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Abstract.
A survey of the use of belief functions to quantify the beliefs held by an agent, and in
particular of their interpretation in the transferable belief model.

1. Introduction.

As shown in Smets (1995), there is a variety of imperfect data, be they uncertain or
imprecise. Some models have been proposed for each form, but modeling combined forms
of imperfect data is hardly achieved. It would nevertheless seems useful to have a common
model that would integrate several forms of uncertainty. One way, could be by trying to
simulate what might be the human approach of such a problem.

Imprecision about the actual value of an attribute induces some beliefs about it. The
information that John is in the 40’s induces a belief about John’s age, e.g. an
equiprobability over 40-49. Imprecision as well as uncertainty induce some beliefs, some
subjective opinions held by an agent at a given time about what is the actual value of the
variable under consideration.

Bayesians claim this belief is always quantified by a probability measure. Sometimes they
go so far as to disregard any other models. The available information is summarized by the
probability they generate. Even though the probability model is by far the oldest and the
most popular for belief representation, we think it has some limitations that can be handled
by some of the alternative or complementary models recently proposed.

The generalization of the Bayesian model has been achieved either by non-standard
probability models or by non-probability models (Kohlas, 1994a).

The non-standard probability models are those models where beliefs are still
somehow quantified by some underlying probability measures.
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1) Koopman (1940), Good (1962), Kyburg (1961) and Smith (1961) propose that beliefs
are quantified by a family of probability measures.

2) Walley (1991) assumes that beliefs held by an agent are quantified by a unique
probability measure but the agent cannot expressed the value of these probabilities. He can
also assess intervals in which these values fall. Such an approach results in a theory of
upper and lower probabilities.

3) Dempster (1967) assumes the existence of a domain X on which there is known
probability measure PX, of another domain Y and of a one-to-many mapping M from X to
Y. For instance let X = {x1, x2}, PX(x1) = .7, PX(x2) = .3, Y = {y1, y2}, M(x1) =
{y1}and M(x2) = {y1, y2}. The probability measure PY on Y induced by PX and M is not
well-defined. Indeed PY(y1) is at least .7 and at most 1, and PY(y2) is at least .0 and at
most .7. The imprecision about the value of the probability on the subsets of Y is due to the
one-to-many nature of M. Indeed we have no information about how the .3 given to x2 is
distributed among y1 and y2. One can at most assess the upper and lower limits of the
probabilities that could be allocated to the subsets of Y. The model obtained is Dempster’s
model. It assumes the existence of a probability measure on the space XxY that quantifies
the agent’s beliefs over the space XxY. That joint probability measure is partially known.
Its marginalization on X is the given probability measure PX. But given the one-to-many
nature of M, it is impossible to decide on the particular distribution of each probability
PX({x}) given to the singletons {x} of X among the elements of Y. Hence one can only
assess the upper and lower probabilities for the subsets of Y. The particularity of this model
is resides in the fact that the lower probability function happens to be a belief function.
Usually the Dempster-Shafer models described in the Artificial Intelligence literature
corresponds to Dempster’s model or to some equivalent model as it is the case with the
models of related to the probability of knowing (Ruspini 1986), the probability of
provability (Pearl 198), the probability of provability, of deductibility (Smets , 1991,
1993b).

4) Other modeling like the hint model of Kohlas (1993), Kohlas and Monney (1994b,
1995) and Shafer’s model for evidential reasoning (1976, 1990) are based on similar ideas
of an underlying probability space and a one-to-many mapping. Their description of the
induced belief on Y is very similar to Dempster’s solution except they don’t acknowledge
the existence of a probability measure over the XxY space that quantifies the agent’s
opinion about the subsets of XxY. That distinction gets its real importance when revision
(conditioning) of beliefs are considered.

5) From the semantical point of view it is often reasonable to separate the representation of
information sources from the representation of the data given by these information sources.
A uniform approach to the handling of imprecise and uncertain data is discussed in
Gebhardt and Kruse (1993).
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The non-probabilistic models are represented, among others, by the possibilistic
model (Bosc and Prade, 1995) and the transferable belief model that is described in this
paper. No concept of probability measure is considered. When there is nevertheless some
probability measure representing some forms of uncertainty, it  is treated just as any other
forms of imperfect data. It just induces some possibilities or some beliefs. These are of
course related to this probability measure but they are not identical to it.

In this paper, we assume 1) that every form of uncertainty and imprecision induces a
belief held by an agent at a given time, 2) this belief is quantified by a belief function and 3)
the relation between the various forms of imperfect data can be achieved by considering the
beliefs they induce3. We describe the model for belief representation based on belief
functions, called the transferable belief model, and some of its application in Information
Sciences. How to appropriately build the belief induced from imperfect data is hardly
resolved today and will not be tackled here.

2. The Transferable Belief Model.

The transferable belief model is a model for representing the quantified beliefs held by an
agent at a given time on a given frame of discernment Ω. One of the elements of Ω, denoted
ϖ, corresponds to the actual state of nature, to the actual world. Unfortunately due to his

limited intellectual abilities, the agent is not certain about which element of Ω is ϖ. The

agent can only express his subjective opinion about the fact that such or such subset of Ω
might contain ϖ. The belief bel(A) given by the agent Y at time t to a subset A of Ω express

the strength of the agent’s beliefs that ϖ is an element of A based on the information

available to Y at time t. This degree of belief is usually quantified by a probability measure
as it is the case in the Bayesian approach. The transferable belief model concerns the same
problem as the one considered by the Bayesian model except it does not rely on
probabilistic quantification but on belief functions.

The transferable belief model is based on a two-level model:  the credal level and the
pignistic level (from credo = I believe and pignus = a bet both in Latin). The credal level is
the level of intellectual activity where beliefs are entertained. It is where I express the
strength of my beliefs about the fact that ϖ belongs to the various subsets of Ω. It is where

my knowledge is store, revised, updated, combined, etc......

