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The transferable belief model
for quantified belief representation.

Philippe Smets1

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium.

Abstract. The transferable belief model is a model to represent quantified beliefs based
on the use of belief functions, as initially proposed by Shafer. It is developed
independently from any underlying related probability model.  We summarize our
interpretation of the model and present several recent results that characterize the model.
We show how rational decision must be made when beliefs are represented by belief
functions. We explain the origin of the two Dempster's rules that underlie the dynamic of
the model through the concept of specialization and least commitment. We present the
canonical decomposition of any belief functions, and discover the concept of 'debt of
beliefs'. We also present the generalization of the Bayesian Theorem to belief functions.

1. Introduction.

We present the transferable belief model (TBM), a model for the representation of
quantified beliefs. The model aims in representing the same concept as the Bayesian
model, i.e., the graded dispositions that guide ‘our’ behavior. We use the word ‘belief’
in a broad sense. It could be replaced by quantified credibility, subjective support,
strength of opinion... These beliefs are not categorical as in modal logic, but admits
degrees as in probability theory. Our approach is normative. The beliefs are held by an
idealized rational agent, denoted by You. This ‘You’ can be a human, but also a robot, a
computer program...

In order to construct a model of quantified beliefs, we must be able to represent the static
beliefs held by You at a given time and the dynamic of these beliefs when new
information is taken in consideration. Decisions are the only observable outcome of the
belief process, so we must also explain how decisions will be made. Classically, the
probabilistic model, in particular the Bayesian model, is the most popular and best
developed model for the representation of quantified belief. This model has nevertheless
some limitations. The transferable belief model (Smets and Kennes, 1994) is an
alternative model that resolves these weaknesses. It is based on the belief functions that
were introduced by Shafer (1976). This paper focused on the specificity of the TBM. It
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Basic Research Action 6156 (DRUMS II) funded by a grant from the Commission of the
European Communities.
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should be understood as a more or less self-contained complement to Shafer’s initial
work (Shafer, 1976) and of Smets’ presentation (Smets, 1988).

In Section 2, we present the concept of actual world and the domain on which beliefs are
held.

In section 3, we present the TBM, with its two level mental model. We summarize its
major mathematical properties. We present the concept of least commitment that would
correspond within the TBM to the maximum entropy principle described in probability
theory. We present the concept of specialization that leads to the justification of both
Dempster's rule of conditioning and Dempster's rule of combination, as well as to a
definition of the concept of distinctness. We proceed with the canonical decomposition of
a belief function, a still immature problem but that opens the doors to the idea of debts of
beliefs that might represent the notion of 'good reasons NOT to believe'.

In section 4, we explain how decisions can be achieved when beliefs are represented by
belief functions, and when decisions must be obtained through the use of probability
functions in order to avoid Dutch Books, and other irrational behaviors. We show how
the TBM resists to the Dutch Books criticisms. It is achieved essentially by not assuming
some temporal coherence principle that underlies the Dutch Books argument in the
classical probabilistic derivation.

In section 5, we develop the Generalized Bayesian Theorem, a theorem that will play in
the transferable belief model the same role as the classical Bayesian Theorem does in
probability theory. It will be central to solve diagnostic problems, solving nicely the
problem of the too often arbitrary a priori probability functions classically required.

Section 6 discusses the specificity of the TBM versus its major contender, the
probabilistic model.

In section 7 we conclude and illustrate the potential use of the model.

Our presentation is based on examples that intuitively characterize the properties of the
model. We focus on understanding. Formal presentations and proofs can be found in
Shafer (1976) and Smets (1990a, 1990b, 1993b, 1993c, 1995).

2. The credibility domain.

In this section, we present the concept of actual world and the domain on which beliefs
are held. We shall use expressions like ‘Your belief that a proposition A is true is .7', or
as a shortcut, ‘Your belief in A is .7'. The meaning of the expression ‘Your belief at time
t0 that it will rain the next day is .7' can be either: 'the measure of the belief held by You
at time t0 that the proposition "it will rain tomorrow" is true is .7' or: 'You believe at level
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.7 that tomorrow belongs to the set of rainy days'. Beliefs can be equivalently given to
'propositions’ or to the subsets of worlds that denote the propositions. We use the
possible worlds approach (Carnap, 1962, Ruspini, 1986, Bradley and Swartz, 1979).
Beliefs will be given to sets of worlds. In probability theory, these subsets are called
‘events’.

2.1. The propositional space.

Let L  be a finite propositional language, supplemented by the tautology and the
contradiction, denoted T and ⊥ , respectively, and closed under the usual Boolean

connectives ¬, ∨  and ∧ . Let Ω be the set of worlds that correspond to the interpretations

of L. Propositions identify the subsets of Ω, and the subsets of Ω denote propositions.
For a proposition P, let “P‘”Ω be the set of worlds identified by P (i.e., those worlds
where P is true). The worlds of Ω are built in such a way that no two worlds denote the
same proposition.

We assume that among the worlds of Ω a particular one, denoted ω0, corresponds to the

actual world. You ignore at time t which world is ω0. You can only express Your belief

at t that the actual world ω0 belongs or not to various subsets of worlds of Ω. The value

bel(A) denotes the degree of belief hold by You at time t that the actual world ω0 belongs

to the set A”Ω (or equivalently that the proposition denoted by A is true in the actual
world).

Beliefs are not always expressed for every subset of Ω. Thanks to the expressive power
of L, it may occur that the worlds of Ω denote very precise propositions, and due to
Your limited understanding or interest, You cannot or do not express Your beliefs on
such a detailed domain. When You want to assess Your belief about tomorrow weather in
Brussels, You will not asses Your belief on the weather at every point of the earth. You
will restrict Yourself to Brussels even though L  could contains the propositions:
‘Brussels weather is fine’, ‘New York weather is fine’, ‘Tokyo weather is fine’, ....
When asked about Your belief about Brussels weather, You build Your belief on a
domain ℜ  built from the two propositions: ‘Brussels weather is fine’, and ‘Brussels

weather is not fine’. You will not express Your belief that ‘Brussels weather is fine and
New York weather is not fine and Tokyo weather is fine’, etc... You just do not care
about such a refined domain.

So for a given question, at a given time, You build a partition of Ω. We call ‘atom’ the
elements of this partition. Let ℜ be the Boolean algebra of subsets of Ω built from these

atoms: so ℜ  contains the unions of the atoms and is closed under complement, union and

intersection. Let At(ℜ ) denote this set of atoms. When ℜ  is the power set 2Ω of Ω, the

atoms of ℜ  are the singletons of Ω. Your belief is given to the elements of ℜ .
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We call Ω the frame of discernment (the frame for short). We call the pair (Ω, ℜ ) a

propositional space. We call the triple (Ω, ℜ , bel) a belief state, where bel is the belief

function that represents the beliefs held by You at time t on ℜ . The full specification of a

belief state should also mention the evidential corpus on which it is based (see chapter 1),
but we omit it for simplicity’s sake.

For the full description of the TBM , we introduce a subset of Ω on which the algebra
and the belief are defined. This distinction is not detailed here. Details are given in
(Smets, this handbook series, volume 2).

2.2. The belief functions.

Belief functions (Shafer, 1976) are capacities monotone of order ∞ (Choquet, 1953). Let

(Ω, ℜ ) be a finite propositional space. A belief function is a function bel from ℜ  to [0, 1]

such that :
1) bel(Ø) = 0
2) for all A1,A2,...An ∈ℜ,

bel(A1∪ A2∪ ...An)≥∑
i

bel(Ai) - ∑
i>j

bel(Ai∩Aj)....-(-1)nbel(A1∩A2∩...An) (2.1)

Usually, bel(Ω) = 1 is also assumed. It can be ignored. We only require that bel(Ω) ≤ 1.

The basic belief assignment (bba) related to a belief function bel is the function m from ℜ
to [0,1] such that :

m(A) = ∑
B:B∈ℜ ,Ø≠B”A

      (-1)|A|-|B|.  bel(B) for all A∈ℜ, A≠Ø (2.2)

m(Ø) = 1 - bel(Ω)

The value m(A) for A∈ℜ  is called the basic belief mass (bbm) given to A2. It may

happen that m(Ø) > 0, what reflects some kind of contradiction in the belief state, but
bel(Ø) is always 0.

The m and bel functions are in one-to-one correspondence via:
bel(A) = ∑

B:B∈ℜ ,Ø≠B”A
      m ( B ) for all A∈ℜ, A≠Ø (2.3)

Related to bel and m, one can also define the plausibility function pl and the commonality
function q, both from ℜ  to [0,1], by:

pl(A) = bel(Ω) - bel(A) for all A∈ℜ (2.4)

2 Shafer speaks of basic probability masses and assignment. We avoid the probability
label as it induces the idea that there is some underlying probability function, what is not
the case in the transferable belief model, in contrast with the model studied by Dempster
(1967) and those defended today by Shafer (1992).
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q(A) =  ∑
B:B∈ℜ ,A”B

      m ( B ) for all A∈ℜ, A≠Ø (2.5)

The meaning of these functions will be clarified in the following sections.

Shafer assumes that bel is normalized so that bel(Ω) = 1, or equivalently pl(Ω) = 1 and
m(Ø) = 0. We do not require such a normalization (Smets, 1992a). We use the notation
bel and pl, whereas Shafer uses Bel and Pl, in order to enhance that our functions are
unnormalized.

3. The transferable belief model.

3.1. Two mental levels.

Beliefs manifest themselves at two mental levels: the credal level where beliefs are
entertained and the pignistic level where beliefs are used to make decisions3.

Usually these two levels are not distinguished and probability functions are used to
quantify beliefs at both levels. The justification for the use of probability functions is
usually linked to "rational" behavior to be held by an ideal agent involved in some betting
or decision contexts (Ramsey, 1931, Savage, 1954, DeGroot, 1970). They have shown
that if decisions must be "coherent", the uncertainty over the possible outcomes must be
represented by a probability function. This result is accepted here, except that such
probability functions quantify the uncertainty only when a decision is really involved.
Therefore uncertainty must be represented by a probability function  at the pignistic level.
We also accept that this probability function is induced from the beliefs entertained at the
credal level. What we reject is the assumption that this probability function represents the
uncertainty at the credal level.

