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Abstract: We describe the Transferable Belief Model, a model for representing
quantified beliefs based on belief functions. Beliefs can be held at two levels: 1) a credal
level where beliefs are entertained and quantified by belief functions, 2) a pignistic level
where beliefs can be used to make decisions and are quantified by probability functions.
The relation between the belief function and the probability function when decisions must
be made is derived and justified. Four paradigms are analysed in order to compare
Bayesian, upper and lower probability and the transferable belief approaches.
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1. Introduction.

1) The aim of this paper is to present the transferable belief model (TBM) i.e. our
interpretation of the Dempster-Shafer model. The TBM is a model for representing the
quantified beliefs held by an agent at a given time on a given frame of discernment. It
concerns the same concepts as considered by the Bayesian model, except it does not rely
on probabilistic quantification, but on a more general system based on belief functions.

Since Shafer introduced his model based on belief functions in his book (Shafer 1976),
many interpretations of it have been proposed. Three main interpretations have been
developed: the random set, the generalized Bayesian and the upper and lower probability
interpretations. However,  great confusion and even blatant errors pervade the literature
about the meaning and applicability of these models (Pearl (1990), Smets (1992c)). We
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3085 (DRUMS), by the CEC-ESPRIT II Project 2256 (ARCHON) and the Belgian
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personally develop a model for point-wise quantified beliefs - the Transferable Belief
Model - and show how belief functions can be used for such a quantification. Bayesian
probability is the most classical model for quantified beliefs. So our presentation focuses
on comparing the TBM with its real contender: the Bayesian model. In particular we will
discuss the problem of decision making within the TBM because it is necessary to
explain how the model is used in real situations where decisions must be made, and
because it is central to any Bayesian presentation. We even argue that Dutch Books - a
betting strategy that would lead to a sure loss - cannot be raised against TBM users. In
fact when decisions must be made, we require that beliefs be quantified by probability
functions in order to avoid Dutch Books .

Several paradigms are analysed in order to provide some insight into the nature of the
TBM. These paradigms are used to contrast the TBM solution with the Bayesian, upper
and lower probabilities, likelihood and fiducial solutions. The TBM is compared with
random sets in Smets (1992b), with possibility functions in Smets (1990b), and with
upper and lower probabilities in Smets (1987) and Halpern and Fagin (1992). The major
differences between these models can be found in the way updating/conditioning must be
performed. Axiomatic justifications are not given here but are developed in Smets
(1991b) and Wong et al. (1990).

We also argue in this paper that the TBM should not be considered as just a generalized
probability model: indeed there are no necessary links between the TBM and any
underlying probability model. Hence we dissociate ourselves from Dempster's model
where some underlying probability is essential. Any decisions as to the nature of Shafer's
model are left to Shafer himself (see Shafer 1990), but in our opinion, the TBM is very
close to what Shafer described in his book (Shafer 1976). In later work, Shafer creates
confusion by speaking about random sets and upper and lower probabilities
interpretations. Recently Shafer (1990) clarified his position, rejected these
interpretations and defended essentially the Dempster interpretation based on the random
codes (a one-to-many mapping with an underlying probability distribution). We depart
from this interpretation in that we do not require any underlying probability distribution,
even though they may exist.

Not all interpretations of Dempster-Shafer theory are analysed here (see Smets 1990d).
We do not discuss the interpretation of a belief as being the probability of a modal
proposition (Ruspini 1986) or the probability of provability (Pearl 1988).

2) The transferable belief model  is based on:
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- a two-level model: there is a credal level where beliefs are entertained and a pignistic
level where beliefs are used to make decisions (from pignus = a bet in Latin, Smith
1961).

- at the credal level beliefs are quantified by belief functions.
- the credal level precedes the pignistic level in that at any time, beliefs are entertained

(and updated) at the credal level. The pignistic level appears only when a decision
needs to be made.

- when a decision must be made, beliefs at the credal level induce a probability measure
at the pignistic level, i.e. there is a pignistic transformation from belief functions to
probability functions.

Bayesians do not consider an autonomous credal level. The introduction of a two-level
model would be useless if decisions were the same as those derived within the Bayesian
model. We will show in the “Mr. Jones” paradigm (section 4) that thit is not the case. The
introduction of a credal level therefore is not merely an academic subtlety.

The TBM essentially fits with the model developed in Shafer's book (1976) except for
some differences and explanations such as:
1) the complete dissociation from any necessary underlying probability model that
precedes the construction of the belief functions at the credal level, as encountered in
Dempster’s approach (we do not mean the pignistic probabilities used at the pignistic
level and that are derived from the belief functions).
2) the fundamental concept of transferable 'parts of belief'.
3) the two-level model and the pignistic transformation.
4) the “open-world” and “closed-world” assumptions and the introduction of the
unnormalized belief functions (Smets 1988).
5) the precedence of the conditioning process over the combination process.
6) the justification of Dempster's rule of combination as the unique compositional rule to
combine two belief functions (Smets 1990a, Klawonn and Schwecke 1992, Klawonn and
Smets 1992, Nguyen and Smets 1991).

3) the TBM is unrelated to a probability model. The TBM is intended to
model subjective, personal beliefs, i.e. what the Bayesians claim to be their domain of
application. The major point of the TBM is its complete dissociation from any model
based on probability functions. This contrasts with what has been done in some of
Shafer's more recent publications that favor the random set interpretation (Nguyen 1978,
Shafer 1987), and most publications on Dempster-Shafer's model (Kyburg, 1987b, Black
1987). The TBM is neither a random sets model (Smets 1992b) nor a generalization of
the Bayesian model nor of some upper and lower probability (ULP) models (Halpern and
Fagin 1992). It is another model whose aim is to quantify someone's degree of belief. The
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model is normative, supposedly simulating the behavior of a reasonable and consistent
agent, the "stat rat" of Barnard (see discussion in Smith 1961, pg 26).

To support our case that the TBM is different from the Bayesian model, we present an
example, the "Mr. Jones" case, that leads to different results according to which model is
used to analyse it. Such an example might provide a tool for discriminating between the
two models: according to which result fits your requirements, you can select the model.

Other examples have already been provided to show the difference between the Bayesian
model and the TBM. But their power of persuasion as a discriminating tool is weak as the
TBM answer can usually also be derived from a Bayesian analysis. The interest of the
“Mr. Jones” example is that the TBM solution can only be obtained by a Bayesian
analysis by introducing some unpalatable assumptions.