Beside the credal level, there is also a pignistic level. It is also a level of intellectual activity,
but completely oriented toward making decisions. When a decision must be made, the
beliefs held at the credal level will transmit the needed information to the pignistic level such
that optimal decisions are made. The pignistic level contains just the machinery that

3Note that we do not say that every form of uncertainty and imprecision is represented by a
belief function. We only assume that they induce it.
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transform your beliefs (as held at the credal level) into optimal decisions whenever
decisions must be made. It has no activity when no decision must be made.

We will assume that the beliefs held at the credal level are quantified by belief functions that
will be presented in this survey paper.

When decision must be made, we accept the Savage axioms (Savage, 1954) that claim that
optimal decisions can only be achieved if the decider use additive weights to represent his
uncertainty on the possible state of affair, and utilities that describes the consequence of
each decision in each state of affair. The additive weights corresponds to a probability
measure on the state of affairs, but Savage does not claim that such probability measure is
THE way the decider beliefs are represented. It only says that when a decision must be
made, the decider must generate a set of probabilities on the state of affairs, and make
decision by maximizing the expected utility computed from the utilities and that probability
measure.

The origin of the probability measure is not discussed in Savage approach. That it could be
generate from the belief function that represents the decider’s beliefs held at the credal level
is perfectly acceptable, even under Savage’s approach. Once two distinct levels are
considered, it is necessary to describe the nature of the relation between the beliefs held at
the credal level, and the probabilities needed at the pignistic level. This relation is described
in section 3.9.

Bayesians argue usually that beliefs coexists necessarily with decisions, and do not exist by
themselves. We do not share that opinion. That beliefs are necessary ingredients for our
decisions does not mean that beliefs cannot be entertained without any revealing behavior
manifestations (Smith and Jones, 1986, p.147). We claim that beliefs can indeed be
entertained without any concept of decision, justifying thus a distinct credal state. For
instances, I can entertain beliefs about meta-physical problems even though I am not going
to make any decision about it. I can have some beliefs about the status of the traffic light
down my street in Brussels even though I am not in Brussels for the moment and no
decision will be made that depends on the color of the traffic light. Beside the consideration
of a two-level model with beliefs quantified by belief functions at the credal level has an
impact on decision to be made. There are examples where decisions are different depending
on the fact one considers the credal level or not. So the distinction is not purely academic.

A full description of the model for beliefs representation based on belief functions can be
found in Shafer's book (1976). A somehow revised version appears in Smets (1988). The
transferable belief model is described in Smets and Kennes (1994). The axiomatic
justification of the use of belief functions to quantify beliefs is given in Smets (1993c).
Justifications of the conditioning rule can be found in Klawonn and Smets (1992), in
Nguyen and Smets (1993) and in Kruse, Nauck and Klawonn (1991) where differences
between various revision concepts are considered. Further results on Bayes theorem and
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the disjunctive rule of combination appear in Smets (1978, 1993a). Measures of uncertainty
related to belief functions are surveyed in Pal et al. (1992, 1993). Many algebraic properties
on belief functions can be found in Dubois and Prade (1986a, 1986b). Polemics on the use
of belief functions in Artificial Intelligence, essentially in the context of logical deductions,
is detailed in two special issues of the International Journal of Approximate Reasoning (in
vol. 4, 1990 and vol. 6, 1992). Jeffreys rule of conditioning are presented in Smets
(1993d) and the avoidance of Dutch Book is explained in Smets (1993e).

3. The Mathematics of the TBM.

As a didactic tool, we will analyze an example throughout the presentation of the
transferable belief model. The sections dealing with the example end with ∇. This example

deals with a murder story as it required no contextual background. Of course the example
could easily be rephrased into a diagnostic problem, a prediction problem...Furthermore
some sections are marked ‘Note’ they corresponds to comments unnecessary for the
overall  understanding of the presentation, but useful for further studies.

Example: A man (Ron) has been murdered. You are the policeman in charge of finding
who is (are) the killer(s) (note that the killing might have been committed by several
persons jointly). There are three suspects: John, Paul and Sarah. ∇

3.1. The Frame of Discernment.

Let L be a finite propositional language.
Example: The three atomic propositions are: ‘John is a murderer of Ron’, ‘Paul is a
murderer of Ron’, ‘Sarah is a murderer of Ron’. They are denoted by J, P and S,
respectively. ∇

Let Ω = {ω1, ω2, ...ωn} be the set of worlds that correspond to the interpretations of L.

Example: The eight possible worlds are:
 ω1 = ¬J ∧ ¬P ∧ ¬S (none of the three suspects is a murderer of Ron)

 ω2 = ¬J ∧ ¬P ∧    S (Sarah is the only murderer among the three suspects)

 ω3 = ¬J ∧    P ∧ ¬S (Paul is the only murderer among the three suspects)

 ω4 = ¬J ∧    P ∧    S (Paul and Sarah are murderers, John is not)

 ω5 =    J ∧ ¬P ∧ ¬S (John is the only murderer among the three suspects)

 ω6 =    J ∧ ¬P ∧   S (John and Sarah are murderers, Paul is not)

 ω7 =    J ∧    P ∧ ¬S (John and Paul are murderers, Sarah is not)

 ω8 =    J ∧    P ∧    S (John, Paul and Sarah are murderers) ∇

Propositions identify subsets of Ω.
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Example: The proposition ‘Paul is a murderer of Ron’ identifies the subset {ω3, ω4, ω7,

ω8} of Ω. ∇

Beliefs and probabilities given to propositions can thus be identically considered as beliefs
and probabilities given to subsets of Ω. The set notation will be used hereafter. By
definition there is an actual world ϖ and it is an element of Ω. For A”Ω, bel(A) and

P(A) denote the degrees of belief and probability that the actual world ϖ belongs to A,

respectively. For simplicity sake, we admit that bel and P will be defined for every subsets
of Ω, so bel and P are function from 2Ω to [0,1]. Ω is called the frame of discernment.