We assume that the pignistic and the credal levels are distinct which implies that the
justification for using probability functions at the credal level does not hold anymore
(Dubois et al., 1995). At the credal level, beliefs are represented by belief functions, at
the pignistic level, they induce a probability function that is used to make decision. This
probability function should not be understood as representing Your beliefs, it is nothing
but the additive measure needed to make decision, i.e., to compute the expected utilities.
Of course this probability function is directly induced by the belief function representing
Your belief at the credal. The link between the two levels is achieved by the pignistic
transformation that transforms a belief function into a probability function. Its nature and
justification is detailed in section 4.

3 Credal and pignistic derive both from the latin words ‘credo’, I believe and ‘pignus’, a
wage, a bet (Smith, 1961).
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3.2. Basic belief assignment and degree of belief.

The basic belief assignment receives a natural interpretation. For A∈ℜ , m(A) is that part

of Your belief that supports A, i.e., that the actual world ω0 belongs to A, and that, due

to lack of information, does not support any strict subset of A.

Let m: ℜ→ [0,1] with
    ∑

A∈ℜ
  m(A) = 1 .

In general, the basic belief assignment looks similar to a probability distribution function
defined on the power set 2Ω of the frame of discernment Ω. This analogy led several
authors to claim that the transferable belief model is nothing but a probabilistic model on
2Ω. Such an interpretation does not resist once conditioning is introduced, as far as it
does not lead to Dempster's rule of conditioning we derive in section 3 (Smets, 1992b).

Example 1. Let us consider a somehow reliable witness in a murder case who testifies
to You that the killer is a male. Let α = .7 be the reliability You give to the testimony.

Suppose that a priori You have an equal belief that the killer is a male or a female. A
classical probability analysis would compute the probability P(M) of M = ‘the killer is a
male’ given the witness testimony as:

P(M) = P(M|Reliable) P(Reliable) + P(M|Not Reliable) P(Not Reliable)
= 1. x .7 + .5 x.3  = .85

where Reliable and Not Reliable refer to the witness reliability. The value .85 is the sum
of the probability that the witness is reliable (.7) plus the probability of M given the
witness is not reliable (.5) weighted by the probability that the witness is not reliable (.3).
The transferable belief model analysis will give a belief .7 to M: bel(M) = .7. In
P(M) = .7 + .15, the .7 value can be viewed as the justified component of the
probability given to M (called the belief or the support) whereas the .15 value can be
viewed as the aleatory component of that probability. It would be relevant to bel(M) only
if the murderer had been really selected by a random process from a population where
50% are male. In our example, such a random selection does not apply, so the aleatory
component is not considered when building Your beliefs. The transferable belief model
deals only with the justified components. (Note: the Evidentiary Value Model (Ekelof,
1982, Gärdenfors et al., 1983, Smets, 1994) describes the same belief component,
within a strict probability framework. It differs from the transferable belief model once
conditioning is introduced.)

If some further evidence becomes available to You and implies that B is true, then the
mass m(A) initially allocated to A is transferred to A∩B.
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Continuing with the murder case, suppose there are only two potential male suspects: Phil
and Tom. Then You learn that Phil is not the killer. The testimony now supports that the
killer is Tom. The reliability .7 You gave to the testimony initially supported 'the killer is

Phil or Tom'. The new information about Phil implies that the value .7 now supports 'the

killer is Tom'. t

More formally, given a propositional space (Ω, ℜ ), the degree of belief bel(A) for A∈ℜ
quantifies the total amount of justified specific support given to A. It is obtained by
summing all basic belief masses given to subsets X∈ℜ  with X”A (and X≠Ø). Indeed a

part of belief that supports that the actual world ω0 is in B also supports that ω0 is in A

whenever B”A. So for all A∈ℜ ,

bel(A) = ∑
Ø≠X”A,X∈ℜ

  
      m ( X ) . (3.1)

We say justified because we include in bel(A) only the basic belief masses given to
subsets of A. For instance, consider two distinct atoms x and y of ℜ . The basic belief

mass m({x,y}) given to {x,y} could support x if further information indicates this.
However given the available information the basic belief mass can only be given to
{x,y}. We say specific because the basic belief mass m(Ø) is not included in bel(A) as it
is given to the subset Ø that supports not only A but also A.

The degree of plausibility pl(A) for A∈ℜ  quantifies the maximum amount of potential

specific support that could be given to A. It is obtained by adding all those basic belief
masses given to subsets X compatible with A, i.e., such that X∩Α≠Ø:

pl(A) = ∑
X∩A≠Ø,X∈ℜ  

      m(X)  =  bel(Ω) - bel( A) (3.2)

We say potential because the basic belief masses included in pl(A) could be transferred to
non-empty subsets of A if new information could justify such a transfer. It would be the
case if we learn that A is impossible.

The plausibility function pl is just another way of presenting the information contained in
bel and could be forgotten, except inasmuch as it often provides a mathematically
convenient alternate representation of the beliefs.

3.3. Vacuous belief function.

Total ignorance is represented by a vacuous belief function, i.e. a belief function such that
m(Ω) = 1, hence bel(A) = 0 ∀ A∈ℜ , A≠Ω, and bel(Ω) = 1. The origin of this particular

quantification for representing a state of total ignorance can be justified. Suppose that
there are three propositions labeled A, B and C, and You are in a state of total ignorance
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about which is true. You only know that one and only one of them is true but even their
content is unknown to You. You only know their number and their label. Then You have
no reason to believe any one more than any other, hence, Your beliefs about their truth
are equal: bel(“A‘) = bel(“B‘) = bel(“C‘) = α  for some α∈[0,1] . Furthermore, You

have no reason to put more (or less) belief in “A‘∪ “B‘ than in “C‘: bel(“A‘∪ “B‘) =

bel(“C‘) = α (and similarly bel(“A‘∪ “C‘) = bel(“B‘∪ “C‘) = α). The vacuous belief

function is the only belief function that satisfies equalities like: bel(“A‘∪ “B‘) = bel(“A‘)

= bel(“B‘) = α . Indeed the inequalities (3.1) imply that bel(“A‘∪ “B‘) ≥ bel(“A‘) +

bel(“B‘) - bel(“A‘∩“B‘). As “A‘∩“B‘=Ø, bel(“A‘∩“B‘) = 0. The inequality

becomes α  ≥ 2α  where α∈ [0,1], hence α  = 0.

3.4. The Principle of Minimal Commitment.

Example 2. Let Ω = {a, b, c}. Suppose You know only that My4 belief function over
Ω is such that belMe({a}) = .3 and belMe({b,c}) = .5, and You do not know the value I
give to belMe for the other subsets of Ω. Suppose You have no other information on Ω
and You are ready to adopt My belief as Yours. How to build Your belief given these
partial constraints? Many belief functions can satisfy them. If You adopt the principle that
the subsets of Ω should not receive more support than justified, then Your belief on Ω
will be such that mYou({a})=.3, mYou({b,c})=.5 and mYou({a,b,c})=.2. Among the
belief functions compatible with the constraints given by the known values of belMe,
belYou is the one that gives the smallest degree of belief to every subsets of Ω. The

principle evoked here is called the Principle of Minimal Commitment. It fits in with the
idea that degrees of belief are degrees of 'justified' supports and You should never give
more belief than justified. √

With un-normalized belief functions, the principle definition is essentially based on the
plausibility function. Suppose pl1 and pl2 are two plausibility functions defined on ℜ
such that:

pl1(A) ≤ pl2(A) ∀ A∈ℜ . (3.3)

Then we say that pl2 (bel2, m2) is not more committed than pl1 (bel1, m1) (and less
committed if there is at least one strict inequality). When expressed with belief functions,
the principle becomes:
 bel1(A) + m1(Ø) ≥ bel2(A) + m2(Ø) ∀ A∈ℜ . (3.4)

In particular the vacuous belief function is the least committed belief function among all
belief functions on Ω.

The Principle of Minimal Commitment consists in selecting the least committed belief
function in a set of equally justified belief functions. This selection procedure does not
always lead to a unique solution in which case extra requirements are added. The

4 'I' (or 'Me') is an agent different from 'You'.
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principle formalizes the idea that one should never give more support than justified to any
subset of Ω. It satisfies a form of skepticism, of uncommitment, of conservatism in the
allocation of our belief. In its spirit, it is not far from what the probabilists try to achieve
with the maximum entropy principle (see Dubois and Prade 1987, Hsia, 1991, Smets
1993b)

3.5. Specializations.

The major rules that describe the dynamic of the beliefs in the TBM are Dempster's rule
of conditioning and Dempster's rule of combination. In order to explain their origin, we
introduce the concept of specialization, both rules being particular cases of the
specialization process.

Let m0 be the basic belief assignment induced on the propositional space (Ω,ℜ ) by You at

time t0. The value m0(A) is that part of Your belief that supports A∈ℜ  and does not

support any strict subset of A due to lack of information. If further information obtained
by You at time t1 with t1 > t0 justifies it, the basic belief mass m0(A) that was supporting
A∈ℜ  at t0 might support more specific subsets of A. This fits in with the idea that m(A)

was not allocated to subsets more specific than A by lack of information. When new
information is obtained, m(A) might thus ‘flow’ to subsets of A, and it may not move
outside of A as we already knew that it specifically supports A. Therefore, the impact of a
new piece of evidence results in a redistribution of m0(A) among the subsets of A. This
redistribution can be characterized by a set of non negative coefficients s(B,A)∈ [0,1],

A,B∈ℜ , where s(B,A) is the proportion of m0(A) that is transferred to B∈ℜ  once the

new piece of evidence is taken into account by You. The s coefficients depends of course
on the piece of evidence that initiated the belief revision.

In order to conserve the whole mass m0(A) after this transfer, the s(B,A) must satisfy:
 ∑
B”A,B∈ ℜ

    s (B ,A)  =  1 ∀ A∈ℜ (3.5)

As masses can only flow to subsets, s(B,A) = 0 for all B not included in A. The matrix
S of such coefficients s(B,A) for A,B∈ℜ  is called a specialization matrix on ℜ  (see

Yager, 1986, Dubois and Prade, 1986, Kruse and Schwecke, 1990, Delgado and Moral,
1987).