4) Summary of content. The TBM is presented in §2. We then present a theory for
decision making (§3). That decisions are based on probability functions (and
expected utilities) is not disputed. Whenever a decision has to be made by an agent,
he/she constructs a probability distribution derived from the belief function that describes
his/her credal state. Bear in mind that the existence of such a probability distribution
when decisions are made does not imply that this probability function quantifies our
belief at the credal level (i.e. outside of any decision context).

We show 1) the impact of a betting frame on bet, 2) how someone's betting behavior
could be used to assess a belief function, 3) how conditioning acts on the betting behavior
and 4) how Dutch Books are avoided.

We then proceed by analysing several paradigms in detail. We know from experience that
these paradigms are very useful in appreciating the particularity of the TBM, especially
when compared with other approaches. Each paradigm enables the difference to be
shown between the TBM and some of its contenders.

In §4 we present "Mr. Jones" example, a very pointed example that shows the difference
between the TBM approach and the Baeysian approach.

In §5, we present the “guards and posts” paradigm. It clarifies the nature of the
conditioning process used in the TBM.

In §6 and §7, we present two others paradigms to illustrate situations where the TBM
leads to results different from those of its contenders: the Bayesian model, the ULP
model, the likelihood model, the fiducial model. Some of these comparisons have also
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been attempted by Hunter (1987), Laskey (1987). Other comparisons are presented in
Smets (1990d).

In §8, we discuss the origin of the basic belief assignment used in our paradigms.

In §9, we show the difference between the credal level where someone's beliefs are
quantified by belief functions and the pignistic level where "pignistic" probabilities must
be constructed.  Revision of beliefs is performed at the credal level by Dempster's rule of
conditioning, not at the pignistic level by probability conditioning.

In §10, we conclude by answering some potential criticisms of the TBM.

2. The Transferable Belief Model.

2.1. The model.

1) The necessary background information on belief functions is summarized hereafter.  A
full description can be found in Shafer's book (1976). A somehow revised version
appears in Smets (1988). Further results on Bayes theorem and the disjunctive rule of
combination appear in Smets (1978, 1991c).

Let L be a finite propositional language, and Ω = {ω1, ω2, ...ωn} be the set of

worlds that correspond to the interpretations of L. Propositions identify subsets of Ω.
Let T be the tautology and ⊥ be the contradiction. For any proposition X, let “X‘”Ω be

the set of worlds identified by X. Let A be a subset of Ω, then fA is any proposition that
identifies A. So A=“fA‘, Ø=“⊥ ‘ and Ω=“T‘. By definition there is an actual world ϖ
and it is an element of Ω. In L, two propositions A and B are logically  equivalent,
denoted A≡B, iff “A‘=“B‘.

Let Π  be a partition of Ω. Given the elements of the partition Π , we build ℜ , the

Boolean algebra of the subsets of Ω generated by Π . We call Ω the frame of
discernment (the frame for short). The elements of the partition Π  are called the

atoms of ℜ . Given ℜ , the number of atoms in a set A∈ℜ  is the number of atoms of ℜ
that are included in A. We call the pair (Ω, ℜ ) a propositional space .

By abuse of language but for the sake of simplicity, we do not distinguish between the
subsets of Ω and the propositions that denote them. We use the same notation for both of
them. So the same symbol (like A, B, C..) is used for a subset of Ω and for any
proposition that denote that subset. The standard Boolean notation is used. Let A, B∈ℜ.



The TBM. 27/7/99 6

 A stands for the complement of A relative to Ω. A∪ B, A∩B denote the set-theoretic

union and intersection of the (subsets denoted by the) propositions A and B. A”B means
that all the elements of A (the subset denoted by A) are elements of B (the subset denoted
by B) (or equivalently, the proposition A implies the proposition B). Any algebra ℜ
defined on Ω contains two special propositions: T and ⊥ denoted by their corresponding

sets Ω and Ø.

All beliefs entertained by You1 at time t about which world is the actual world ϖ are

defined relative to a given evidential corpus (ECt
Y) i.e., the set of pieces of evidence

in Your mind at time t. Our approach is normative: You is an ideal rational agent and
Your evidential corpus is deductively closed. The credal state on a propositional space
(Ω, ℜ ) describes Your subjective, personal judgment that ϖ∈ A for every proposition

A∈ℜ . By a classical abuse of language, the actual world ϖ is called the ‘true’ world, and

we say that ‘A is true’ or ‘the truth is in A’ to mean that ϖ∈ A. Your credal state results

from ECt
Y that induces in You some partial beliefs on the propositions of ℜ (note that we

did not say Ω). These partial beliefs quantify the strength of Your belief that ϖ∈ A,

∀ A∈ℜ . It is an epistemic construct as it is relative to Your knowledge included in Your

evidential corpus ECt
Y.

Basic assumption.
The TBM postulates that the impact of a piece of evidence on an agent is translated by
an allocation of parts of an initial unitary amount of belief among the propositions of ℜ .

For A∈ℜ , m(A) is a part of the agent’s belief that supports A i.e. that the 'actual world ϖ
is in A, and that, due to lack of information, does not support any strict subproposition of
A.

The m(A) values, A∈ ℜ , are called the basic belief masses (bbm) and the m function

is called the basic belief assignment (bba)2.

Let m: ℜ→ [0,1] with
    ∑

A∈ℜ
  m(A) = 1 m(Ø) = 0

Every A∈ ℜ  such that m(A)>0 is called a focal proposition. The difference with

probability models is that masses can be given to any proposition of ℜ  instead of only to

the atoms of ℜ .

1'You' is the agent that entertains the beliefs considered in this presentation.
2 Shafer speaks about basic probability masses and assignment. To avoid confusion, we
have banned the word "probability" whenever possible.
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As an example, let us consider a somehow reliable witness in a murder case who testifies
to You that the killer is a male. Let α = .7 be the reliability You give to the testimony.

Suppose that a priori  You have an equal belief that the killer is a male or a female. A
classical probability analysis would compute the probability P(M) of M where M = ‘the
killer is a male’.   P(M) = .85 = .7 + .5 x.3 (the probability that the witness is reliable (.7)
plus the probability of M given the witness is not reliable (.5) weighted by the probability
that the witness is not reliable (.3)). The TBM analysis will give a belief .7 to M. The .7
can be viewed as the justified component of the probability given to M (called the belief
or the support) whereas the .15 can be viewed as the aleatory component of that
probability. The TBM deals only with the justified components. (Note: the Evidentiary
Value Model  (Ekelof 1982, Gardenfors et al. 1983) describes the same belief component,
but within a strict probability framework, and differs thus from the TBM once
conditioning is introduced.)

