the upper and lower
probabilities model in §3. It is not the one considered by Dempster.

For the second form of conditioning on B”Y, one considers that the mapping M:X→2Y has

been transformed into mapping MB:X→2Y with:

MB(x) = M(x)∩B.

The image of each x∈ X is constrained to be in B. One postulates also that the information B

does not modify PX, i.e. PX(x|B) = PX(x).  In that case
P*(A|B) = inf ∑

x∈ X
   PY|B(A|x).PX(x)

P*(A|B) = sup ∑
x∈ X

   PY|B(A|x).PX(x)

where PY|B(A|x) = 1 whenever M(x)∩B”A and anything in [0, 1] otherwise. Then

P*(A|B) =  
P*(A∪  B) - P*( B)

1 - P*( B)
P*(A|B) = 

P*(A∩B)
P*(B)

what we call the D-conditioning.

Dempster-Shafer's model corresponds to this interpretation, i.e. Dempster's model endowed
with the D-conditioning rule.

An important point in Dempster's model is that one accepts the existence of a probability
distribution on Y. The statement P*(A) ≤ PY(A) ≤ P*(A) is meaningful as PY(A) exists even

though its exact value is unknown. It is not the case with the transferable belief model  (§5)
where no concept of probability distribution on Y is assumed or required.

Levi (1983) strongly criticizes the assumption  PX(x|B) = PX(x). Whenever probabilities are
assumed on X and Y, one must justify why the information B leaves our probability
distribution on X unchanged. One way to avert this criticism would be to avoid any reference to
some underlying probability distribution. This is what we try to do in our transferable belief
model interpretation of Dempster-Shafer's theory.

5. The transferable belief model

It is postulated that evidence induces us in allocating parts of some initial finite amount of belief
to subsets of the frame of discernment Ω. Instead of allocating these parts of belief to the
singletons of Ω as in probability theory, some parts may also be allocated to subsets. Each part
represents that part of our belief that supports some subset of Ω without supporting strict
subsets. Should further information be available, that part of belief m(A) allocated to A”Ω
might be transferred to strict subsets of A. The static component of the transferable belief
model corresponds to this mass allocation.



The degree of belief bel(A) given to the set A of Ω is defined as the sum of all masses that
support A without supporting  A,

bel(A) = ∑
Ø≠X”A

 m(X)

and the degree of plausibility function pl(A) quantifies the total amount of belief that might
support A:

pl(A) = bel(Ω) - bel( A) = ∑
X∩A≠Ø

   m ( X )

For the dynamic component, suppose a mass m(A) (called a basic belief mass)
supporting a set A of Ω. You learn that subset X of Ω is impossible. The basic belief mass
supporting A initially now supports A∩ X. So the basic belief mass m(A) is transferred to

A∩ X, hence the name of the model. This corresponds to Dempster's rule of conditioning.

The transferable belief model claims that beliefs are quantified by a single number (bel). It is not
an upper and lower probabilities model. It is a form of Dempster-Shafer's model where all
relations with probability theory are cancelled. This interpretation is based essentially on
Shafer's work (1976), see also Smets (1988).

The transferable belief model is not a particular case or a generalization of some probability
models, nor of any meta-model based on probability distributions. Any interpretation implying
the existence of an underlying probability distribution is irrelevant to our approach. We only
postulate the existence of the basic belief masses assigned to subsets A of Ω, each expressing
the support given specifically to A and that could be transferred to strict subsets of A should
new pieces of evidence become available (i.e., the conditioning process).

6. Other interpretations of belief functions.

6.1. Evidentiary Value Model.

Ekelöf (1982) initially suggested a theory of evidentiary value in judicial context (see
Gärdenfors et al (1983) for a survey of the topic). The model is very close to Dempster-
Shafer's model and the transferable belief model.

An evidentiary argument contains three components (Gärdenfors 1983):
- an evidentiary theme that is to be proved
- evidentiary facts
- evidentiary mechanisms which say that en evidentiary fact is caused by an evidentiary theme.