After You learn the new piece of evidence E, Your initial basic belief assignment m0 is
transformed into the new basic belief assignment m1 such that:

m1(A) = ∑
X∈ℜ

 s(A,X) m0(X) (3.6)

This formula reflects the idea that the bbm m0(X) initially allocated to X is distributed
among the subsets of X after applying the specialization operator. This down-flow
reflects the meaning of m0(X) as the part of belief that specifically supports X, but might
support more specific subsets if further information justifies it.
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The basic belief assignment m1 is called a specialization of m0. For a bba m, we use the
same notation m to represent to column vector with elements m(A) for A∈ℜ . Relation

3.6 can be written as:
m1 = S.m0 (3.7)

Yager (1986) has shown that if the basic belief assignment m1 is a specialization of the
basic belief assignment m0, then m1 is at least as committed as m0.

Example 3.1. An example of specialization.
Let Ω = {a, b, c}. Suppose a bba m0 defined on 2Ω. Let S be a specialization matrix, and
let m1 = S.m0. Table 1 presents the values of S, m0 and m1. We use the iterated order
illustrated in table 1 to list the elements of the vectors m and the specialization matrix S.

m1 = S m0 
Ø {a} {b} {a,b} {c} {a,c} {b,c} {a,b,c} 

Ø .13 1. .3 .5 .2 .0 .4 .0 .2 .0
{a} .04 .7 .5 .1 .1 .0
{b} .13 .5 .0 .4 .0 .1

{a,b} .00 = .3 .0 . .0
{c} .50 1. .3 .0 .5 .3

{a,c} .00 .2 .0 .0
{b,c} .12 .6 .0 .2

{a,b,c} .08 .2 .4

Table 1. values of the specialization matrix S, and of the bba m0 and m1 with m1 =
S.m0. The blanks in the S matrix indicate those values of S that must be null so that S is
a specialization matrix.

3.5.1. Specialization and Dempster's rule of conditioning.
Suppose Your beliefs over ℜ  at time t0 are represented by a basic belief assignment m0.

At time t1, You learn the piece of evidence EvA that says that ‘the actual world ω0 is not

in A’ for A∈ℜ . Let mA be the basic belief assignment obtained after conditioning m0 on

A. The bbm m0(X) that was specifically supporting X now supports X∩A, so after

conditioning the bbm m0(X) is transferred to mA(X∩A). This transfer explains the name

of the model. The resulting bba and its related functions are given by:
mA(B) = ∑

X:X∈ ℜ ,X”A
       m 0 ( X )

belA(B) = bel0(B∪ A) - bel0(A) for B∈ℜ
plA(B) = pl0(A∩B) for B∈ℜ
qA(B) = q0(B) if B”A ,

0 otherwise.
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These rules are called the Dempster's rule of conditioning (except for the normalization
factor that is neglected here).

The same results are obtained by a specialization of m0 where the coefficients of the
specialization matrix SA are:

sA(C,B) = 1 if C = B∩A (3.8)

0 otherwise.
Then mA = SA.m0.

We have shown (Klawonn and Smets, 1992) that mA is in fact the least committed
specialization of m0 such that plA(A) = 0. Hence the rule for conditioning is derived from
the concept of specialization and least commitment.

Example 3.2. Specialization and Dempster's rule of conditioning.
In table 2, we present the specialization matrix SA that performs a conditioning on A =
{a,c} when Ω = {a,b,c}, the bba m0 and mA = SA.m0. √

mA = SA m 
Ø {a} {b} {a,b} {c} {a,c} {b,c} {a,b,c} 

Ø .1 1. .0 1. .0 .0 .0 .0 .0 .0
{a} .0 1. 1. .0 .0 .0
{b} .0 .0 .0 .0 .0 .1

{a,b} .0 = .0 .0 . .0
{c} .5 1. .0 1. .0 .3

{a,c} .4 1. 1. .0
{b,c} .0 .0 .0 .2

{a,b,c} .0 .0 .4

Table 2. Values of the specialization matrix SA that represents a conditioning on A =
{a,c}, and of the bba m0 and mA with mA = SA.m0.

The origin of the unnormalization and the positive bbm mA(Ø) can be understood by the
study of Dempster's rule of conditioning. Suppose m0 is a normalized belief function,
i.e., m0(Ø) = 0. Then You learn that the actual world does not belong to A. Suppose You
had given a non null belief to A: bel0(A) > 0. The new piece of evidence enters in conflict
with Your initial beliefs. You had some reason to believe that the actual world ω0

belonged to A, You learn that ω0 does not belong to A, hence the conflict. The intensity

of the conflict is exactly bel0(A), and our conditioning rule transfers it to mA(Ø). So the
value of mA(Ø) can be understood as the amount of conflict that results from the
accumulation of the pieces of evidence that lead to Your present state of belief. In Smets
(1992a) we also consider that a positive mA(Ø) could result from an incomplete
specification of the frame of discernment on which bel0 is built.
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The meaning of the commonality function can also be understood when studying
Dempster's rule of conditioning. It results from the relation:

q0(A) = mA(A) for all A∈ℜ .

In general, the value m(Ω) has a natural interpretation: it represents the part of belief
completely free as m(Ω) could be given to any subset of Ω if further information justifies
it. We called it the non-dogmatic component (Smets, 1983). When ℜ  is based on two

atoms, the term m(Ω) is also equal to pl(A) - bel(A), and often it has been understood as
the amount of ‘ignorance’ included in the belief function bel. The term mA(A) computed
by conditioning m0 on A (thus q0(A)) corresponds to the non dogmatic component of
mA, i.e., the part of belief completely free after having conditioned bel0 on A. Besides the
q0(A) values are also the eigenvalues of the operator that characterizes Dempster's rule of
combination (see next section).

 3.5.2. Specialization and Dempster's rule of combination
A more general form of specialization is considered. Suppose Your beliefs over ℜ  are

represented by the basic belief assignment m0, hence m0 results from the evidential
corpus EC0. Suppose two pieces of evidence Ev1 and Ev2 such that their conjunction is
compatible with EC0, i.e., their conjunction is not contradictory.

After the expansion of EC0 by Ev1, the initial basic belief assignment m0 is transformed
into a new basic belief assignment m01. Let S01 be the specialization matrix that
transforms m0 into m01. The impact of the second piece of evidence Ev2 on EC0 already
expanded by Ev1 results in the transformation of m01 into m012. Let S012 be the
specialization matrix that transforms m01 into m012. In an identical way, we could
consider expanding EC0 first by Ev2, and the result by Ev1, with m02 and m021, S02,
S021 the resulting basic belief assignment and specialization matrices.
So: m012 = S012.m01 = S012.S01.m0

and m021 = S021.m02 = S021.S02.m0

The resulting m012 and m021 must be equal as they both quantify the belief induced by
the expansion of EC0 by the same two pieces of evidence Ev1 and Ev2, and the order is
assumed irrelevant (Gärdenfors, 1988, page 50)

Assume the specialization matrices that represent the impact of Ev1 and of Ev2 do not
depend on the basic belief assignment on which they are applied. This translates the idea
that the impacts of each of Ev1 and Ev2 are context independent. The requirement is thus:

S01 = S021 = S1 and S02 = S012 = S2. (3.9)
In that case, the equality m012 = m021 becomes:

S2.S1.m0 = S1.S2.m0. (3.10)
This constraint must be satisfied whatever m0. Hence the specialization matrices
commute: S1.S2 = S2.S1.



TBM/Hdbk 13

Let ΣD be the largest family of specialization matrices that contains the specialization

matrices characterizing the conditioning process (see 3.5.1) and whose elements commute
among themselves. The elements of ΣD are called the dempsterian specialization matrices.

In Klawonn and Smets (1992), we have shown that every dempsterian specialization
matrices S is in one to one correspondence with a unique basic belief assignment m on Ω
such that the coefficients of S satisfy:

s(B,A) = mA(B) for all A,B”Ω.
where the mA(B)’s are obtained from m by Dempster's rule of conditioning.

Example 3.3. A dempsterian specialization matrix.
Let the bba m on 2Ω with Ω = {a,b,c}. The dempsterian specialization matrix Sm

characterized by m is presented in table 3. The coefficients of a column of Sm are
obtained by conditioning the bba m on the label  of the column.

m Sm

Ø {a} {b} {a,b} {c} {a,c} {b,c} {a,b,c}
Ø .05 1.0 .60 .44 .25 .20 .15 .09 .05

{a} .04 .40 .19 .05 .04
{b} .10 .56 .35 .11 .10

{a,b} .01 .21 .01
{c} .20 .80 .45 .35 .20

{a,c} .15 .35 .15
{b,c} .25 .45 .25

{a,b,c} .20 .20

 Table 3. Values of the dempsterian specialization matrix Sm built from the bba m given
on the left of the table.

The meaning of that basic belief assignment m that characterizes the dempsterian
specialization matrix S becomes clear once S is applied to a vacuous basic belief
assignment, i.e., the basic belief assignment induced by an evidential corpus ECØ that
leaves You in a state of total ignorance about the value of the actual world ω0 in Ω. Let S
be the dempsterian specialization matrix that characterizes the impact of a piece of
evidence Ev. Expanding a ‘vacuous’ ECØ with Ev results in an evidential corpus that
contains only Ev. The result of the specialization matrix S on the vacuous basic belief
assignment is the bba m that characterizes S. Hence m is the basic belief assignment
induced by the evidential corpus that contains only Ev (for what concerns Ω).

Let Sm denote the dempsterian specialization matrix built from the bba m. The result of
the application of the dempsterian specialization matrix Sm2 on Ω to a basic belief
assignment m1 on Ω can be written without making Sm2 explicit. Let the basic belief
assignment m12 = Sm2

.m1. The basic belief mass m12(A) can be written as:
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m12(A) = ∑
B,C∈ℜ , B∩C=A

           m1(B) m2(C) for A∈ℜ . (3.11)

It can be shown that m12 = Sm2
.m1 = Sm1

.m2, and Sm1
.Sm2 = Sm2

.Sm1. The relation

(3.11) corresponds to the so-called Dempster's rule of combination (except for the
normalization factor).