2) If some further evidence becomes available to You and implies that B is true, then the
mass m(A) initially allocated to A is transferred to A∩B. Hence the name TBM.

Continuing with the murder case, suppose there are only two potential male suspects: Phil
and Tom. Then You learn that Phil is not the killer. The testimony now supports that the
killer is Tom. The reliability .7 You gave to the testimony initially supported 'the killer is

Phil or Tom'. The new information about Phil implies that .7 now supports 'the killer is

Tom'.

The transfer of belief described in the TBM satisfies the so-called Dempster rule of
conditioning. Let m be a basic belief assignment on the propositional space (Ω, ℜ )

and suppose the conditioning evidence tells You that the truth is in B∈ℜ , the basic belief

assignment m are transformed into mB: ℜ→ [0,1] with:

mB(A) = c ∑
X” B

   m(A∪ X) for A”B   (2.1)

mB(A) =   0 for A /”B

and mB(Ø) = 0

with c = 
1

1 - ∑
X” B

   m(X)

In this presentation we have asumed that one and only one element of Ω is true (closed-
world assumption). In Smets (1988) we generalized the model and accepted that none of
the elements could be true (open-world assumption). In that last case, positive basic belief
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masses could be given to Ø and the normalization coefficient c in (2.1) is 1. The closed-
world assumption is accepted hereafter. The meaning of the basic belief mass given to Ø
is analysed in Smets (1992a)

3) Given (Ω, ℜ ), the degree of belief of A, bel(A), quantifies the total amount of

justified specific support given to A. It is obtained by summing all the basic belief masses
given to proposition X∈ℜ  with X”A (and X≠Ø)

bel(A) = ∑
Ø≠X”A

  
   m(X)

We say justified because we include in bel(A) only the basic belief masses given to
subsets of A. For instance, consider two distinct atoms x and y of ℜ . The basic belief

mass m({x,y}) given to {x,y} could support x if further information indicates this.
However given the available information the basic belief mass can only be given to
{x,y}. (Note that under open-world assumption, m(Ø) might be positive. The basic belief
mass m(Ø) should not be included in bel(A) nor in pl(A), as it is given to the subset Ø
that supports not only A but also A. This is the origin of the specific support.)

The function bel:ℜ→ [0,1] is called a belief function. The triple (Ω, ℜ ,bel) is called a

credibility space. Belief functions satisfy the following inequalities (Shafer 1976):
∀ n≥1, A1,A2,...An ∈ℜ,

   bel(A1∪ A2∪ ...An)≥∑
i

bel(Ai) - ∑
i>j

bel(Ai∩Aj)....-(-1)nbel(A1∩A2∩...An) (2.2)

The degree of plausibility of A, pl(A), quantifies the maximum amount of potential
specific support that could be given to A∈ℜ . It is obtained by adding all those basic

belief masses given to propositions X compatible with A, i.e. such that X∩Α≠Ø:

pl(A) = ∑
X∩A≠Ø 

  m(X)  =  bel(Ω) - bel( A)

We say potential because the basic belief masses included in pl(A) could be transferred to
non-empty subsets of A if some new information could justify such a transfer. It would
be the case if we learn that A is impossible.

The function pl is called a plausibility function. It is in one-to-one corespondence with
belief functions. It is just another way of presenting the same information and could be
forgotten, except inasmuch as it provides a convenient alternate representation of our
beliefs.
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Dempster's rule of conditioning expressed with bel and pl is:

bel(A|B) =  
bel(A∪  B) - bel( B)

1-bel( B)
pl(A|B) = 

pl(A∩B)
pl(B)

4) Beside the logical equivalence already mentioned, there is another concept of

equivalence related to Your evidential corpus ECt
Y. Let “ECt

Y
‘ represents the set of

worlds in Ω where all propositions deduced on Ω from ECt
Y
 are true. All the worlds in Ω

that are not in “ECt
Y
‘ are accepted as 'impossible' by You at time t. Two propositions A

and B are said to be doxastically equivalent for You at time t, denoted A≅ B, iff

“ECt
Y
‘∩“A‘ = “ECt

Y
‘∩“B‘. Logical equivalence implies doxastic equivalence. This is

important as it implies that A and B should get the same support, the same degree of
belief. Hence the Consistency Axiom that expresses the equi-credibility of doxastically
equivalent propositions.

Consistency axiom: Let us consider two credibility spaces (Ω, ℜ i, beli), i=1,2 that

represent Your beliefs on two algebras ℜ 1 and ℜ 2 as induced by Your ECt
Y. Let A1∈ℜ 1,

A2∈ℜ 2. If A1≅ A2, then bel1(A1) = bel2(A2).

This consistency axiom means that doxastically equivalent propositions share the same
degree of belief, which is required since they share the same truth value. It also means
that the belief given to a proposition does not depend on the structure of the algebra to
which the proposition belongs. This consistency axiom is usually postulated for
probability distributions, when they quantify degrees of belief (Kyburg, 1987a). Here it is
postulated only for those functions that quantify beliefs at the credal level.

5) Total ignorance is represented by a vacuous belief function, i.e. a belief function
such that m(Ω) = 1, hence bel(A) = 0 ∀ A∈ℜ , A≠Ω, and bel(Ω) = 1.The origin of this

particular quantification for representing a state of total ignorance can be justified.
Suppose that there are three propositions labeled A, B and C, and You are in a state of
total ignorance about which is true. You only know that one and only one of them is true
but even their content is unknown to You. You only know their number and their label.
Then You have no reason to believe any one more than any other, hence, Your beliefs
about their truth are equal: bel(A) = bel(B) = bel(C) = α for some α∈[0,1] . Furthermore,

You have no reason to put more or less belief in A∪ B than in C: bel(A∪ B) = bel(C) = α
(and similarly bel(A∪ C) = bel(B∪ C) = α). The vacuous belief function is the only belief

function that satisfies equalities like: bel(A∪ B) = bel(A) = bel(B) = α . Indeed the

inequalities (2.2) are such that bel(A∪ B) ≥ bel(A) + bel(B) - bel(A∩B). As A∩B=Ø,

bel(A∩B) = 0. The inequality becomes α ≥ 2α  where α∈ [0,1], hence α  = 0.
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6) The TBM also includes a description of Dempster's rule of combination - a
rule for the conjunctive combination of two belief functions, that somehow generalizes
Dempster's rule of conditioning. This rule is not used in this presentation. An axiomatic
justification of Dempster's rule of combination within the TBM is given in Smets
(1990a), Klawonn and Schwecke (1992), Hajek (1992), Klawonn and Smets (1992).
There also exists a disjunctive rule of combination of two belief functions described in
Smets (1991c).