All beliefs entertained by You4 at time t about which world is the actual world ϖ are defined

relative to a given evidential corpus (ECt
Y) i.e., the set of pieces of evidence in Your

mind at time t. Our approach is normative: You is an ideal rational agent and ECt
Y is

deductively closed. Your credal state on a frame of discernment Ω describes Your
subjective, personal judgment that ϖ∈ A for every subset A of Ω. By a classical abuse of

language, the actual world ϖ is called the ‘true’ world, and we say that ‘A is true’ or ‘the

truth is in A’ to mean that ϖ∈ A. Your credal state results from ECt
Y that induces in You

some partial beliefs on the subsets of Ω. These partial beliefs quantify the strength of Your
belief that ϖ∈ A, ∀ A”Ω. It is an epistemic construct as it is relative to Your knowledge that

is included in Your evidential corpus ECt
Y.

Example: In order to simplify the example, suppose You know that one and only one of

the three suspects is the murderer of Ron. So ECt
Y contains the fact that Ron has been

murdered by a single person, the murder is one of John, Paul and Sarah. The available
information can be translated by ϖ∈ {ω2,ω3,ω5}. ∇

3.2. The Basic Belief Masses.

Example: A partially reliable witness testifies to You that the murderer is a male. Let α =
.7 be the reliability You give to the testimony. Suppose that a priori You have an equal

belief that the murderer is a male or a female. A classical probability analysis would
compute the probability P(M) of M where M = ‘the killer is a male’: P(M) = .85 = .7 + .5
x.3 (the probability that the witness is reliable (.7) in which case M is true for sure, plus the
probability of M given the witness is not reliable (.5) weighted by the probability that the
witness is not reliable (.3)). The .7 can be viewed as the justified component of the
probability given to M whereas the .15 can be viewed as the aleatory component of that
probability.

This analysis is not the one proposed in the TBM. The TBM deals only with the justified
components. It gives a belief (or support) .7 to M. The .7 and .3 are parts of an initial

4'You' is the agent that entertains the beliefs considered in this presentation.
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unitary amount of belief that supports J∨ P (the males) and J∨ P∨ S (anybody), respectively.

These parts are called the basic belief masses (bbm). They are denoted by m(J∨ P) = .7,

m(J∨ P∨ S) = .3.  The .7 that supports J∨ P supports the fact that the murdered is either John

or Paul. It is kept to the disjunction J∨ P (i.e., {ω3,ω5}). It is not further distributed

between {ω3} and {ω5}. The .7 supports ϖ∈ {ω3,ω5} without supporting any proposition

strictly more specific like {ω3} and {ω5}. Identically the .3 is a ‘specific’ support given to

ϖ∈ {ω2,ω3,ω5} that cannot be distributed more specifically among the subsets of

{ω2,ω3,ω5}. This basic belief masses (the .7 and .3) allocation is at the core of the

assumptions underlying TBM. ∇

Formally the TBM is defined as follows.

Basic Assumption.
The TBM postulates that the impact of a piece of evidence on an agent is translated by an
allocation of parts of an initial unitary amount of belief among the subsets of Ω. For A”Ω,
m(A) is a part of the agent’s belief that supports A, i.e. that the 'actual world ϖ is in A, and

that, due to lack of information, does not support any strict subset of A.

The m(A) values, A”Ω, are called the basic belief masses (bbm) and the m function is
called the basic belief assignment5.

Let m: 2Ω→[0,1] with
    ∑

A”Ω
  m(A) = 1

Every A”Ω such that m(A)>0 is called a focal proposition. The difference with probability
models is that masses can be given to any subsets of Ω instead of only to the elements of Ω
as it would be the case in probability theory.

3.3. Conditioning.

Example: Suppose You learn that Paul was not the murderer as he was dead the day
before Ron was murdered (a perfect alibi). The world ω3 is thus impossible and You know

for sure that ϖ∈ {ω2,ω5}. The bbm .7 that was initially allocated to {ω3,ω5} is now

supporting specifically that the murderer is John {ω5}, and the bbm .3 initially allocated to

{ω2,ω3,ω5} now supports that the murderer is John or Sarah, i.e., ϖ∈ {ω2,ω5}. Indeed

the reliability .7 You gave to the testimony initially supported 'the murderer is John or

Paul'. The new information about Paul implies that the .7 now supports 'the murderer is

John'. ∇

5 Shafer speaks about basic probability masses and assignment. To avoid confusion, we
have banned the word "probability" whenever possible.
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The impact of the revision by the knowledge that ϖ∈ B”Ω results in a transfer for each

A”Ω of the bbm m(A) initially allocated to A to A∩B”Ω. Hence the origin of the name of

the TBM (transferable belief model).

The transfer of belief described in the TBM corresponds to the unnormalized rule of
conditioning6. Let m be a basic belief assignment on the frame of discernment Ω and
suppose the conditioning evidence tells You that the truth is in B”Ω, the basic belief
assignment m is transformed into mB: 2Ω→[0,1] with:

mB(A) = ∑
X” B

   m(A∪ X ) for A”B   (3.1)

mB(A) =   0 for A /”B

Note: In this presentation we have accepted that a non null basic belief mass could be
given to Ø. In most presentation of the models based on belief functions, it is assumed that
m(Ø)=0. The meaning of the basic belief mass given to Ø is analyzed in Smets (1992b). It
corresponds to the amount of contradiction present in the basic belief assignment m, as
could be encountered when two sources of information give some support to contradictory
hypothesis.

3.4. Belief and Plausibility Functions.

Given Ω, the degree of belief of A”Ω, bel(A), quantifies the total amount of justified
specific support given to A. It is obtained by summing all the basic belief masses given to
propositions X”A (and X≠Ø). Let bel : 2Ω→[0,1] with:

bel(A) = ∑
Ø≠X”A

  
   m ( X )

We say justified because we include in bel(A) only the basic belief masses given to subsets
of A. For instance, consider two distinct elements ω1 and ω2 of Ω. The basic belief mass

m({ω1,ω2}) given to {ω1,ω2} could support ω1 if further information indicates this.