3.5.3. Commonalties are eigenvalues.

The eigenvalues of the dempsterian specialization matrix Sm are the values of the
commonality function q derived from m. The eigenvectors of Sm do not depend of m.
Their matrix is the matrix that transforms a basic belief assignment m into its related
commonality function q (Klawonn and Smets, 1992). These properties explain the
mathematical importance of the commonality functions.

3.5.4. The concept of distinctness.

The combination rule (3.11) is known as Dempster's rule of combination. It was initially
proposed by Shafer (1976) as the rule to be applied to combine the basic belief
assignments m1 and m2 induced by two distinct pieces of evidence Ev1 and Ev2,
respectively. Historically, distinctness was not precisely defined5. So far, distinctness
means in fact that the specialization matrix that transforms m1 into m12 does not depend
on m1. In Smets (1992c), we analyze the meaning of distinctness. It is based on the agent
You, two extra agents, denoted You1 and You2, and two pieces of evidence Ev1 and Ev2.
Youi knows only the piece of evidence Evi. Let Bℜ  be the set of basic belief assignments
defined over ℜ . In order to represent his beliefs on ℜ , each Youi selects one basic belief

assignment in Bℜ . Youi is free to represent his beliefs by selecting any basic belief
assignment in Bℜ . You will collect the basic belief assignments m1 and m2, and combine
them as You feel that both agents are perfectly reliable.

Suppose You know that if You1 selects the basic belief assignment m1, then You2 can
only select m2 in a strict subset of Bℜ . In that case the pieces of evidence Ev1 and Ev2

are not distinct as there is something in Ev1 that induces You2 to restrict the domain in
which he can select the basic belief assignment that represents the beliefs on ℜ  induced

by Ev2.

Two pieces of evidence will be said to be distinct, if there is no basic belief assignment in
Bℜ  such that if You learn that it has been selected by You1 to represent his beliefs on ℜ ,

than You know that You2 can only select his basic belief assignment in a strict sub
domain of Bℜ  (and vice versa).

5except for the Dempsterian model (Shafer and Tversky, 1985) but the Dempsterian
model is different from the transferable belief model presented here.
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When the two pieces of evidence are distinct, You will apply Dempster's rule of
combination to combine the belief functions they induce.

How is that property related to the Dempsterian nature of the specialization matrices.
Suppose a vacuous evidential corpus ECØ and two pieces of evidence Ev1 and Ev2. Let
m1 and m2 be the basic belief assignments induced by You on ℜ  when Your evidential

corpus contains only Ev1 or Ev2, respectively (‘only’ is relative for what concerns Ω).
Let S12 and S21 be the specialization matrices that transform m1 into m12 and m2 into
m21, respectively. One must have m12 = m21. To say that the S12 does not depend on m1

means that S12 depends only on Ev2, and not on Ev1 (and analogously for S21). When
S12 and S21 depend only on Ev2 and Ev1, respectively, then we showed that the equality
m12 = m21 implies that S12 and S21 are the dempsterian specialization matrices Sm2

 and
Sm1, thus completely characterized by m2 and m1, respectively. To say that Sm1 is
independent of m2 means that the value of Sm1, hence m1, is not constrained by the

knowledge of the value of m2. Hence the pieces of evidence Ev1 and Ev2 inducing m1

and m2 are distinct where distinctness could be understood as ‘epistemically
independent’. Therefore distinctness implies that the specialization matrices are
Dempsterian, hence that Dempster's rule of combination is the appropriate rule to
combine them.

The distinctness concept can be understood as the fact that the impact of Ev1 is fully
characterized by a specialization matrix which values depend only on m1 and not on m2,
(and similarly for the impact of Ev2). A first generalization to the case where the pieces of
evidence are not distinct is tackled in Kennes (1991).

3.6. The canonical decomposition of a belief function

3.6.1. Simple support function.
A particular but highly useful belief function is the so-called simple support function. It is
a belief function that has at most two non-null basic belief masses, one being given to Ω,
the other being given to a subset of Ω called the focus. Note that the empty set Ø can be a
focus. So for A”Ω, let Ax denote the simple support function with focus A and basic
belief masses m(A)=1-x, m(Ω)=x. It represents the belief function induced by a piece of
evidence that supports A (at a level 1-x) and leaves the remaining belief uncommitted
(m(Ω)=x).

3.6.2. Absorbing Beliefs.
A strange state of belief can be described that we call a state of ‘absorbing’ belief. The
simple support function Ax represents a state of belief that translates the idea that “You
have some reason to believe that the actual world is in A (and nothing more)”. The 1-x is
the weight corresponding to “some reasons”. Suppose another state of belief that would
translate the idea that “You have some reason not to believe that the actual world is in A”.
This cannot be represented by a belief function over Ω and it seems there is no way to
represent it by a meta-belief over the set of belief functions over the propositional space
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(Ω,ℜ ). Suppose that You are in a situation where You have simultaneous some reason to

believe A and some reason not to believe A. It might occur that the weights of both ‘some
reasons’ are exactly counter-balancing each other. In that case, it seems reasonable to
assert that You end up in a state of total ignorance, hence Your belief over Ω is
represented by a vacuous belief function. The first state of belief is represented by a
simple support function Ax. So the second state of belief must be represented by
‘something’ whose combination with Ax leads to a vacuous belief function. But there is
no belief function whose combination with another belief function by Dempster’s rule of
combination would result in a vacuous belief function. The state of belief encountered
when there are some reasons not to believe A is called a state of absorbing belief as it is a
state of belief that will absorb Ax. It looks like a state of belief where You have a ‘debt of
belief’ as the accumulation of new pieces of evidence could lead You to a classical state of
belief. The representation of such a state of absorbing belief cannot be achieved by a
single belief function.

3.6.3. Latent beliefs.

A way to solve this strange state consists in creating a structure of latent beliefs and a
structure of apparent beliefs. A latent belief structure is represented by a pair of belief
functions (C, D) where C,D∈ B  and B  is the set of belief functions over the

propositional space (Ω,ℜ ). C and D are respectively quantifying a confidence and a

diffidence component of the latent belief structure. So C is called the confidence
component and D is called the diffidence component of (C,D). Let T represent the
vacuous belief function. (C,T) describes a state of belief where You have only a
confidence component. It is the classical state of belief considered so far. (T,D) describes
a pure state of absorbing belief where there is only a diffidence component. For example,
the state of belief induced by “You have some reasons to believe A” is represented by
(Ax,T) and the state “You have some reasons not to believe A” is represented by (T,Ay)
(for x,y∈ [0,1], and where x and y are the complements of the weights corresponding to

the ‘some reasons’).

Two latent belief structures are combined by Dempster’s rule of combination (denoted by
⊕ ) applied to both the confidence and diffidence components.

(X,Y) ⊕ (U,V) = (X⊕ U,Y⊕ V).

In particular,
(X,T) ⊕ (T,X) = (X,X)

A latent belief structure can induce an apparent belief structure represented by an element
of B. Let Λ be an operator that transforms a latent belief structure into an apparent belief

structure: Λ:BxB→B. We require that if there is only a non vacuous confidence

component then the apparent belief structure is equal to the confidence component:
Λ(C,T) = C. We also want that if the confidence and the diffidence components are
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equal, they counter-balance each other and the resulting apparent belief structure is
vacuous:  Λ(X,X) = T and in particular Λ(Ax,Ax)=T as already developed in 3.6.2.

Consider now the equalities:
(X⊕ Y,X) = (X,X)⊕ (Y,T) = (T,T)⊕ (Y,T) = (Y,T)

Thus that for every X,Y,Z∈ B, (X,Y) = (X⊕ Z,Y⊕ Z): ⊕− combining the same belief

function Z with both the confident and the diffident part leaves the latent belief structure
unchanged.

Let us introduce the operator  -O. It is defined as the inverse of the ⊕ operator in that sense

that: (X⊕ Y) -OY = X for all X,Y∈ B

and Y -OY = T.
So if qX and qY are the commonality functions related to the belief functions X and Y,
then the commonality function related to X -OY is defined as:

qX -OY(A) = 
qX(A)
qY(A) for all A∈ℜ ,

whereas qX⊕ Y(A) = qX(A) qY(A) for all A∈ ℜ . This last relation is just

Dempster's rule of combination. Whatever X and Y, the function qX⊕ Y so defined is
always related to a belief function, but this is not always true for qX -OY.

It happens that whenever m12(Ω)>0, one can always recover m2 from the knowledge of
m1 and m12 = m1⊕ m2. We can then write:

If X -OY∈ B, then (X,Y) = (X -OY,T) and Λ(X,Y) = X -OY (3.12)

If X -OY∉ B, then Λ(X,Y) is undefined.

So Λ is not defined on the whole space BxB, but only on those elements (X,Y) where

X  -OY is a belief function in B. We could have hoped that such a state of belief would not
occur. Unfortunately we already encountered a counter example when we introduced the
latent belief structure (T,Ax) that characterizes the case where all You know is that You
have good reasons not to believe A. This means that the apparent belief structures are not
rich enough to characterize every belief state. Some state of belief can only be represented
by their latent belief structure.

What should be an appropriate apparent belief structure when X -OY∉ B is not clear.

What is the apparent belief structure in the case (T,Ax)? We could claim that Λ(T,Ax) =

T, but then the apparent vacuous belief structure T could correspond to many non
equivalent latent belief structures. How to solve the general case? We could propose that
Λ(X,Y) is the belief function ‘closest’ from X -OY. Unfortunately such a concept of

‘closeness’ is not yet available. The specialization concept can be used to create a partial
order on the set of belief functions. Pointwise measures of the information contained in a
belief function have been proposed (Pal and Bezdek, 1992), but none seems really
convincing as THE appropriate measure to define ‘closeness’, and furthermore they
should be adapted to functions like X -OY when they are not belief functions.
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3.6.4. The anatomy of a belief function.