7) It is important to note that the TBM includes two components: one static, the
basic belief assignment, and one dynamic, the transfer process. Many authors on
Dempster-Shafer model consider only the basic belief assignment and discover that the
basic belief masses are probabilities on the power set of Ω. But usually they do not study
the dynamic component, i.e. how beliefs are updated. Their comparisons are therefore
incomplete, if not misleading.

2.2. Refinements and consistent beliefs.

1) Let us consider two propositional languages L1 and L2. It is always possible to build a
common underlying propositional language L such that each proposition of L1 (and of
L2) is a proposition of L. Let Ω1, Ω2 and Ω be the sets of worlds that correspond to the
interpretations of L1, L2 and L, respectively. Each world of Ω1 (and of Ω2) corresponds
to a set of worlds of Ω, and the images of the worlds of Ω1 (and of Ω2) constitute a
partition of Ω. Hence whenever we describe two propositional spaces, we can always use
a common underlying Ω without loss of generality. In fact the concept in a propositional
space (Ω, ℜ ) that is important for this presentation is the algebra ℜ , not the set of worlds

Ω. All beliefs are build on the algebras ℜ , not on Ω. The granularity of Ω is irrelevant

once Ω is fine enough to allow for a definition of the atoms of ℜ  (i.e., each atom of ℜ
contains at least one element of Ω). Therefore, the definition of two propositional spaces
(Ωi, ℜ i), i=1,2, with different sets Ωi is equivalent to a definition of two propositional

spaces (Ω, ℜ i), i=1,2 sharing the same Ω. From now on, we will not worry about the Ω,

they will be adapted such that each ℜ  is non-ambiguously defined.

2) Consider two propositional spaces (Ω, ℜ 1) and (Ω, ℜ ) (see figure 1, left half, where

the elements of Ω are four individuals characterized by name and age, the atoms of ℜ 1

are male and female and ℜ  is the power set of Ω.) Let Λ1 be a one-to-many mapping

from ℜ 1 to ℜ  such that each atom of ℜ 1 is mapped on a proposition of ℜ ,  the images of

the atoms of ℜ 1 constitute a partition of Ω, and this mapping is additive. Λ1 is called a

refining from ℜ 1 to ℜ . ℜ  is called a refinement of ℜ 1. ℜ 1 is called a coarsening
of ℜ  (see Shafer, 1976, p115).  For B∈ℜ , letΛ 1-1(B) = ∪ {A: A∈ℜ 1, Λ1(A)∩B≠Ø}.
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3) Let us consider two propositional spaces (Ω, ℜ i), i=1,2, and two refinings Λi to a

common refinement ℜ . By construction, if B∈ ℜ  is true (the actual world ϖ ∈ B),

thenΛ 1-1(B) andΛ 2-1(B) are true. The two credibility spaces (Ω, ℜ i, beli), i=1,2 are

said to be consistent if there exists a belief function bel on ℜ  such that beli( Λ i-1(B)) =

bel(B) for all B∈ℜ , i=1,2.

               

Mary, 20

John, 20

Harry, 50

Tom, 70

Male

Female

age:  0-29

age: 30-59

age: 60-99

ℜℜ 1

Λ1
ℜ 2

Λ2

Figure 1: Example of two propositional spaces (Ω, ℜ i), i = 1,2. Λi are the refinings

from ℜ i to ℜ . Each circle is an atom. The atoms of ℜ  are those of a refinement common

to ℜ 1 and ℜ 2.

2.3. Least committed belief on ℜ 2 induced by a belief on ℜ 1.

Let us suppose a credibility spaces (Ω, ℜ 1, bel1) induced by Your ECt
Y. Let Λ  be a

relation between ℜ 1 and a new algebra ℜ 2 defined on Ω such that Λ (ω)≠Ø for every

atom ω of ℜ 1 and Λ(A∪ B) = Λ(A)∪Λ (B), ∀ A, B∈ℜ 1. The question is to construct a

belief function bel2 on ℜ 2 consistent with bel1 and that conveys on ℜ 2 the same

“information” as bel1 does on ℜ 1. Let B be the familly of belief functions bel on ℜ 2

consistent with bel1. By the consistency axiom, for every pair (A, B) with A∈ℜ 1 and

B∈ℜ 2 such that A≅ B, one has bel1(A) = bel(B). But this requirement does not provide

the value of bel for those B∈ℜ 2 that are not doxastically equivalent to some A∈ℜ 1. The

Principle of Least Commitment (Hsia 1991, Smets 1991c) allows us to select the belief
function bel*∈ B such that bel*(B)≤bel(B), ∀ B∈ℜ 2, ∀ bel∈ B. This Principle says that
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You should not give more support to a proposition than justified by bel1. It implies that
bel2 (and its bba m2) is related to bel1 (and its bba m1) by:

∀ B ∈ℜ 2        m2(B) =            m1(A)
A∈ℜ 1:Λ(A)=B

∑

where the sum is 0 when no A satisfies the constraint. bel2 is called the vacuous extension
of bel1 on ℜ 2 (Shafer 1976).

3. The pignistic probability derived from a belief function.

3.1. The Generalized Insufficient Reason Principle.

Let us give a context. Given the evidence available to You, the TBM claims the existence
of a belief function that describes Your credal state on the frame of discernment.

Suppose a decision must be made based on this credal state.  As is well known,
decisions will be coherent if the underlying uncertainties can be described by a
probability distribution defined on 2Ω (DeGroot 1970). Therefore, one must find a rule
that allows for the construction of a probability distribution from a belief function in case
of forced decision. We only consider forced bets, forced decisions, as done classically by
Bayesians. (The unforced decisions considered in Smith (1961), Giles (1982), Jaffray
(1988) concern ULP contexts). The solution that will satisfy some behavior requirements
introduced in section 3.2 happens to be a generalization of the insufficient reason
principle. Another justification can be found in Smets (1990c). This solution already
appeared in Dubois and Prade (1982)  and Williams (1982) but with no justification.