However given the available information the basic belief mass can only be given to
{ω1,ω2}. (Note: as m(Ø) might be positive, it should not be included in bel(A) (nor in

pl(A), see below), as m(Ø) is given to the subset Ø that supports not only A but also A.
This is the origin of the specific support.)

The function bel is called a belief function. Belief functions satisfy the following
inequalities (Shafer 1976):
∀ n≥1, A1,A2,...An ”Ω,

6 When m(Ø)=0 is assumed, the result is further normalized by dividing each term in mB
by 1-mB(Ø). The resulting conditioning rule is then called the Dempster rule of
conditioning..
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   bel(A1∪ A2∪ ...An)≥∑
i

bel(Ai) - ∑
i>j

bel(Ai∩Aj)....-(-1)nbel(A1∩A2∩...An) (3.2)

The degree of plausibility of A, pl(A), quantifies the maximum amount of potential
specific support that could be given to A”Ω. It is obtained by adding all those basic belief
masses given to propositions X compatible with A, i.e. such that X∩Α≠Ø. Let pl :

2Ω→[0,1] with:

pl(A) = ∑
X∩A≠Ø 

  m(X)  =  bel(Ω) - bel( A)

We say potential because the basic belief masses included in pl(A) could be transferred to
non-empty subsets of A if some new information could justify such a transfer. It would be
the case if we learn that A is impossible.

The function pl is called a plausibility function. It is in one-to-one correspondence with the
belief function induced by the same bba. It is just another way of presenting the same
information and could be forgotten, except inasmuch as it provides a convenient alternate
representation of our beliefs.

The unnormalized rule of conditioning expressed with bel and pl is:
bel(A|B) =  bel(A∪ B) - bel( B) pl(A|B) = pl(A∩B)

Total ignorance is a state of belief that is hard to represent in probability theory.
Bayesians will reject the existence of such a state, avoiding thus many problems related to
its representation by a probability function. In the TBM, total ignorance is beautifully
represented by a ‘vacuous’ belief function, i.e. a belief function such that m(Ω) = 1, hence
bel(A) = 0 ∀ A”Ω, A≠Ω, and bel(Ω) = 1. That belief function does not support any

particular subset of Ω. None of the subsets of Ω is supported (except Ω itself) and all
subsets receive the same degree of belief, what should be the case under total ignorance. In
particular when Ω = {ω1,ω2,ω3}, bel({ω1}) = bel({ω2}) = bel({ω3}) = bel({ω1,ω2}), a

representation that cannot be achieved in probability theory.

3.5. The Rules of Combination.

Example: A second witness, with reliability .6, tells You that the murderer is John or
Sarah. How to combine the bba m1 (that represent Your beliefs on Ω as induced by the
testimony of the first witness) and m2 (that represent Your beliefs on Ω as induced by the
testimony of the second witness) into a new bba m12 that will represent Your beliefs on Ω
as induced by the joint testimony of the two witnesses. When the two witnesses are fully
reliable, their joint testimony support that the murderer is John, and the combined bbm
m12(J) = .7 x .6 = .42 (the origin of the product is commented below). When the first
witness is reliable and the second is not, their joint testimony supports that the murderer
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John or Paul, so m12(J∧ P) = .7 x .4 =.28. Similarly m12(J∧ S) = .3 x .6 =.18 and

m12(J∧ P∧ S) = .3 x .4 =.12. In fact the proposed combination rule consists in allocating the

product of two bba m1(A) x m2(B) to the intersection A∩B of their focal elements A and

B. ∇

Formally, suppose two belief functions bel1 and bel2 induced by two 'distinct' pieces of

evidence. The question is to define a belief function bel12=bel1⊕ bel2 resulting from the

combination of the two belief functions, where the ⊕  symbolizes the combination
operator. Shafer proposed to use Dempster's rule of combination in order to derive bel12.
The underlying intuitive idea is that the product of two bbm m1(X) and m2(Y) induced by

the two distinct pieces of evidence on Ω supports X∩Y, hence:

m12(A) = ∑
X∩Y=A

 m1(X)⋅m2(Y) (3.3)

Note: Dubois and Prade (1986a), Smets (1990a), Klawonn and Schwecke (1990),
Klawonn and Smets (1992) and Hajek (1992) provide different justifications for the origin
and the unicity of this rule. These justifications are obtained without introducing some
underlying probability concepts. They are based essentially on the associativity and
commutativity properties of the combination operator.

Note: Dempster's rule of combination is a rule to combine conjunctive pieces of
information. Let bel1  and bel2 be the belief functions induced by the two distinct pieces of
evidence E1 and E2, respectively. Then bel12 is the belief function induced on Ω by the
conjunction 'E1 and E2'. In Smets (1993a) we present the disjunctive rule of combination
that allows us to derive the belief function induced on Ω by the disjunction of E1 and E2. It
corresponds to a situation where you could assess Your belief on Ω if E1 were true, Your
belief on Ω if E2 were true, but You only know that the disjunction 'E1 or E2' is true.

Directly in relation to that disjunctive rule of combination, we derive (Smets 1993a) the
Generalized Bayesian Theorem. Suppose You have a vacuous a priori (i.e., You are
in a state of total ignorance) on a space Θ. Suppose that for each θi∈Θ , You know what

would be Your beliefs on another space X if θi happened to be the case. Let belX(.|θi) and

plX(x|θi) be these conditional belief and plausibility functions on X given each θi∈Θ.
Suppose You learn that x”X is the case. The Generalized Bayesian Theorem allows You to
derive the conditional belief belΘ(.|x) and plausibility plΘ(θ | x) on the frame of

discernment Θ given an observation x”X. One has:

belΘ(θ | x) = ∏
θi∈ θ

 
  ( belX(x | θi)) + m(Ø|θi) )  - ∏

θi∈Θ

 
  ( belX(x | θi)) + m(Ø|θi) )
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plΘ(θ | x) = 1 − ∏
θi∈θ

 ( 1 −  plX (x|θi)  )  

Note: The theorem has been further generalized when there is some non vacuous beliefs
on Θ (Smets 1993a).