We show now how to build the latent belief structure from a given belief function.
Suppose two set functions X and Y that map ℜ  onto the real. Let qX and qY be their

related ‘commonality’ functions (the relations between qX and X and qX and Y are the
same as those between a commonality function and a belief function). Then we define the
⊕ -combination of X and Y such that the resulting related ‘commonality’ function

satisfies:
qX⊕ Y(A) = qX(A) qY(A) for all A∈ℜ .

It can be shown that for every belief function bel in B with m(Ω)>0, there is an unique
mathematical decomposition of bel into a set of generalized simple support functions:

bel = ⊕ Α”Ω AxA

where xA≥0 6 and where Dempster's rule of combination is generalized to any set
functions. We say ‘generalized’ simple support function as xA can be larger than one. Let

A+ = {A: xA<1} and A- = {A: xA>1}
then bel = ⊕ Α∈ A+ AxA   -O  ⊕ Α∈ A− A1/xA

This decomposition corresponds in fact to (3.12). So the latent belief structure underlying
bel is given by (⊕ Α∈ A+ AxA , ⊕ Α∈ A − A1/xA ).

The case m(Ω) = 0 can be solved by considering that m(Ω) = 0 is only the limit of
m(Ω) = ε for ε→0. Then every computation is done with ε and limits are taken as the

last operation.

The meaning of the decomposition is illustrated in the next example.
Let Ω = {a,b,c] and the basic belief masses associated to bel be m({a,b}) = m({a,c}) =
m({a,b,c}) = 1/3. Then: bel =  {a,b}1/2⊕ {a,c}1/2⊕ {a}4/3,

in which case the latent belief structure is ({a,b}1/2⊕ {a,c}1/2,{a}3/4). Such a latent belief

structure describes the situation where:
You have some reasons to believe {a,b} (weight 1/2),
You have some reasons to believe {a,c} (weight 1/2),
You have some reasons not to believe {a} (weight 3/4).

Whenever Your belief is represented by a belief function, the latent belief structure can
always be determined. The apparent belief structure can always be recovered from that
latent belief structure as it should. Formally:
if bel = ⊕ Α∈ A+ AxA    -O  ⊕ Α∈ A− A1/xA  then bel = Λ(⊕ Α∈ A+ AxA , ⊕ Α∈ A − A1/xA ).

The only belief states that cannot be represented by an apparent belief structure are those
states where the diffidence components ‘dominate’ the confidence components (when Λ

6 Shafer (1976, page 94) describes the algorithm to compute the weights xA. Their
logartithms are linear functions of the logarithms of the commonality function, and the
Fast Möbius Transform can be used for their computation (Kennes, 1992).
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in undefined). Such states of belief require the use of the latent structure in order to obtain
a full representation.

Example 4: The Newspaper Bias.
You visit a foreign country and You read in the local Journal that the economic situation
in the region X is good. You never heard about that Journal nor of the existence of region
X. So You had no a priori whatsoever about the economic status of region X, and now
after having read the Journal, You might  have some reasons to believe that the economic
status is good. The ‘some reasons’ reflects the strength of the trust You put in the
Journal’s information. Then a friend in which You have some confidence mention to You
that the Journal is completely under control by the local propaganda organization,
therefore You have some reasons not to believe the Journal when it describes the good
economic status of the country, it might just be propaganda.

The reasons to believe that the economic status is good that results from the information
presented in the Journal, and the reasons not to believe it that results from what Your
friend said could counterbalance each other, in which case You end up in a state of total
ignorance about the economic status in region X. The diffidence component that results
from what Your friend said about the Journal is balanced by the confidence component
that results form the information in the Journal .

It might be that the confidence component  is stronger than the diffidence component,
then You will end up with a slight belief that the economic status is good (but the belief is
not as strong as if You had not heard what Your friend said). If the diffidence component
is still stronger than the confidence component, then You are still in a state of ‘debt of
belief’, in the sense that You will need a further confidence component (some extra
information that supports that the economic status is good) in order to balance the
remaining diffidence component. In such a case, if You are asked to express Your
opinion about the economic status, You might express it under the form: ‘So far, I have
no reason to believe that the economic status is good, and I  need some extra  reasons
before I start to believe it’.

These arguments might look like a discounting of what the Journal claims. But it is not
the case as You will believe what the Journal says when the claims are not favorable to
the local regime (a statement like ‘the economic status is not good’ would be such an
example). Discounting would mean that You reject whatever the Journal claims. What we
face here is a kind of focused and weighted discounting, and we solve such a situation by
introducing the latent belief structure.

4. Decision Making and Dutch Books.

4.1. The pignistic probability function for decision making.
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Suppose a credibility space (Ω, ℜ , bel) where bel quantifies Your beliefs at the credal

level. When a decision must be made that depends on ω0, You construct a probability

function on ℜ  in order to make the optimal decision, i.e., the one that maximizes the

expected utility (Savage, 1954, DeGroot, 1970). We assume that the probability function
defined on ℜ  is a function of the belief function bel. It translates the saying that beliefs

guide our actions. Hence one must transform bel into a probability function that will be
used for selecting the best decision. Let BetP denoted this probability function. The
transformation is called the pignistic transformation and is denoted by Γℜ . The ℜ  index

in Γℜ mentions the Boolean algebra ℜ  on which bel and BetP are defined: so BetP =

Γℜ (bel) where bel and BetP map ℜ  into [0, 1]. We call BetP a pignistic probability to

insist on the fact that it is a probability measure used to make decisions (Bet is for
betting). Of course BetP is a classical probability measure.

The structure of the pignistic transformation is derived from the rationality requirement
that underlies the following scenario.

Example 5: Buying Your friend’s drink. Suppose You have two friends, G and
J. You know they will toss a fair coin and the winner will visit You tonight. You want to
buy the drink Your friend would like to have tonight: coke, wine or beer. You can only
buy one drink. Let D = {coke, wine, beer} and ℜ  = 2D.

Let belG(d), for all d”D, quantify Your belief about the drink G is liable to ask for.
Given belG, You build the pignistic probability BetPG about the drink G will ask by

applying the (still to be defined) pignistic transformation. You build in identically the
same way the pignistic probability BetPJ based on belJ, Your belief about the drink J is
liable to ask for. The two pignistic probability distributions BetPG and BetPJ are the

conditional probability distributions about the drink that will be asked for given G or J
comes. The pignistic probability distributions BetPGJ about the drink that Your visitor

will ask for is then:
BetPGJ (d) = .5 BetPG(d) + .5 BetPJ(d) for all d∈ D

You will use these pignistic probabilities BetPGJ(d) to decide which drink to buy.

But You might as well reconsider the whole problem and first compute Your belief belV
about the drink Your visitor (V) would like to have. We have shown (Smets, 1995) that
belV is given by:

belV(d) = .5 belG(d) + .5 belJ(d) for all d”D
Given belV, You could then build the pignistic probability BetPV You should use to
decide which drink to buy. It seems reasonable to assume that BetPV and BetPGJ must be

equal. In such a case, the pignistic transformation is uniquely defined. t

Formally, we have assumed:
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Linearity Assumption: Let bel1 and bel2 be two belief functions on the propositional
space (Ω, ℜ ). Let Γℜ  be the pignistic transformation that transforms a belief function

over ℜ  into a probability function BetP over ℜ . Then Γℜ satisfies, for any α∈ [0,1],

Γℜ ( αbel1+ (1-α)bel2 ) = α Γℜ (bel1) + (1-α) Γℜ (bel2)

Two technical assumptions must be added that are hardly arguable:
Anonymity Assumption: An anonymity property for BetP by which the pignistic
probability given to the image of A∈ℜ  after permutation of the atoms of ℜ  is the same as

the pignistic probability given to A before applying the permutation.
Impossible Event Assumption The pignistic probability of an impossible event is
zero.

Under these assumptions, it is possible to derive uniquely Γℜ  (Smets, 1990b)

Pignistic Transformation Theorem: Let (Ω, ℜ , bel) be a credibility space, with m

the bba related to bel. Let BetP = Γℜ (bel). The only solution that satisfies the Linearity,

Anonymity and Impossible Event Assumptions is:

BetP(ω) = ∑
A:ω”A∈ℜ

   
m(A)

 |A| (1-m(Ø))      for any atom ω of ℜ  (4.1)

where |A| is the number of atoms of ℜ  in A,

and BetP(A) = ∑
ω: ω∈ At(ℜ ), ω”A∈ ℜ

          BetP(ω)      for all A∈ ℜ .

Historical note. In a context similar to ours, Shapley (1953) derived the same relation
(4.1). The model he derived was later called the ‘transferable utility model’ whereas,
unaware of it, we called our model the ‘transferable belief model’.

It is easy to show that the function BetP obtained from (4.1) is a probability function and
the pignistic transformation of a probability function is the probability function itself.

Betting frame. The pignistic transformation depends on the structure of the frame on
which the decision must be made. One must first define the ‘betting frame’ ℜ  on Ω, i.e.,

the set of atoms on which stakes will be allocated. The granularity of this frame ℜ  is

defined so that a stake could be given to each atom of ℜ  independently of the stakes

given to the other atoms of ℜ . Suppose one starts with a belief function on a frame ℜ 0.

If the stakes given to atoms A and B of ℜ 0 must necessarily be always equal, both A and

B belong to the same granule of the betting frame ℜ . The betting frame ℜ  is organized so

that the granules are the atoms of ℜ . ℜ  results from the application of a sequence of

coarsenings and/or refinements on ℜ 0. The pignistic probability BetP is then built from

the belief function so derived on ℜ . Thus BetP is a function from ℜ  to [0,1].
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Betting under total ignorance. To show the potency of our approach, let us
consider one of those disturbing examples based on total ignorance.