Let us consider a credibility space (Ω, ℜ , bel) that describes Your beliefs on ℜ . Let

A∈ℜ  and A = A1∪ A2...∪ An where the Ai's are distinct atoms of ℜ . The mass m(A)

corresponds to that part of Your belief that is restricted to A and, due to lack of further
information, that cannot be allocated to a proper subset of A. In order to build the
probability distribution needed for decision making (hence qualified as pignistic) on ℜ ,

You distribute m(A) equally among the atoms of A.  Therefore, m(A)/n is given to each
Ai: i = 1,..n. This procedure corresponds to the insufficient reason principle: if

You must build a probability distribution on n elements, given a lack of information, give
a probability 1/n to each element. This procedure is repeated for each mass m. Let BetP
be the pignistic probability distribution so derived. For all atom x∈ℜ :

BetP(x) = ∑
x”A∈ℜ

       
m(A)
|A|  = ∑

A∈ℜ
    m(A)

|x∩A|
|A|
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where |A| is the number of atoms of ℜ  in A, and for B∈ℜ ,

BetP(B) = ∑
A∈ℜ

    m(A)
|B∩A|

|A|

Of course, BetP is a probability function, but we call it a pignistic probability function to
stress the fact that it is the probability function in a decision context. The principle
underlying this procedure is called the Generalized Insufficient Reason Principle as the
Insufficient Reason Principle has been used at the level of each focal proposition of the
belief function. As described up to here it is only an ad hoc principle, but it can be
justified by natural behavior requirements.

3.2. Derivation of the Generalized Insufficient Reason Principle.

1) Let us give a credibility space (Ω, ℜ , bel). Let m be the basic belief assignment

corresponding to bel. Let BetP(.,m) be the pignistic probability to be defined on ℜ . The

‘m’ parameter is added in order to enhance the basic belief assignment from which BetP
is derived.

Assumption A1: ∀ x atom of ℜ , BetP(x,m) depends only on m(X) for x”X∈ℜ .

Assumption A2:  BetP(x,m) is continuous (or bounded) for each m(X): x”X∈ℜ .

Assumption A3: Let G be a permutation defined on Ω. For X”Ω, let G(X) =
{G(x):x∈ X}. Let m' = G(m) be the basic belief assignment given to the propositions of Ω
after the permutation has been performed, that is for X∈ℜ , m'(G(X)) = m(X). Then for

any atom x of ℜ , BetP(x,m) = BetP(G(x),G(m)).

In other terms, BetP is invariant by permutations of Ω.

Assumption A4: Let (Ω, ℜ , bel) be the credibility space that describes Your beliefs

on ℜ , such that it is known by You that ϖ is not an element of the atom X∈ℜ  (so ∀ A∈ℜ,
A≅ A∪ X and bel(A) = bel(A∪ X) by the consistency axiom). Let us consider the

credibility space (Ω', ℜ ', bel') where Ω' = Ω-X, ℜ ' is the boolean algebra build from the

atoms of ℜ  not subset of X (so every element A of ℜ ' is also an element of ℜ , and

∀ A∈ℜ ', bel'(A) = bel(A) by the consistency axiom). Let BetP(x,m) and BetP'(x,m') be

the pignistic probabilities derived from bel (m) and bel' (m'), respectively. Then for every
atom x∈ℜ ',
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BetP(x,m) = BetP'(x,m')
and BetP(X,m) = 0.

The major assumption A1 says that BetP(x,m) may depend on bel(x) but not on the way
the basic belief masses used to compute bel(x) are distributed among themselves.

The three other assumptions are classical requirements. Assumption A2 could be
weakened as one only needs that, for each m(X): x∈ X, BetP(x,m) is continuous in a

point, or bounded, or measurable, or majorizable by a measurable function on a set of
positive measure (see Aczel 1966, pg 142).

Assumption A3 is the classical anonymity requirement: renaming the elements of
Ω does not modify the probabilities. That m'(G(X)) = m(X) results from the consistency
axiom as G(X)≅ X.

Assumption A4 only states that impossible atoms do not change the pignistic
probabilities.

Theorem 3.1: Let (Ω, ℜ ) be a propositional space and m be a basic belief assignment

on ℜ . Let |A| be the number of atoms of ℜ  in A. Under assumptions A1 to A4, for any

atom x of ℜ

BetP(x,m) =  ∑
x”A∈ℜ

    
m(A)
|A| (3.1)

Proof:  given in appendix 1.

The transformation defined by equation 3.1 is called the pignistic transformation.

Corollary:  If bel is a probability distribution P, then BetP is equal to P.

2) The same pignistic transformation was derived in Smets (1990c) by assuming different
requirements whose overall idea follows the next scenario. Let us consider two friends of
Yours, G and J. You know they will toss a fair coin and the winner will visit You tonight.
You want to buy the drink Your friend would like to receive tonight: coke, wine or beer.
You can only buy one drink. Let D = {coke, wine, beer}.

Let us suppose that belG(d), ∀ d”D, quantifies Your belief about the drink G will ask for,
should G come. Given belG, You build Your pignistic probability BetPG about the drink

G will ask by applying the (still to be deduced) pignistic transformation. You identically
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build the pignistic probability BetPJ based on belJ, Your belief about the drink J will ask,
should J come. The two pignistic probability distributions BetPG and BetPJ are in fact the

conditional probability distributions about the drink that will be drunk given G or J
comes. The pignistic probability distributions BetPGJ about the drink that Your visitor

will ask is then:
BetPGJ (d) = .5 BetPG(d) + .5 BetPJ(d) ∀ d”D

You will use these pignistic probabilities BetPGJ(d) to decide which drink to buy.

But You could as well reconsider the whole problem and compute first Your belief about
the drink Your visitor (V) would like to receive. In Smets (1990c), we show that such a
belief is the average of belG and belJ:

belV(d) = .5 belG(d) + .5 belJ(d) ∀ d”D
Given belV, You could then build the pignistic probability BetPV You should use to
decide which drink to buy. We proved that if BetPV and BetPGJ must be equal, then the

pignistic transformation must be the one given by the Generalized Insufficient Reason
Principle (relation 3.1).