Note: All combinations were performed for beliefs induced by ‘distinct’ pieces of
evidence. The concept of ‘distinctness’ is presented in Smets (1992c). It fits essentially and
intuitively with the idea that the two pieces of evidence involved are ‘unrelated’,
‘independent’, that the knowledge of any of them does not interfere with the beliefs that
would be specifically induced by the other.

Note: The problem on how to combine non distinct pieces of evidence has been
first considered in Smets (1986). Ling and Rudd (1989) and Kennes (1991) introduce the
concept of a cautious rule of (conjunctive) combination. It is based on the idea that
each expert provides a belief function that results from his/her own expertise plus a
common background. The rule permits to disentangle the underlying common background.
It is idempotent. Ling and Rudd (1989) solved the case where the experts opinions are
described by simple belief functions, i.e., belief functions with two focal elements, Ω and a
non empty strict subset of Ω. Kennes (1991) presents the solution when the experts
opinions are described by separable belief functions, i.e., belief functions obtained by
applying Dempster's rule of combination to several simple support functions). The
generalization to any pair of belief functions is under way. Its use for pooling expertise
provided by experts who share a common background will be studied in a forthcoming
paper. In the present paper we restrict ourselves to the idealized situation where the experts
are 'independent' , i.e. the experts do not communicate together and do not use common
evidence.

3.6. Justifications for the Use of Belief Functions.

 The use of belief function at the credal level can be justified by at least three
different approaches. Initially Shafer suggests to justify the use of belief functions by
claiming that any measure of belief must satisfy the inequalities of relations 3.2. In the
TBM, we prefer to start from the basic belief masses that represent a certain part of our
belief allocated to a proposition and that cannot be allocated to more specific propositions.
Finally in (Smets, 1993c), we proposes a set of axioms that should be satisfied by any
measure of belief and this set of axioms justifies the use of belief functions to represent
quantified beliefs.

3.7. Discounting.

Example: Let us forget about the previous testimonies. Suppose an agent H tells You that
His beliefs over Ω is such that mH({ω1}) = .2, mH({ω1,ω2}) = .3, mH({ω1,ω2,ω3}) = .5.
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Should You have no other evidence over Ω, You would adopt mH as representing Your
beliefs on Ω. But suppose now that You have some doubt about H reliability. Let .7 be
Your degree of belief that H is reliable, or equivalently he strength with which You believe
what H is saying. Let Your beliefs about H saying be represented by the bbm m0(reliable)
= .7 and m0(reliable or not reliable) = .3. How to combine the beliefs induced in You by
H’s beliefs on Ω and Your beliefs about H’s reliability. The idea (easily justified) is that
You should discount H’s beliefs by multiplying mH by a factor .7 (m0(reliable)) and
transfer to Ω the part of mH that has been lost. Let mY be the resulting bba. One obtains:

mY({ω1}) = .2 x .7 = .14

mY({ω1,ω2}) = .3 x .7 = .21

mY({ω1,ω2,ω3}) = .5 x .7 + (1-.7) = .65 ∇

Formally, suppose You have no belief whatsoever on a frame of discernment Ω, but a
somehow reliable agent communicates to You his beliefs on Ω, beliefs represented by the
basic belief assignment mΩ. Should the agent be fully reliable, You would accept his
beliefs and would be tempted to adopt his beliefs as Yours. But the agent is not fully
reliable. Let m0 represents Your a priori beliefs about the reliability of this agent, with
m0(reliable) = 1-α and m0(reliable or not reliable) = α. Combining Your a priori belief m0

with mΩ on Ω provided by the agent leads to the discounted belief belΩ
α  that quantifies Your

belief on Ω induced by  both Your a priori and the agent’s beliefs (Shafer, 1976 pg 251,
introduces the concept of discounting factors, Smets (1993a) explains its origin). belΩ

α  is

such that :
∀ A”Ω, A≠Ω, belΩ

α (A) = (1-α) belΩ(A)

and belΩ
α (Ω) = belΩ(Ω).

3.8. Static and Dynamic Components.

It is important to note that the TBM includes two components: one static, the basic
belief assignment, and one dynamic, the transfer process underlying the conditioning, the
combination processes and the discounting processes. Many authors on Dempster-Shafer
model consider only the basic belief assignment and discover that the basic belief masses
are probabilities on the power set of Ω. But usually they do not study the dynamic
component, and their comparisons are therefore incomplete, if not misleading. The transfer
of belief masses is studied in several papers such as Kruse, Schwecke and Klawonn (1991)
using the more general concept of specialization (Kruse and Schwecke, 1991).

3.9. The Pignistic Probability BetP.

Example: After the first testimony, if You had to bet on who is the murderer, or
equivalently on which of the worlds in {} corresponds to the actual world ϖ, You would

have to build a probability function BetP on Ω. Remember that Your bba was described by
a bbm .7 on J∨ P and .3 on J∨ P∨ S. The .7 could as well be given to John or to Paul. So we
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could distribute it equally between John and Paul. Identically the .3 could be distributed
equally among the three suspects. In that case the probability BetP would be:

BetP(John) = .7/2 + .3/3 = .45
BetP(Paul) = .7/2 + .3/3 = .45
BetP(Sarah) = .3/3 = .10

That such a solution is indeed the only adequate one is not discussed here. ∇

In Smets (1990b) and Smets and Kennes (1994), we show how to make decisions when
the beliefs are quantified by belief functions. (see also Stratt (1989, 1990) and Jaffray
(1988) for other solutions). The satisfaction of some natural rationality requirements leads
to the derivation of a unique transformation between the belief functions and the probability
functions that must be used once decisions must be made. We call this transformation the
pignistic transformation. Let BetP(A) be the pignistic probability derived from the bba m :
2Ω→[0,1]. BetP is just a classical probability measure, but we denote it BetP to avoid any

confusion. BetP deals with betting weights, not with beliefs quantification whereas bel
deals with such beliefs quantification. One has:

BetP(Α) = ∑
B”Ω

  m(B) 
|A∩B|

|B|  ∀ A”Ω (3.4)

where |A| is the number of elements of Ω of A. BetP is the appropriate probability function
to be used to make decisions (using expected utilities theory).