Example 6. Betting and total ignorance.
Consider a guard in a huge power plant. On the emergency panel, alarms A1 and A2 are
both on. The guard never heard about these two alarms, they were hidden in a remote
place. He takes the instruction book and discovers that alarm A1 is on iff circuit C is in
state C1 or C2 and that alarm A2 is on iff circuit D is in state D1, D2 or D3. He never
heard about these C and D circuits. Therefore, his beliefs on the C circuit will be
characterized by a vacuous belief function on space ΩC = {C1, C2}. By the application of
(4.1) his pignistic probability will be given by  BetPC(C1) = BetPC(C2) = 1/2. Similarly
for the D circuit, the guard’s belief on space ΩD = {D1, D2, D3} will be vacuous and the
pignistic probability are BetPD(D1) = BetPD(D2) = BetPD(D3) = 1/3. Now, by reading
the next page on the manual, the guard discovers that circuits C and D are so made that
whenever circuit C is in state C1, circuit D is in state D1 and vice-versa. So he learns that
C1 and D1 are equivalent (given what the guard knows) and that C2 and (D2 or D3) are
also equivalent as C is either C1 or C2 and D is either D1 or D2 or D3. This information
does neither modify his belief nor his pignistic probability about which circuit is broken.

If the guard had been a trained Bayesian, he would have assigned value for PC(C1) and
PD(D1) (given the lack of any information, they would probably be 1/2 and 1/3, but any
value could be used). Once he learns about the equivalence between C1 and D1, he must
adapt his probabilities as they must give the same probabilities to C1 and D1. Which set

of probabilities is he going to update: PC or PD, and why?, especially since it must be
remembered that he has no knowledge whatsoever about what the circuits are. In a
probabilistic approach, the difficulty raised by this type of example results from the
requirement that equivalent propositions should receive identical beliefs, and therefore
identical probabilities.

Within the transferable belief model, the only requirement is that equivalent propositions
should receive equal beliefs (it is satisfied as belC(C1) = belD(D1) = 0). Pignistic

probabilities depend not only on these beliefs but also on the structure of the betting
frame. The difference between BetPC(C1) and BetPD(D1) reflects the difference between

the two betting frames. t

The fact the TBM can cope easily with such a state of ignorance results from the
dissociation between the credal and the pignistic levels. Bayesians do not consider such a
distinction and therefore work in a much limited framework, hence the difficulty they
encounter in the present situation.

We consider now the problem where the betting frame is ill defined. Suppose bel is a
belief function on a frame ℜ, and let BetPℜ  be the pignistic probability obtained by



TBM/Hdbk 23

applying the pignistic transformation Γℜ  to bel. So for A∈ℜ, BetPℜ (A) = Γℜ (bel)(A).

The index ℜ  of BetPℜ  indicates the betting frame. Suppose one changes the betting frame

ℜ  into a new betting frame ℜ *A by a sequence of uninformative refinement/coarsening

applied to Ω, and such that A is still an element of ℜ *A. Let bel* be the belief function

induced from bel on ℜ *A by the same sequence of uninformative refinement/coarsening.

In that new betting frame ℜ *A, one can compute BetPℜ *(A) = Γℜ *(bel*)(A). Suppose

now the set of possible betting frames ℜ *A that can be built from ℜ  and such that

A∈ℜ *A, and the set of belief functions bel* induced from bel on ℜ *A. Consider the set

of values BetPℜ *A(A) obtained by considering all these betting frames ℜ *A. Wilson

(1993) shows that, for all A∈ℜ , the minimum of BetPℜ *A(A) taken over the ℜ *A‘s is

equal to bel(A). So the set of pignistic probabilities BetPℜ * that can be obtained from bel
by varying the betting frame ℜ  is directly related to the set P(bel) of probability functions

‘compatible’ with bel and its associated plausibility function pl, i.e., P(bel) is the set of
probability functions P on ℜ  such that bel(A) ≤ P(A) ≤ pl(A) ∀ A∈ℜ . So whatever the

betting frame ℜ *A, BetPℜ *A(A) ≥ bel(A) ∀ A∈ℜ .

Suppose You ignore what is the appropriate betting frame, You nevertheless know that,
∀ A∈ℜ, the lowest bound of BetP(A) is bel(A). Therefore bel(A) can then be understood

as the lowest pignistic probability one could give to A when the betting frame is not fixed
(Giles, 1982).

This set P(bel) of probability functions compatible with a belief function bel gets a
meaning from this result. It is the set of pignistic probability functions define on ℜ  that

could be induced by bel when varying the betting frame. Its definition follows from bel,
not the reverse as assumed by the authors who understand bel as the lower envelop of
some class of probability functions. In the TBM, we get P(bel) from bel, not bel from
P(bel).

4.2. The impact of the two-level model.

In order to show that the introduction of the two-level mental model  is not innocuous,
we present an example where the results will be different if one takes the two-level
approach as advocated in the transferable belief model  or a one-level model like in
probability theory.
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Example 7: The Peter, Paul and Mary Saga.
Big Boss has decided that Mr. Jones must be murdered by one of the three people present
in his waiting room and whose names are Peter, Paul and Mary.  Big Boss has decided
that the killer on duty will be selected by a throw of a dice: if it is an even number, the
killer will be female, if it is an odd number, the killer will be male. You, the judge, know
that Mr. Jones has been murdered and who was in the waiting room. You know about the
dice throwing, but You do not know what the outcome was and who was actually
selected. You are also ignorant as to how Big Boss would have decided between Peter
and Paul in the case of an odd number being observed. Given the available information at
time t0, Your odds for betting on the sex of the killer would be 1 to 1 for male versus
female.

At time t1 > t0, You learn that if Big Boss had not selected Peter, then Peter would
necessarily have gone to the police station at the time of the killing in order to have a
perfect alibi. Peter indeed went to the police station, so he is not the killer. The question is
how You would bet now on male versus female: should Your odds be 1 to 1 (as in the
transferable belief model) or 1 to 2 (as in the most natural Bayesian model).

Note that the alibi evidence makes 'Peter is not the killer' and 'Peter has a perfect alibi'
equivalent. The more classical evidence 'Peter has a perfect alibi' would only imply
P('Peter is not the killer' | 'Peter has a perfect alibi') = 1. But P('Peter has a perfect alibi' |
'Peter is not the killer') would be undefined and would then give rise to further
discussion, which would be useless for our purpose. In this presentation, the latter
probability is also 1.

The transferable belief model solution.
Let k be the killer. The information about the waiting room and the dice throwing pattern
induces the following basic belief assignment m0:

k ∈ Ω = {Peter, Paul, Mary}

m0( { Mary} ) =  .5 m0( { Peter, Paul} ) = .5

The bbm .5 given to {Peter, Paul} corresponds to that part of belief that supports "Peter
or Paul", could possibly support each of them, but given the lack of further information,
cannot be divided more specifically between Peter and Paul.

Let BetP0 be the pignistic probability obtained by applying the pignistic transformation to
m0 on the betting frame which set of atoms is {{Peter}, {Paul}, {Mary}}. By relation
(4.1), we get:

BetP0({Peter}) =.25 BetP0({Paul}) = .25 BetP0({Mary}) = .50
Given the information available at time t0, the bet on the killer's sex (male versus female)
is held at odds 1 to 1.

Peter's alibi induces an updating of m0 into m2 be Dempster's rule of conditioning:



TBM/Hdbk 25

m2( {Mary} ) = m2( {Paul} ) = .5
The basic belief mass that was given to "Peter or Paul" is transferred to Paul.

Let BetP2 be the pignistic probability obtained by applying the pignistic transformation to
m2 on the betting frame whose set of atoms is {{Paul}, {Mary}}.

BetP2({Paul}) = .50 BetP2({Mary}) = .50
Your odds for betting on male versus female would still be 1 to 1.

The probabilistic solution:
The probabilistic solution is not obvious as one data is missing: the value α  for the

probability that Big Boss selects Peter if he must select a male killer. Any value could be
accepted for α , but given the total ignorance in which we are about this value, let us

assume that α =.5, the most natural solution (any value could be used without changing

the problem we raise). Then the odds on male versus female before learning about Peter’s
alibi is 1 to 1, and after learning about Peter’s alibi, it becomes 1 to 2. The probabilities
are then:

P2({Paul}) = 0.33 P2({Mary}) = 0.66.

The 1 to 1 odds of the transferable belief model solution can only be obtained in a
probabilistic approach if α  = 0. Some critics would claim that the transferable belief

model solution is valid as it fits with α = 0. The only trouble with this answer is that if

the alibi story had applied to Paul, than we would still bet at 1 to 1 odds within the TBM
approach. Instead the probabilistic solution with α = 0 would lead to a 0 to 1 bet, as the

probabilities are:
P2({Peter}) = 0.0 P2({Mary}) = 1.

So the classical probabilistic analysis does not lead to the transferable belief model
solution.

We are facing two solutions for the bet on male versus female after learning about Peter’s
alibi: the 1 to 1 or at 1 to 2 odds? Which solution is ‘good’ is not decidable, as it would
require the definition of ‘good’. Computer simulations have been suggested for solving
the dilemma, but they are impossible. Indeed when the killer is a male, we do not know
how to choose between Peter and Paul. If we introduce a probability α  equal to the

probability that Peter is selected when the killer is a male, then the problem is no more the
one we had consider in the initial story. If such an α  were known, then it would been

included in the TBM analysis, and in that case it happens that the TBM and the Bayesian
solutions become identical, as it should. So in order to compare the TBM and the
Bayesian solution of the initial saga, we are only left over with a subjective comparison
of the two solutions... or an in depth comparison of the theoretical foundations that led to
these solutions.

4.3. The assessment of the values of bel.
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The pignistic transformation can be used in order to assess degrees of belief thanks to the
ability to construct several betting frames. The method is essentially identical to the one
described to assess subjective probabilities. The numerical value of the credibility
function is obtained through some exchangeable bets schema.

Example 8: Suppose Ω ={a, b} where {a} = 'Circuit X is broken' and {b} = 'Circuit
X is not broken'. Consider the betting frame ℜ  with atoms {a} and {b}. Suppose Your

pignistic probabilities on that frame ℜ  are:

BetP({a}) = 4/9 BetP({b}) = 5/9.
Suppose ψ  and ψ  are two complementary but otherwise unknown propositions that

state that circuit C whose properties are completely unknown to You is broken or not
broken, respectively. {a}∩ ψ  will occur if circuits X and C are broken. {a}∩ ψ  will

occur if circuit X is broken and circuit C is not broken. Let us consider the betting frame
ℜ ' with atoms {a}∩ ψ , {a}∩ ψ , {b}, and suppose Your pignistic probabilities on that

new frame are:
BetP'({a}∩ ψ ) = BetP'({a}∩ ψ ) = 7/27  BetP'({b}) = 13/27.