3.3. Betting frames.

1) Let us consider a credibility space (Ω, ℜ 0, bel0). Before betting, one must define a

betting frame ℜ  on Ω, i.e. the set of atoms on which stakes will be allocated. The

granularity of this frame ℜ  is defined so that a stake could be given to each atom

independently of the stakes given to the other atoms. For instance, if the stakes given to
atoms A and B of ℜ 0 must necessarily be always equal, both A and B belong to the same

granule of ℜ . The betting frame ℜ  is organized so that the granules are the atoms of

ℜ , and ℜ is the result obtained by applying a sequence of coarsenings and/or refinments

on ℜ 0. Let us suppose the initial belief bel0 is defined on ℜ 0.Then the belief function bel

induced by bel0 on ℜ  is (see section 2.3):

∀ A∈ℜ , bel(A) = bel0(Λ−1(A))

where Λ  is the transformation from ℜ 0 to ℜ ,  and ∀ A∈ ℜ ,  Λ−1(A) = ∪ {X: X∈ℜ 0,

Λ(X)”A}. (See also Shafer, 1976, pg 146-7).

The pignistic probability BetP is then built from the belief function bel so derived on ℜ .

2) Betting under total ignorance. To show the power of the TBM approach, let us
consider one of those disturbing examples based on total ignorance.

Let us consider two propositions denoted A1 and A2. You know that one and only one

proposition is true. But You don’t know what the two propositions are. You just know



The TBM. 27/7/99 16

their number and their labels. You must bet on A1 versus A2. In the TBM, Your belief
about the truth of A1 and A2 is described by a vacuous belief function and the pignistic
probabilities on the betting frame {A1, A2} are

BetP(A1) = BetP(A2) = 1/2.

Let us now consider three propositions denoted B1, B2 and B3. You know that one and

only one proposition is true. But You don’t know what the three propositions are. You
just know their number and their labels. You must bet on B1 versus B2 versus B3. In the
TBM, Your belief about the truth of B1, B2 and B3 is described by a vacuous belief
function and the pignistic probabilities on the betting frame {B1, B2, B3} are

BetP'(B1) = BetP'(B2) = BetP'(B3) = 1/3.

Now You learn that A1 is logically (hence doxastically) equivalent to B1 and A2 is

logically (doxastically) equivalent to B2∪ B3. Within the TBM, this information will not

modify Your beliefs and Your pignistic probabilities. If You were a Bayesian, You must
adapt Your probabilities as they must give the same probabilities to A1 and B1. Which set

of probabilities are You going to update, and why, especially since it must be
remembered that You have no knowledge whatsoever about what the propositions are.

In a Bayesian approach, the problem raised by this type of example results from the
requirement that doxastically equivalent propositions should receive identical beliefs, and
therefore identical probabilities. Within the TBM, the only requirement is that
doxastically equivalent propositions should receive equal beliefs (it is satisfied as bel(A1)
= bel'(B1) = 0). Pignistic probabilities depend not only on these beliefs but also on the
structure of the betting frame, hence BetP(A1) ≠ BetP'(B1) is acceptable as the two

betting frames are different.

In a betting context, the set of alternatives and their degrees of refinement is relevant to
the way Your bets are organized. Of course, if BetP(A1) = 1/2 had been a well-justified
probability, then BetP'(B1) would also have had to be 1/2. But here BetP(A1) = 1/2 is

based only on the knowledge of the number of alternatives on which You can bet and
NOTHING ELSE. The difference between BetP(A1) and BetP'(B1) reflects the difference
between the two betting contexts. Of course, as required, both A1 and B1 share the same

degrees of belief.

3.4. Assessing degrees of belief.

Given a propositional space (Ω, ℜ 0), the assessment of bel0(A) ∀ A∈ℜ 0 can be obtained

from the betting behavior established on other algebras ℜ  defined on Ω (or any refinment

of Ω). Given such a betting frame ℜ  and its corresponding pignistic probability BetP on
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ℜ , one can determine the set of belief functions S on 2Ω
 that would lead to BetP through

(3.1) when the betting frame is ℜ . Construct various betting frames ℜ i on Ω and assess
the corresponding BetPi and Si. Note that the same evidence underlies all bets and that
the difference between the BetPi results only from the difference between the structure of

the betting frames ℜ i. Let us consider a refining Λ from ℜ  to ℜ '. Then, given the

consistency axiom, the relation between bel defined on ℜ  and bel' defined on ℜ ' = 2Ω' is

such that:
m'(Λ(A)) = m(A) ∀ A∈ℜ
m'(B) = 0 otherwise

where Λ(A) = {Λ(x) : x∈ A}.

bel' is the vacuous extension of bel from ℜ 0 to 2Ω' (Shafer, 1976, pg 146). The strategy

for defining various betting frames ℜ i allows for the construction of a family of Si whose
intersection contains only one element bel0. An empty intersection would imply

inconsistency between the pignistic probabilities. The number of potential betting frames
is large enough to guarantee that a unique solution be obtained.

Example: let us suppose that Ω0 ={a, b} where {a} = 'John will come tonight' and {b}

= 'John will not come tonight'. Let us consider the betting frame ℜ  with atoms {a} and

{b}, and Your pignistic probabilities on frame ℜ :

BetP({a}) = 4/9 BetP({b}) = 5/9.
Suppose ψ  and ψ  are two complementary but otherwise unknown propositions. {a}∩ψ
will occur if John comes tonight and proposition ψ  is true. {a}∩ ψ  will occur if John

comes tonight and proposition ψ  is true. Let us consider the betting frame ℜ ' with atoms

{a}∩ψ ,  {a}∩ ψ , {b}, and Your pignistic probabilities on it:

BetP'({a}∩ ψ ) = BetP'({a}∩ ψ ) = 7/27  BetP'({b}) = 13/27.

Then the unique solution for m0 is: m0({a}) = 2/9, m0({b}) = 3/9 and m0({a,b}) = 4/9.

It solves the two linear equations derived from (3.1).
4/9 = m0({a}) + m0({a,b})/2

7/27 = m0({a})/2 + m0({a,b})/3.