BetP is the only probability measure that satisfies the following rationality requirement
(Smets, 1990b). Suppose two source of evidence E1 and E2 that induce the belief functions
bel1 and bel2 on the same frame Ω and a random device that select the source that will be
available to You. If You knew the evidence that would be selected (E1 or E2), You would
bet on Ω according to a probability function Pi induced from the corresponding beli (i=1,2)
by the pignistic transformation. These probability functions Pi are the conditional
probability functions on Ω given Ei. Prior to selecting the source, the probability measure P
on Ω is then P(A) = p P1(A) + (1-p) P2(A) for all A”Ω. But prior to the selection of the
source, Your belief on Ω is given by bel(A) = p bel1(A) + (1-p) bel2(A) for all A”Ω. The
probability function induced from that combined belief function bel should be equal to P.
The only transformation that satisfies this requirement is the pignistic transformation as
described by relation 3.4. Note that Stratt and Jaffray’s solutions do not satisfy the
rationality requirement we have just described.

Note: In this transformation the bbm m(A) given  to a focal element A”Ω is distributed
equally among the elements of A. For ω∈Ω , BetP(ω) results from the addition of all these

parts of masses allocated to ω. It is quite similar to the application of the Principle of

Insufficient Reason at the level of each bbm, but its justification is NOT based on the
assumption of some Insufficient Reason.
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Note that BetP is not a representation of Your beliefs on Ω. It is the additive measure
induced on Ω by Your beliefs held at the credal level (and quantified in the transferable
belief model by a belief function) when decision must be made and that must be used to
compute the expected utility to be maximized in order to select the optimal decision.

4. Applications in Data Bases.

We will present three applications related to data base, source reliability and medical
diagnosis.

Uncertainty, and beliefs, can be encountered at two levels in a DB: it can be described at the
attribute level or at the tuple level.

At the attribute level, it might occur that the actual value of an attribute in a given tuple is not
exactly known. The crudest way to represent the available knowledge consists in presenting
the value of the attribute as the disjunctive e set of possible values compatible with the
available knowledge. The next level of sophistication consists in acknowledging that some
values are ‘better’ than other, either more possible, more probable, more believable. One
end up with a possibility, a probability or a belief distribution over the domain D of the
value of the attribute. Conceptually the three representations are very similar. They diverge
in their interpretations. The value of the attribute is made of the disjunction of several
weighted subsets of the domain D of the value.

The TBM could be applied if the knowledge about the actual value of the attribute could
only be described by our belief about it. In that case, the value of the attribute will be
described by a basic belief assignment m (or any related functions) on the domain D.

Suppose the attribute is the age of the individual characterized by a tuple in a relation.
Suppose the age of John is known only by a basic belief assignment on D = [0, 120]. For
instance the available information about John’s age is described by the following bbm :
m([40-49]) = .6, m([30, 59]) = .3, m([0, 120])=.1. It could represent the information :
John is in his forties (.6 given to [40, 49]), or almost (.3 given to [30, 59], but the source
is not fully reliable (hence the .1 on D).

Suppose now you want to select those tuple where the age is between 35 and 52: should
you select John? One way consist in creating a new relation R = ‘Age 35-52’, with all cases
that satisfy the selection criteria. John’ tuple would be included, with some weights that
represent the degree of beliefs and plausibility that the John’s tuple belongs to the relation.
So the belief that John belongs to the relation is bel(John belongs to R) = .6 and pl(John
belongs to R) = 1. So for each tuple one has a pair of weights that quantify the degree of
belief and plausibility that the tuple belongs to the relation, what correspond to the second
level where uncertainty can be encountered in a DB.
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5. Application with Sources Reliability.

The source of the information introduced in a DB can re recorded and used for discounting
data when relevant. Suppose the relation AGE given in table 5.1. It means that Paul tells
that John is 45, that Peter tells that he believes that Henri is 45 at level .6 and has no more
specific knowledge about Henri’s age, that Peter tells that Jack is between 30 and 40...
Information ‘45’ is equivalent to m([45]) = 1.

Name Age Source

John 45 Paul
Henri m([45])=.6 Peter

m([0,120]) = .4
Jack m([30-40]) = 1 Peter
Jim m([32]) = 1 Peter
Phil m([54] = .5 Paul

m([52, 55] = .3
m([40, 50]) = .2

Henri m([30-50]) = 1 Paul

Table 5.1: relation AGE.

You, the user of the DB might have some opinions about the reliability of the sources, as
given in table 5.2. Reliability can be easily iterated by introducing reliability about the
reliability of the sources.

Source Reliability

Paul m(reliable) = .7
Peter m(reliable) = .8

Table 5.2: Sources reliability according to You.

Suppose You want to assess Your beliefs about Henri’s age. Peter is the only source about
Henri’s age. You use the belief presented in table 5.1 discounted by the factor .2. (given in
table 5.2). Computation is done as detailed in section 3.7. You end up with a bbm m([45])
= .8 x .6 = .48 and m([0, 120]) = 1 - .48 = .52.
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Name Age

John m([45] = .7
m([0,120]) = .3

Henri m([45])=.48
m([0,120]) = .52

Jack m([30-40]) = .8
m([0,120]) = .2

Jim m([32]) = .8
m([0,120]) = .2

Phil m([54] = .35
m([52, 55] = .21

m([40, 50]) = .14
m([0,120]) = .3

Henri m([30-50]) = .7
m([0-120]) = .3

Table 5.3: Your relation AGE (after applying Your discounting factors on the Sources).