Then the unique solution for m is: m({a}) = 2/9, m({b}) = 3/9 and m({a,b}) = 4/9.

Let m* be the bba induces by m on ℜ ’ by the uninformative refinement:

m*({{a}∩ ψ ) = m*({{a}∩ ψ ) =  0,

m*(({a}∩ ψ )∪( {a}∩ ψ )) = m({a}),

m*(({a}∩ ψ )∪ {b}) = m*(({a}∩ ψ )∪ {b}) = 0

m*({b}) = m({b})
m*(({a}∩ ψ )∪( {a}∩ ψ )∪ {b}) = m({a, b}).

The solution for m must solve two linear equations derived from (4.1):
4/9 = m({a}) + m({a,b})/2

7/27 = m*({{a}∩ ψ ) + m*(({a}∩ ψ )∪( {a}∩ ψ ))/2 + m*(({a}∩ ψ )∪ {b})/2

+ m*(({a}∩ ψ )∪( {a}∩ ψ )∪ {b})/3

= m({a})/2 + m({a,b})/3.

Hence the values of m.

It might seem odd that {b} receives pignistic probabilities of 5/9 and 13/27 according to
the betting context. It reflects the fact that a large amount (4/9) of Your initial belief was
left unassigned (i.e., given to {a,b}). This example corresponds to a state in which You
have very weak support for {a} and for {b}. You are not totally ignorant as in example 6,
but still in a state of 'strong' ignorance. Part of BetP({b}) = 5/9 is due to justified beliefs
(3/9) but the remainder results from a completely unassigned part of belief that You
distribute equally through the pignistic transformation among the alternatives of Your
betting frame. t

4.4. Dutch Books.
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A classical criticism against any non probabilistic model for quantified beliefs is based on
Dutch Books arguments, i.e. on the possibility to build a set of forced bets such that the
player will lose for sure. Dutch Books are avoided only if beliefs, when used for decision
making, are quantified by probability measures. The transferable belief model with its
pignistic transformation resists to such a criticism. Static (synchronic) Dutch Books are
of course avoided inasmuch as bets are based on pignistic probabilities. The real delicate
point is to resist diachronic Dutch Books, i.e., those built when changes in beliefs are
considered and bets can be reconsidered after new information has been collected by the
players (Teller, 1973, Jeffrey, 1988).

They show that the impact of the new information should be represented by the classical
conditioning rule described in probability theory. The argument is based on the
acceptance of the temporal coherence principle that we do not assume in the TBM. The
temporal coherence principle requires that Your belief that the actual world ω0 belongs to

A∈ℜ  once You know that ω0 belongs to B∈ℜ  (a factual conditioning) should be the

same as Your belief that ω0∈ A under the hypothesis that You come to know that ω0∈ B

(an hypothetical conditioning).

In Smets (1993a), we show why the temporal coherence principle is not necessary, hence
the transferable belief model resists diachronic Dutch Books criticism, and how the
appropriate pignistic probabilities can be built up when the player knows that intermediate
experiments will be run whose outcomes could affect the bets involved. The originality of
the models we obtain in that way is that the player will use different probabilities
depending on whether he knows about the experiments to be run or not. The transferable
belief model analysis is rich enough to quantify the impact of the knowledge that some
relevant intermediate experiments will be run, which is not the case within probability
theory. Full details about the construction of the pignistic probabilities in a context of
diachronic Dutch Book are presented in Smets (1993a).

5. The Generalized Bayesian Theorem.

5.1. The Theorem.

Bayesian Theorem is a key element of the use of probability theory for diagnosis process.
Suppose two spaces, the X space of symptoms and the Θ space of diseases. Given the

conditional probability PX(x|θi) of observing x”X in each disease class θi ∈Θ , and the a

priori probability PΘ over Θ, compute the a posteriori probability PΘ(θ|x) over Θ that the

patient belongs to a disease class in θ given the symptom x”X has been observed.

Indices indicate the domain of the functions. By Bayes Theorem, one has:

PΘ(θi|x) = 
PX(x|θi) PΘ(θi)

∑
j

 PX(x|θj) PΘ(θj)
for θi∈Θ .
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We have generalized the theorem in the context of the transferable belief model (Smets,
1978, 1981, 1993b). We assume that for each disease class θi∈Θ , there is a belief

function belX(.|θi) over X that represents Your belief about which symptom can be

observed if the patient belongs to the disease class θi. Let belΘ be Your a priori belief

about the disease class to which the patient belongs. Suppose belΘ is a vacuous belief

function that reflects that You have no a priori about the disease Your patient could
present. Then we have shown among others that the a posteriori plausibility function
plΘ(.|x) over Θ given x”X is:

plΘ(θ|x) = 1 − ∏
θi∈θ

 ( 1 − plX (x |θi) ). (5.1)

When belΘ is not vacuous because You have some a priori about the disease Your patient

could present, belΘ and belΘ(.|x) are combined be Dempster's rule of combination.

This theorem can be derived by assuming the Least Commitment Principle and either the
distinctness of the pieces of evidence that induce in You the conditional belief functions
over X given θi or a Generalized Likelihood Principle that states that:

∀θ ⊆ Θ, ∀ x⊆ X, plX(x|θ) depends only on {plX(x|θi) , plX(x|θi) : θi∈θ }, (5.2)

where plX(x|θ) is the conditional plausibility function on X when all we know about Θ is

that θ holds. (5.2) states essentially that this last plausibility should only depends on the

plausibility plX(.|θi)  for θi∈θ .

5.2. The Disjunctive Rule of Combination.

Simultaneously we derive a disjunctive rule of combination. Dempster's rule of
combination describes in section 3.5.2 concerns the case where two pieces of evidence
are combined conjunctively. Suppose bel1 and bel2 are the belief functions on ℜ  induced

by two distinct pieces of evidence Ev1 and Ev2. The conjunctive rule of combination
allows the computation of bel(.|Ev1∧ Ev2) from bel1 and bel2 (by Dempster's rule of

combination). The disjunctive rule of combination allows the computation of
bel(.|Ev1∨ Ev2) from bel1 and bel2. It provides the belief function when You only know

that either Ev1 or Ev2 hold (whereas in the conjunctive case You know that both hold).
One has:
  bel(ω|Ev1∨ Ev2) + m(Ø|Ev1∨ Ev2) = (bel1(ω) + m2(Ø)) (bel2(ω) + m2(Ø)) for ω∈ℜ .

and
  pl(ω|Ev1∨ Ev2) = 1 − (1 − pl1(ω))(1 − pl2(ω)). (5.3)

These disjunctive combination rules are rarely needed. Nevertheless they are quite useful
to reduce computation time and computer memory requirements in belief networks (Xu
and Smets, 1994).



TBM/Hdbk 29

5.3. Properties of the Generalized Bayesian Theorem.

An important property satisfied by the Generalized Bayesian Theorem concerns the case
where two independent observations are collected. Suppose two symptoms spaces, X
and Y. Let belX and belY be Your beliefs on X and on Y. We assume that the symptoms
are independent within each disease class θi∈Θ . The independence assumption means

that if You knew which disease holds the observation of one of the symptoms would not
change Your belief about the status of the other symptom. This independence property
means that the conditional joint belief belXxY(.|θi) over the space XxY given θi is:

plXxY(x∩y|θi) = plX(x|θi) plY(y|θi).

Suppose Your a priori belief over Θ is vacuous. Given You observe the symptoms x”X

and y”Y, You can build belΘ(.|x) and belΘ(.|y) by the Generalized Bayesian Theorem,

and then combine these two belief functions by Dempster's rule of combination in order
to derive Your belief belΘ(.|x,y) about Θ given both symptoms x and y. But You could

as well apply the Generalized Bayesian Theorem directly to belXxY(.|θi) in order to

derive belΘ(.|x,y). Both approaches lead to the same result, as it should. Furthermore,

we proved that the Generalized Bayesian Theorem is essentially the only solution that
satisfies that property (Smets, 1993b).

A nice property of the Generalized Bayesian Theorem is that it allows to extend the
disease domain Θ with an extra class, the set of still unknown diseases. In that class,

Your belief about the symptoms is of course vacuous. How could You have any belief
about which symptom prevails for patients that belong in a disease class You never heard
about? You can then compute Your a posteriori belief that the patient belongs to that new
class given the observed symptom. It means You can compute Your belief that You have
made a ‘discovery’. Such a computation is not possible within the probabilistic
framework as we cannot represent in probability theory the state of total ignorance we
need to describe the beliefs over the symptoms in the new class. The next example
illustrates among other this property.

Example 9. Diagnostic process.
In order to illustrate the use of the Generalized Bayesian Theorem and the disjunctive rule
of combination, we consider an example of a medical diagnosis process. Let Θ = {θ1,

θ2, θω}  be a set of disease with three mutually exclusive and exhaustive diseases. θ1
and θ2 are two ‘well known’ diseases, i.e., we have some beliefs on what symptoms

could hold when θ1 holds or when θ2 holds. θω corresponds to the complement of {θ1,

θ2} relative to all possible diseases. θω represents not only all the ‘other’ diseases but

also those not yet known. In such a context, our belief on the symptoms can only be
vacuous. What do we know about the symptoms caused by a still unknown disease?
Nothing of course, hence the vacuous belief function.
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We consider the set X of symptoms with X = {x1, x2, x3}. Table 4 presents the beliefs

over X within each diseases class. It also shows the beliefs over symptom X when You
only know that either θ1 or θ2 holds, computed by (5.3). The beliefs translate essentially

the facts that θ1 ‘causes’ (supports) x3, and θ2 ‘causes’ x1 or x2 (without preference).