It might seem odd that {b} receives pignistic probabilities of 5/9 and 13/27 according to
the betting context. It reflects the fact that a large amount (4/9) of Your initial belief was
left unassigned (i.e. given to {a,b}). This example corresponds to a state in which You
have very weak support for {a} and for {b}. You are not totally ignorant as in section 3.3
(2), but still in a state of 'strong' ignorance. Part of BetP({b}) = 5/9 is due to justified
beliefs (3/9) but the remainder results from a completely unassigned part of belief that
You distribute equally among the alternatives of Your betting frame.
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Wilson (1991) showed that the set of pignistic probabilities that can be obtained from a
given belief function bel on a frame ℜ  is equal to the set of probability functions

‘compatible’ with bel and its associated plausibilty function pl, i.e. the set of probability
functions P on ℜ  such that bel(A) ≤ P(A) ≤ pl(A) ∀ A∈ℜ . So whatever the betting frame,

BetP(A) ≥ bel(A) ∀ A∈ℜ . Suppose You ignore what the appropriate betting frame is,

You nevertheless know that, ∀ A∈ℜ, the lowest bound of BetP(A) is bel(A). Therefore

bel(A) can then be understood as the lowest pignisitic probability one could give to A
when the betting frame is not fixed (Giles 1982).

3.5. Conditional betting behaviors.

Let us consider a credibility space (Ω, ℜ , bel) and let us suppose You learn that

proposition A∈ℜ  is true. Then bel must be conditioned on Α by Dempster's rule of

conditioning and BetP is built from this conditional belief function.

But  a distinction must be made between the following two cases:
- Suppose You know that A is true, then You condition bel on A before deriving BetP.
- Suppose You know that  the bet will be cancelled if A is false, then You derive BetP

from the unconditioned bel and condition BetP on Α using the classic probabilistic

conditioning.

The first case corresponds to 'factual' conditioning, the second to 'hypothetical'
conditioning. In the factual case, A is true for every bet that can be created. In the
hypothetical case, A can be true in some bets, and false in others. Pignistic probabilities
obtained in these two contexts usually reflect the difference between the contexts: (A
always true, A possibly false). This distinction was already considered in Ramsey (1931,
page 79) who noted that :

"the degree of belief in P given Q…roughly expresses the odds at which the subject
would now bet on P, the bet only to be valid if Q is true.…This is not the same as the
degree to which he would believe P, if he believed Q for certain: for knowledge of Q
might for psychological reasons profoundly alter his whole system of beliefs."

Ramsey distinguished between a bet on P∩Q versus P∩Q in a context {P∩Q, P∩Q,  Q}

and a bet on P versus P when Q is known to be true, hence in the context {P∩Q, P∩Q}.

In the TBM, Ramsey's allusion to "psychological reasons" applies at the credal level:
learning Q modifies our credal state, hence of course our pignistic probabilities.

Note: Recent work by Dubois and Prade (1991) has shown the difference between two
forms of conditioning: focusing and updating (that might better be called a revision). Our
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factual conditioning seems to corresponds to their updating. Focusing is not considered
here.

3.6. The avoidance of Dutch Books.

1) The pignistic probability we build on the betting frame from the underlying belief
guarantees that no static Dutch Book can be constructed. To construct a Dutch Book, one
implicitly defines the betting frame, i.e. the set of atoms of the Boolean algebra build
from all the options. The pignistic probabilities are built using this betting frame and no
Dutch Book can be constructed as far as the bets are established according to a
probability measure.

In order to show how Dutch Books are avoided, we reconsider the two bets under total
ignorance considered in 3.3.(2). One could think of building the following Dutch Book3.

" Before knowing A1≅ B1, You would accept to pay $.45 for winning $1 if A1 were true
(as BetP(A1)=.5). (For any bet, You would accept to pay up to $x with x = BetP(X) if

You won $1 when X is true). You would also accept to pay $.60 for winning $1 if
(B2∪ B3) were true (as BetP'(B2∪ B3)=.66). Given that You don't know what A1, A2, B1,

B2 and B3 say, the two bets are acceptable together. Now You learn that (B2∪ B3) is true
iff A2 is true. Therefore, by accepting the two bets together, You commit Yourself to pay

$(.45+.60) = $1.05 for the certainty of winning $1. Hence a Dutch Book has been build
against You, as You will surely loose $.05."

The argument is wrong because it does not take into due consideration the problem of the
betting frame. Once A1≅ B1 is known, You will not accept both bets simultaneously.

Before accepting a bet, You must always build the betting frame i.e. You must establish
the granularity i.e. the list of elements on which stakes can freely be allocated.

In the present case, once You know A1≅ B1, You must decide if stakes on B2 and B3 will

always be the same or might vary. If they must always be the same, then You use the
betting frame {A1, A2} and reject the second bet. If they might be different, then You use
the betting frame {B1, B2, B3} and reject the first bet. Dutch Books are thus avoided.

2) The existence of two types of conditioning does not permit the construction of a
dynamic Dutch Book. If bets are based on 'hypothetical' facts, conditioning must then be
performed by applying classical probability conditioning. If bets are based on 'factual'
facts, then every bets must be organized accordingly. Some atoms are definitively

3 This example was suggested by P. Garbolino in Clarke et al. (1991).
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eliminated as they are impossible, conditioning is performed at the level of the belief
function by applying Dempster's rule of conditioning and BetP is derived from the
conditional belief function. Dutch Books can still be avoided as one can not build a set of
bets where the 'factual' fact is treated as unknown in some cases, and accepted in others.
A 'factual' fact is either known or unknown, but once it is known, it is known for every
bets. The difference between 'hypothetical' facts and 'factual' facts is to be found in the
fact that 'factual' facts are true for every bets, whereas hypothetical facts can be denied in
some bets.

4. The murder of Mr. Jones.

4.1. The problem.

Big Boss has decided that Mr. Jones must be murdered by one of the three people present
in his waiting room and whose names are Peter, Paul and Mary.  Big Boss has decided
that the killer on duty will be selected by a throw of a dice: if it is an even number, the
killer will be female, if it is an odd number, the killer will be male. You, the judge, know
that Mr. Jones has been murdered, who was in the waiting room and know about the dice
throwing, but You do not know what the outcome was and who was selected. You are
also ignorant as to how Big Boss would have decided between Peter and Paul in the case
of an odd number being observed. Given the available information, Your odds for betting
on the sex of the killer would be 1 to 1 for male versus female.

You then learn that should Peter not be selected by Big Boss, he would necessarily have
gone to the police station at the time of the killing in order to have a perfect alibi. Peter
indeed went to the police station, so he is not the killer. The question is how You would
bet now on male versus female: should Your odds be 1 to 1 (as in the TBM) or 1 to 2 (as
in the Bayesian model)

Note that the alibi evidence makes 'Peter is not the killer' and 'Peter has a perfect alibi'
equivalent. The more classical evidence 'Peter has a perfect alibi' would only imply
P('Peter is not the killer' | 'Peter has a perfect alibi') = 1. But P('Peter has a perfect alibi' |
'Peter is not the killer') would stay undefined and would then give rise to further
discussion, which for our purpose would be useless. In this presentation, the latter
probability is also 1.