Table 5.3 presents Your relation AGE after You have applied the discounting factors of
table 5.1. One notice that Henri’s age is provide by two sources (Paul and Peter). One
could have combined the two bbm presented in table 5.1, but as far as Peter and Paul are
two different sources of information, discounting must be performed before combination.
The result obtained by combining the two belief functions over Henri’s age given in table
5.3 is:

m([45]) = .48 x (.7 + .3) = .480
m([30-50]) = .52 x .7 = .364
m([0-120]) = .52 x .3 = .156

Your final AGE relation is the one given in table 5.3, after deleting all data related to Henri
and replacing them by the data just computed. Table 5.4 presents the list of cases with age
in [44, 56]. As far as Your knowledge about the ages is never certain, You can only assess
Your belief and plausibility for each case that it belongs to the set of cases with age in [44,
56]. If You want to select only those cases for which Your belief is larger than .5, You
would select John and Phil.
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Name bel pl

John .70 1.00
Henri .48 1.00
Jack .00 .20
Jim .00 .20
Phil .56 .86

Table 5.4. Relation AGE ∈  [44-56].

6. Application for Diagnosis.

The major advantage of the TBM approach for diagnostic purpose resides in the fact the
Bayesian Theorem can be applied in cases where there is no prior beliefs on the set of
diagnosis (Smets 1981). This solves the major criticism addressed to the Bayesian
approach of the diagnostic process: where comes the a priori beliefs on the set of diagnosis
from ? Beside, the TBM approach profits from the already explained advantage that one
must provide only the available information on the set of symptoms. No forced
probabilization is required. Within each diagnostic class, one must provide only what
symptoms are supported and how much, not a full probability function on the set of
symptoms. One can even introduce a diagnostic class made of the ‘still unknown diseases’
in which case the beliefs over the symptoms is of course vacuous. Furthermore one may
compute the support given to the fact that the patient belongs to the class of the ‘still
unknown diseases’. This cannot be achieved in probability theory, as the state of complete
ignorance on the symptom domain as required in the ‘still unknown disease’ class cannot
be adequately represented in probability theory.

In order to illustrate the use of the TBM for diagnosis problems, we consider the following
example. Let Θ = {θ1, θ2, θω}  be a set of diseases with three mutually exclusive and

exhaustive diseases. θ1 and θ2 are two ‘well known’ diseases, i.e. we have some beliefs

on what symptoms could hold when θ1 holds or when θ2 holds. θω corresponds to the

complement of {θ1, θ2} relative to all possible diseases. θω represents not only all the

‘other’ diseases but also those not yet known. In such a context, our belief on the
symptoms can only be vacuous. What do we know about the symptoms caused by a still
unknown disease? Nothing of course, hence the vacuous belief function that perfectly
characterizes a state of total ignorance.

We consider two sets X and Y of symptoms with X = {x1, x2, x3} and Y = {y1, y2}.

Tables 6.1 and 6.2 present the beliefs over X and Y when each of the individual diseases
holds. The beliefs translate essentially the facts that θ1 ‘causes’ (supports) x3 and y2, and

θ2 ‘causes’ x1 or x2 (without preference) and y1. When we only know that θ1 or θ2
holds, then we have a balanced support over X, and some support in favor of y1.
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{θ1} {θ2} {θω}
X m bel m bel m bel

{x1} .0 .0 .0 .0 .0 .0
{x2} .0 .0 .0 .0 .0 .0
{x3} .5 .5 .2 .2 .0 .0

{x1, x2} .2 .2 .6 .6 .0 .0
{x1, x3} .0 .5 .1 .3 .0 .0
{x2, x3} .0 .5 .1 .3 .0 .0

{x1, x2, x3} .3 1.0 .0 1.0 1.0 1.0

Table 6.1: Conditional beliefs (bel) and bbm (m) on the symptoms x”X within each of
the mutually exclusive and exhaustive diagnosis θ1, θ2 and θω ∈Θ.

{θ1} {θ2} {θω}
Y m bel m bel m bel

{y1} .1 .1 .6 .6 .0 .0
{y2} .7 .7 .0 .0 .0 .0

{y1, y2} .1 .9 .4 1.0 1.0 1.0

Table 6.2: Conditional beliefs (bel) and bbm (m) on the symptoms y”Y within each of
the mutually exclusive and exhaustive diagnosis θ1, θ2 and θω ∈Θ.

Table 6.3 presents the beliefs induced on Θ by the individual observation of symptom x3 or
of symptom y2, respectively. We assume that the symptoms are independent within each

disease, hence the GBT can be applied. The independence assumption means that if we
knew which disease holds, the observation of one of the symptoms would not change our
belief about the status of the other symptom. The right half of table 6.3 presents the beliefs
induced on Θ by the joint observation of symptoms x3 and y2. The beliefs are computed by

the application of relation in section 3.5. The symptoms individually and jointly support
essentially {θ1, θω}. The meaning of bel(θω|x3, y2) = 0.27 merits some consideration. It

quantifies our belief that the joint symptoms x3 and y2 are neither ‘caused’ by θ1 nor by

θ2. It supports the fact that the joint observation is ‘caused’ by another disease or by some

still unknown disease. A large value for bel(θω|x3, y2) somehow supports the fact that we

might be facing a new disease. In any case it should induce us in looking for other potential
causes to explain the observations.
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|x3 |y2 |x3, y2
Θ m m m bel  pl

{θ1} .00 .00 .00 .00 .64

{θ2} .00 .00 .00 .00 .24

{θω} .12 .08 .27 1.27 1.00

{θ1, θ2} .00 .00 .00 .00 .73

{θ1, θω} .48 .32 .49 .76 1.00

{θ2, θω} .08 .12 .09 .36 1.00

{θ1, θ2, θω} .32 .48 .15 1.00 1.00

Table 6.3: Left part: the basic belief masses (m) induced on Θ by the observation of
symptom x3 or of symptom y2, ac computed from the Generalized Bayesian Theorem

(section 3.5). Right part, the basic belief masses (m) and the related belief function (bel)
and plausibility function (pl) induced on Θ by the joint observation of x3 and y2, as

computed by the application of Dempster's rule of combination (section 3.5) on the bbm
obtained after observing x3 and y2, respectively.