For these authors, the probability that the evidentiary mechanism has worked given the
evidentiary facts is more important judicially than the probability of the evidentiary theme given
the evidentiary facts.



In some cases, the model gives the same results as Dempster's model, but counter-examples
can be built up that show the two models to be different.

6.2. Probability of provability or necessity.

Pearl (1988) interprets Dempster-Shafer's model as a model to quantify the probability that a
proposition is provable, not that a proposition is true. Ruspini (1986) considers that bel(A) is
the probability that A is necessary (tA). bel(A) could be interpreted as the sum of the
probabilities p(w, w|=tA) of those worlds w where A is necessary. Both interpretations are in
fact identical. They fit in with the static component of Dempster-Shafer's theory. Indeed if
bel(A) = p(tA), then all inequalities characterizing the belief functions are satisfied.

But the dynamic component has to be justified. What is the conditioning process here? Is
Dempster's rule of conditioning the appropriate rule for conditioning? The problem of
conditioning has apparently not yet been solved. We nevertheless believe that there is an open
opportunity to show that the transferable belief model is analogous to a model where bel(A) is
interpreted as p(tA) once the conditioning process is understood.

7. What is Conditioning?

The static component of each model is important, but the dynamic component is even more
important, though too often neglected. So we shall concentrate here more specifically on the
conditioning process and Dempster's rule of conditioning through the study of the paradigm1 of
the three soldiers (S1, S2 and S3) and the three posts (P1, P2 and P3). Let an army camp with
three posts, only one of them must be occupied. The officer will randomly select (with
probability 1/3) one of the three soldiers. Each soldier has a habit in that
- if soldier S1 is selected, he will always go to post P1 or P2,
- if soldier S2 is selected, he will always go to post P1 or P2 or P3,
- if soldier S3 is selected, he will always go to post P1.

Before the officer selects the soldier on duty, each of them writes down on a piece of paper
where he will go if selected. There are therefore six possible worlds, w1 to w6, where each
world corresponds to one particular post selection (see left part of table 1). As the officer can
select any one of the three guards, 18 possible worlds can be defined (referred as worlds wij if
soldier Sj is selected and we were in world wi).

I want to attack the camp. I know the soldiers' preferences, I know how the officer selects the
guard on duty, I know that a guard has been selected, but I do not know who. My problem is
to assess my belief about which post is occupied. With the transferable belief model, bel(P1) =

1 This is an updated version of our beehive paradigm based on Hsia's suggestions.



1/3 (S3 was selected), bel(P2) = 0, bel(P1∨ P2) = 2/3 (S1 or S3 was selected)…Three  cases of

conditioning can then be considered.

occupied post remaining worlds remaining worlds
post selected according to the  after case 1 after case 2

by each soldier soldier selected conditioning conditioning
 world S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

w1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1
w2 P1 P2 P1 P1 P2 P1 P1 P1
w3 P1 P3 P1 P1 P3 P1 P1 P3 P1 P1 P3 P1
w4 P2 P1 P1 P2 P1 P1 P1 P1
w5 P2 P2 P1 P2 P2 P1 P1
w6 P2 P3 P1 P2 P3 P1 P3 P1

1/3 1/3 1/3
  probabilities of being selected

Table 1: the set of six worlds that represent the six possible ways posts could be selected by
each soldier, and the post occupied according to which soldier has been selected by the officer.

Case 1: I learn (and the soldiers know it too) that post P2 is inaccessible for some reason. So
the soldiers will not select P2 if they can go elsewhere. Hence the worlds w2, w4, w5 and w6
become impossible. My beliefs about which post is  occupied become: bel(P1) = 2/3 (S1 or S3
was selected), bel(P3) = 0, bel(P1∨ P3) = 1.

Case 2: I am able to observe post P2 and realize that it is empty. Hence the guard on duty had
not selected P2 before being assigned the job. Hence the worlds w22, w41, w51, w52 and
w61 become impossible. My beliefs are identical to those in case 1.
Case 3: I learn that soldier S3 was not selected. So I rescale the probabilities on the space (S1,
S2, S3) into P(S1) = P(S2) = 1/2. Hence bel(P1) = 0, bel(P2) = 0, bel(P1∨ P2) = 1/2 (S1 was

selected)…

To show the difference between case 1 and case 2, suppose I learn that soldier S2 had decided
that if S1 selected post P1, S2 would not select P3. Hence world w3 is impossible.