{θ1} {θ2} {θω} {θ1, θ2}
X m bel m bel m bel m bel

{x1} .0 .0 .0 .0 .0 .0 .00 .00
{x2} .0 .0 .0 .0 .0 .0 .00 .00
{x3} .5 .5 .2 .2 .0 .0 .10 .10

{x1, x2} .2 .2 .6 .6 .0 .0 .12 .12
{x1, x3} .0 .5 .1 .3 .0 .0 .05 .15
{x2, x3} .0 .5 .1 .3 .0 .0 .05 .15

{x1, x2, x3} .3 1.0 .0 1.0 1.0 1.0 .68 1.00

Table 4: Conditional basic belief masses (m) and beliefs (bel) on the symptoms x”X
within each of the mutually exclusive and exhaustive disease classes θ1, θ2 and θω ∈Θ.
The right hand side of the table presents the beliefs (and basic belief masses) on X given
the disease is either θ1 or θ2.

Table 5 presents the beliefs induced on Θ by the observation of symptom x3. The beliefs

are computed by the application of (5.1). The symptom supports essentially {θ1, θω}.

The meaning of bel(θω|x3) = 0.12 merits some consideration. It quantifies Your belief

that the symptom x3 is neither ‘caused’ by θ1 nor by θ2. It supports the fact that the

observation is ‘caused’ by another disease or by some still unknown disease. A large
value for bel(θω|x3) somehow supports the fact that You might be facing a new disease.

In any case a large value should induce You in looking for other potential causes to
explain the observation. t
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|x3
Θ m bel

{θ1} .00 .00

{θ2} .00 .00

{θω} .12 .12

{θ1, θ2} .00 .00

{θ1, θω} .48 .50

{θ2, θω} .08 .20

{θ1, θ2, θω} .32 .80

Table 5: The basic belief masses (m) and belief function bel induced on Θ by the
observation of symptom x3.

6. The justification for the use of belief functions.

We present several sets of requirements that justify the use of belief functions for
representing quantified beliefs.

Shafer (1976) assumes that any measure of belief Cr on an algebra ℜ  should satisfy the

following inequalities:

∀ n≥1, A1,A2,...An ∈ℜ,

   bel(A1∪ A2∪ ...An)≥∑
i

bel(Ai) - ∑
i>j

bel(Ai∩Aj)....-(-1)nbel(A1∩A2∩...An).

These inequalities are hardly convincing as the inequalities for n > 2 do not have any
obvious natural interpretation.

In the TBM (Smets and Kennes, 1994), we start from the concept of parts of beliefs that
support a proposition without supporting more specific propositions (Smets and Kennes,
1994). These parts of belief are in fact the values of the bbm related to the belief function.

Both Shafer and the TBM approaches are strictly equivalent. We introduced the second in
response to the criticism that the inequalities of Shafer were too artificial and difficult to
accept as natural requirements for a measure of belief, hoping ours would be more
‘palatable’.

Wong et al. (1990) have presented an axiomatic justification based on the representation
of a belief-order relation ≥ (>) where B≥C (B>C) means ‘B is not less believed than C’
(‘B is more believed than C’). They replace the disjoint union requirement assumed in
order to derive probability theory (Koopman 1940, Fine, 1973):

A∩(B∪ C)=Ø ⇒  (B≥C ⇔ A∪ B≥A∪ C)

by a less restrictive requirement:
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C”B, A∩B=Ø ⇒  (B>C ⇒  A∪ B≥A∪ C).

Under this last requirement, the ≥ belief-ordering can always be represented by a belief
function. Unfortunately, other functions like the convex capacities can also represent the
≥ ordering.

In Smets (1993c, 1995), we develop a full axiomatization based on rationality
requirements. We assume that quantified beliefs must be represented by a pointwise
measure, bounded and monotone for inclusion, a function that we call a credibility
function. We show that the set of credibility functions defined on the algebra ℜ  is

convex. We derive how these credibility functions behave when the granularity of the
algebra on which they are defined is modified, either by splitting the atoms or by
regrouping them. The impact of a conditioning event that states that the actual world does
not belong to some subset of Ω is derived. Whatever credibility functions are, we show
that the impacts of the refinement, coarsening or conditioning processes are those
described in the TBM where the credibility functions are belief functions. By introducing
the concept of deconditionalization, i.e., eliminating the impact of an abusive
conditioning, we prove that only belief functions are fitted for representing quantified
beliefs. We have thus produce a set of rationality assumptions that justify the use of belief
functions to represent quantified beliefs, and we show also that the set of probability
functions is not rich enough to achieve that task.

7. The meaning of ‘belief’.

We present here several comments to show where the TBM departs from the classical
probabilistic approach.

Consider the medical diagnostic process. Frequentists assume that the patient has
been selected at random from the population of patients presenting the observed
symptoms, an assumption usually void of any reality: the patient’s presence does not
result from any random selection. Bayesians claim that probabilities appear because they
describe the clinician a priori opinion about the disease his patient could be suffering
from. From that a priori probability, other probabilities result after appropriate
conditioning. This is the solution we would obtain in the TBM if such a priori probability
was adequately representing the clinician’s a priori opinions. But this is exactly the point
we are not accepting. We claim that a priori opinions are usually not adequately
represented by probability functions, arguing belief functions are more adequate, even
though the idea of ‘family of probability functions’ might be another alternative (Walley,
1991, Voorbraak, 1993). The fact that the patient comes from a population where there
are 999 cases with disease A and one without does not mean this proportion is relevant to
the clinician’s a priori belief about the fact his patient presents disease A. It would if the
clinician knew the patient had indeed been selected at random in such a population. But
we are studying the case where such a selection has not been used (or at least is not
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known by us to have been used). The belief functions we develop are quantifying the
beliefs obtained in such general cases.

The measure of belief we study is analogous to the one encountered in judiciary context
when culpability has to be assessed. Consider the rodeo paradox where out of 1000
persons who attend it, only one paid the entrance fee, the others having forced the gate.
Police does not know who paid. Police arrests one person who attended the rodeo for not
paying. I am the judge to whom the policeman brings the arrested person who claims - of
course - he is the one who paid. If I had to bet on his culpability, I surely would bet with
high probability on it, but this does not mean I believe that he is a culprit. I would bet he
did not pay (because almost nobody paid) but I have no reason whatsoever to believe that
this person did pay or not (because no evidence is brought forward that would justify
such a belief). This difference between betting and belief parallels the difference we
introduce between the pignistic and the credal levels. The quantification we focus at
represents the strength of ‘good reasons’ in the expression ‘I have good reasons to
believe’. In the TBM, we accordingly define bel(A) as the amount of ‘justified specific
support’ given to A (Smets and Kennes, 1994).

The belief we study is not unsimilar to the concept of provability, and it has even
been suggested that the degree of belief that a proposition is true represents the
probability of proving its truth (Pearl, 1988), except the revision processes are more
subtle than the one considered here (Smets, 1991). Indeed the underlying probability
measure introduces extra constraints that must be handled appropriately.

In the hints model (Kohlas and Monney, 1995), the authors defends a similar
understanding for the degree of support. Their approach is close to the TBM except that
they still keep some links with the classical probability theory.

8. Conclusions.

We conclude this paper by pointing to potential applications of the transferable belief
model.

The transferable belief model is a general model for quantified beliefs. The kind of
application for which the transferable belief model is especially well suited covers
diagnostic applications and data fusion problems. Indeed, there is no need to provide a
probability to every atom of ℜ  as in probability theory. Only the known information is

fed into the model. No abusive probabilization is required. The transferable belief model
is well adapted to represent state of partial or total ignorance that probability theory can
hardly represent. There is no real counter part of the vacuous belief function in
probability theory.
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In Xu et al. (1993), we study a case of radioactivity leakage where there are several
potential leaking sites and several locations where radioactivity tests can be performed.
The input data included the belief that such and such test will be positive given that there
is a leakage at this or that site. We even introduce an extra site whose existence and
location are not even known (a secret site). Of course, for each test, the belief about the
answers of a test given the leakage took place at the secret site is represented by a
vacuous belief function. We also input the cost of performing each test and the test of
deciding that the leakage took place at a given site given it really occurs at another site, for
every pair of sites. We can then compute the belief about the location of the leakage and
decide to clean such or such site. We would also establish the optimal strategy by
assessing which is the best test to perform first. Then which test to perform next given
the answer observed after the first test has been performed, etc.... All these computations
simulate exactly what is commonly done in probability theory but they were based on the
use of belief functions and of the pignistic transformation. They are based on the really
available information and do not require the assessment of all these probabilities required
by the classical  probability models, probabilities that are often purely artificial. As an
example of such artificial probabilities, in a well known medical diagnosis probabilistic
program, the user is required to give a number to the probability that the patients suffers
from “none of the considered symptoms” given he belongs to “none of the considered
disease classes”. Does any value for such a probability really make sense?

Data fusion and expert opinions pooling is also an excellent domain of application thanks
to the rule of combination and the concept of discounting (Smets, 1992d). Applications
for data bases are presented in Smets and Kruse (1993).

Application for radar or sonar detection and recognition of mobile vehicles and for
business investment decisions have been described. Computer software has been
developed for this propagation of belief into belief networks and for optimal decision
making (Xu, 1992, Xu et al., 1993). In all cases, the advantage of the transferable belief
model is that it requires to feed into the system only what is really known. In the worst
case, the computational complexity of the transferable belief model is higher than the one
encountered with program based on probability theory. But in practice the complexity is
the same or even smaller thanks to the fact that the input information in the transferable
belief model is often much simpler. With the transferable belief model, the complexity is
proportional to the information really available. With the probabilistic models, the
complexity is proportional to the size of the frame, whatever information is really
available. The last is often smaller than the former, in which case the TBM beats the
probabilistic approach for what concerns the computational complexity.

In conclusion, the transferable belief model is a model to represent quantified beliefs. We
hope this model might be useful for the understanding of the human thinking process and
could be used as a normative model. We do not claim that this is the way humans do or
should behave. Our approach is normative. It is neither descriptive nor prescriptive. It is
but an idealized representation whose value can only be assessed by a critical examination
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of its axiomatic foundation. That it might be implemented in some ‘thinking’ robot able to
cope with uncertainty and belief is not unthinkable.
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