Table 6.4 presents the beliefs induced on {θ1, θ2} when we condition our beliefs on Θ on

the fact{θ1, θ2}, or when we have some a priori belief on Θ. The results are obtained by

the application of the conjunctive rule of combination applied to the a priori belief on Θ and

the belief induced by the joint observations. The belief functions presented are normalized.

|x3, y2 m(θ1, θ2)=1 m(θ1)=.3 m(θ1)=.3

m(θ2)=.7 m(θ1, θ2)=.7

Θ m beln m beln m beln
{} .30 .00 .70 .00 .32

{θ1} .54 .77 .19 .63 .57 .84

{θ2} .06 .09 .11 .37 .04 .06

{θ1, θ2} .10 1.00 .00 1.00 .07 1.00

Table 6.4:  The basic belief masses (m) and the related (normalized) belief function (beln)
induced on Θ by the joint observation of x3 and y2, and based on three different a priori

beliefs on Θ: an a priori  that reject θω,  a probabilistic a priori on {θ1, θ2} and a simple

support function on {θ1, θ2}.
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Focusing: adapting beliefs when the reference class is hypothetically changed. Must be
coherent with other hypothetical changes.
Revision: adapting beliefs when a new pieces of evidence is added, in which case the
reference class is definitively and uniquely changed.

Rudolf: help!!!

How to treat missing values:
D = value domain of a given attribute.
e = attribute not applicable
D+ = D∪ {e} see Bosc and Prade.

m(D) = 1 attribute applicable but total ignorance about its value.
m({e}) = 1 attribute non applicable
m(D∪ {e})=1 I donot even know if attribute is applicable

m({}) = 1 (strongest) contradiction (2 sources that supports incompatible subsets)
actual value is not in D+: applicable but out of range, bad definition of D.

I cannot make the difference between the last two, except by creating D such that
¬e⊃ bel(D)=1

or better create domain D ++ = D∪{δ}∪ {e} where δ = any other value, those not in D, and

¬e⊃ bel(D∪{δ} )=1

m(D) = 1 attribute applicable, total ignorance about its value,
but value among those considered in D.

m({δ}) = 1 attribute applicable, value not in those considered in D

m({e}) = 1 attribute non applicable
m(D∪ {δ})=1 attribute applicable

m(D∪ {e})=1 either attribute non applicable or value among those considered in D.

m({e}∪ {δ})=1 either attribute non applicable or value not among those considered in D.

m(D++) I am in a state of total ignorance
(like when I donot even understand what the attribute is about)

m({}) = 1 (strongest) contradiction (2 sources that supports incompatible subsets)

comments by Rudolf

m(D)=1   : attribute applicable but total ignorance about its value  -->OK
m({e})=1 : attribute not applicable                                  -->OK
m(D u {e})=1 : I do not even know if attribute is applicable         -->OK
m({})=1  : (strongest) contradiction (2 sources that support
           incompatible subsets                                      --> NOT OK

The first three interpretations are right, but the last one is conceptual
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doubtful.
The transferable belief model is not capable of handling this case.
The reason for it refers to the fact that you have no clear formal distinction
between information sources and data in mass distributions. If you consider
"two sources that support incompatible subsets", then, in the basic modelling,
this means that you have two different contexts (sources) c1, c2, delivering
context-dependent data sets A1, A2, where the intersection of A1 and A2
is empty. A1 and A2 are themselves, of course, not empty. If there are no more
contexts (sources) to be considered, and the weigthing of the contexts is
w1 > 0, w2 = 1 - w1 > 0, respectively, then we obtain the induced mass
distribution m, defined by m(A1) = w1, m(A2) + w2, but m({}) = 0.
To summarize, m({}) = 1 reflects the fact that a priori (i.e. without
combination, conditioning, data revision and so on) the involved contexts
themselves lead to context-dependent data represented by the empty set
(A1 and A2 both empty). This seems not to be reasonable at all, when the
closed world assumption is accepted.
Taking the open world assumption, the best way is to add a single element
e (not contained in D) as a representation for elements except those of D.
Doing it (dangerous!), the resulting set D+ = D u {e} can be viewed as a
new domain, where - on a formal level -you can again turn back to the
closed world assumption, that is now related to D+.
Since on a formal as well as on the semantical level it is very dangerous,
we have problems with accepting open world assumptions.
One more hint: Do not apply your decision making process on the
pignistic level, when the extended domain D+ is considered, because the
generalized insufficient reason principle does not hold for this case, and
you will come to wrong decisions.

Proposal:
Since your paper refers to the transferable belief model and the problem
of contradicting sources is not covered by this model, avoid to involve
such considerations. A more general approach that solves such problems is,
for example, the application of the context model.
Hence, ignore the case m({})=1 and restrict your presentation to data given
by a single source (like, f.e., in section 5, where the ages of John,
Henri, Jack, Jim, and Phil are chareacterized by single sources).
6. Application for Diagnosis.

note by Rudolf
It might be reasonable to introduce an element theta_omega in order to
sustain the closed world assumption. Problems might arise, when theta_omega
actually represents a set of elements and we come to decision making as it is
described in Section 3.9. BetP(A) changes if we refine theta_omega by replacing
it by a finite number of diseases. Of course, the refinement does not alter the
order of the values BetP(A) for A intersection `theta_omega' = empty. Some
explaining remarks in this direction could be helpful.