Case 1: Only world w1 remains possible, hence bel(P1) = 1.
Case 2: Delete also worlds w31, w32 and w33. The bel(P1) = 2/3 (S1 or S3 was selected),
bel(P3) = 0 and bel(P1∨ P3) = 1.

Case 3: Unchanged.

The transferable belief model is applicable in all three cases. Case 3 is purely probabilist. In
case 1, a probabilist approach will probably lead to a solution similar to the one found with the
transferable belief model. The real originality of the transferable belief model lies in the way
case 2 is handled. Probabilists might be tempted to defend the idea that the 1/3 probabilities



present in the soldier selection process should be updated. Indeed, they could contend that the
fact that P2 is not occupied somehow supports the hypothesis that soldier S2 was more
probably selected than soldier S1. Hence the probabilities P' updated by the knowledge that P2
is empty should be such that P'(S2)>P'(S1). That is what Levi requires in his criticisms. The
answer is that no probability is built on the wij space. So the fact that there are fewer remaining
possible worlds for S1 than for S2 (4 versus 3) is irrelevant.

In case 2, conditioning corresponds to Dempster's rule of conditioning. In case 1, conditioning
does not, and is usually not considered in Shafer's translators paradigms. It corresponds to the
conditioning on the fact that some messages that were initially considered as possible were in
fact not possible. In case 3, conditioning was given for the sake of completeness.

8. Conclusions.

Consider the mapping M between the X and 2Y as presented in paragraph 4.1. The major
difference between the transferable belief and probability approaches lies of course in the way
we create our beliefs on Y knowing the belief on X. The transferable belief model is based on
what is available and nothing else whereas the probability analysis requires the existence of a
probability distribution on Y. Bayesians assume that whenever a probability distribution PX is
defined on X. One can always describe a probability distribution PY on Y where PY satisfies
the constraints induced by PX.

All alternatives to the transferable belief model explicitly or implicitly accept the Bayesian
assumption: the existence of probability distributions on all relevant spaces. The real difference
between the transferable belief model and all its contenders lies in this assumption. Accept it
and Levi's remarks are adequate. In the transferable belief model, one never requires the
existence of these probability distributions. One only recognizes that if a probability distribution
can be defined on some algebra, it should induce coherence constraints on the way beliefs are
allocated. But never infer that a probability distribution exists on those spaces on which we
vacuously extend the belief function derived from the initial probability constraints.

Claiming the existence of a probability distribution on the space on which our beliefs are
assessed is in itself already an information. Should you accept it, then the upper and lower
probabilities model is appropriate.

We strongly reject the following interpretation where belief functions are used instead of upper
and lower probabilities. Some authors consider using Dempster-Shafer's model (i.e. belief and
plausibility functions) to handle cases of ill defined probabilities, i.e., cases where there is a
probability function on Ω but we only know that its values for each A”Ω is contained between
two limits. They claim that all that is known is a belief function bel (or equivalently a
plausibility function pl as pl(A) = 1- bel( A)) such that



∀ A”Ω bel(A) ≤ P(A) ≤ pl(A)

This might be the case but then they should justify why the lower limits are quantified by a
belief function (which can be done as in Dempster-Shafer theory). And once conditioning is
involved, how do they justify the use of the D-conditioning and not of the G-conditioning.
These questions have to be answered before using belief functions instead of lower
probabilities functions as lower limits for the intervals and before using Dempster's rule of
conditioning (and Dempster's rule of combination). Much too often, authors mix the two
theories, carelessly introducing Dempster's rule of conditioning in an upper and lower
probabilities context (see Halpern and Fagin 1990). This is why we felt it may be useful to
write this paper, hopefully, we have succeeded in somehow clarifying the matter.
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