4.2. The TBM approach
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Let k be the killer. The waiting room evidence E0 and its resulting basic belief
assignment m0 are:

E0: k ∈ Ω = {Peter, Paul, Mary}, ℜ 0 = 2Ω

m0( {Peter, Paul, Mary} ) = 1.

The dice throwing pattern (evidence E1) induces the following basic belief assignment :

E1 :  dice experiment, ℜ 1 = {Male, Female}

m1( Female ) = .5
m1( Male ) = .5

Conditioning m0 on E1 by Dempster's rule of conditioning induces the basic belief
assignment m01:

E01: E0 and E1, ℜ 01 = 2Ω

m01( { Mary} ) =  .5

m01( { Peter, Paul} ) = .5

The .5 belief mass given to {Peter, Paul} corresponds to that part of belief that supports
"Peter or Paul", could possibly support each of them, but given the lack of further
information, cannot be divided more specifically between Peter and Paul.

Suppose You had to bet on the killer's sex. You would obviously bet on Male = { Peter,

Paul} versus Female = { Mary} at odds 1 to 1.

Peter's alibi pattern (evidence E2) induces the basic belief assignment m2.

E2 : A = "Peter went to the police station" = "Peter  has a perfect alibi"
E2 : k ∈ {Paul, Mary}, ℜ 2 = 2Ω

m2( {Paul, Mary} ) = 1

Conditioning m01 on E2 by Dempster's rule of conditioning leads to m012

E012 : E01 and E2, ℜ 012 = 2Ω

m012( {Mary} ) = m012( {Paul} ) = .5

The basic belief mass that was given to "Peter or Paul" is transferred to Paul. Your odds
for betting on Male versus Female would now still be 1 to 1, as before.
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4.3. The Bayesian solution.

Suppose You were a Bayesian. Therefore Your degrees of belief are quantified by
probability distributions and all pieces of evidence are taken in consideration by
adequately revising Your probability distributions through the Bayesian conditioning
processes.

Given E1 , You build a probability distribution P1 on Ω = {Peter, Paul, Mary}:

P1(k ∈ {Mary}) = .5      P1(k ∈ {Peter, Paul}) = .5.

You would also bet on male versus female the odds being 1 to 1.

When You learn E2, i.e. that Peter went to the police station, You condition P1 on {Paul,
Mary} in order to compute P12 where :

P12(k ∈ {Mary}) = P1(k ∈ {Mary} | k ∈ {Mary, Paul} ) =

 
P1(k ∈  {Mary})

P1(k ∈  {Mary}) + P1(k ∈  {Paul})
  =  

.5
.5 + x

with x = P1(k ∈ {Paul}).

But x is unknown.  No evidence whatsoever has been given about x.

Usually Bayesians encountering this problem will assume that x = .25 leading to a 1 to 2
odds. They obtain x = .25 by either applying the insufficient reason principle or a
symmetry argument or a minimum entropy argument on P1 to evaluate P1(k ∈ {Paul}). It

is of course the most natural assumption…but it is still an assumption extraneous to the
available evidence, and any other value in [0, .5] could as well be assumed. Any such
value would correspond to some a priori probability on Peter versus Paul, which is not
justified by any of the available pieces of evidence. All that is known to You is that there
were two men whose names were Peter and Paul… and NOTHING else.

Another justification for x = .25 could be obtained as follows. Suppose evidence E'2 : “if
Paul were not the killer, he would go to the police station to have a perfect alibi and Paul
went to the police station”.  E'2 is E2 where Peter and Paul interchange their role.  A bet
on male versus female should be the same after evidence E2 and after evidence E'2.  This
symmetry requirement is satisfied only with x =.25. Therefore Bayesians can hardly
avoid the 1 to 2 odds. In the TBM, the requirement that bets after E2 and after E'2 should
be the same is automatically satisfied: the .5 mass that was given by m01 to ‘Peter or
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Paul’ is transferred to ‘Paul’ under E2 and to ‘Peter’ under E'2 and the bets of male versus
female remains unchanged.

Our analysis of Mr. Jones's case could be rephrased by saying that Big Boss used a deck
of 52 cards instead of a dice. Mary is the killer if the card is red, male is the killer if the
card is black. Peter is not the killer. In how many ways could Big Boss have selected a
card so that Paul is the killer? The answer is not "any number between 0 and 26" as none
of the cards had Paul written on them. All black cards are identical, they all mean "male".
To introduce the idea that some black cards could point to Paul, the others to Peter, would
lead to an ULP analysis as we would be in a context in which there is a probability that
Paul is the killer (the proportion of cards marked Paul) but we do not know the value of
such a proportion. This is another problem, different from the one we have analysed. The
two problems should not be confused. The difference between such ULP approach and
the TBM is detailed in Dubois et al. (1991), Smets (1987, 1990d).

4.4. Conditional bets.

The example can be used to illustrate the difference between bets according to the context
in which the conditioning information E2 is taken into account (see §3.5). Before learning
evidence E2, if You want to bet on Paul versus Mary, the betting frame is {Paul, Mary,

Peter} and BetP(Paul) = BetP(Peter) = .25, BetP(Mary) = .5. To bet on Paul versus Mary
corresponds then to conditioning the pignistic probabilities BetP on ¬Peter, hence the
resulting pignistic probabilities BetP'(Paul)=1/3 and BetP'(Mary)=2/3 and the 1 to 2 odds.
After learning evidence E2, the betting framework is {Paul, Mary}, You condition bel01

on ¬Peter from which You derive bel012, the pignistic probabilities BetP(Paul) = .5 and
BetP(Mary) = .5 and the 1 to 1 odds.

The difference results from Your openness to the fact that Peter might be the killer before
learning E2 and Your knowledge that Peter is not the killer after learning E2.

5. The guards and posts paradigm.

1) We will present three paradigms: the guards and posts, the translators and the
unreliable sensor paradigms. The first paradigm helps to explain the conditioning process.
The second paradigm shows that the TBM solution is fundamentally different from the
ULP solution, but might lead to the mistaken idea that the TBM is somehow related to
likelihood theory. The third paradigm shows that the TBM leads to a solution different
from the Bayesian, the likelihood and the fiducial solutions.
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In each paradigm, the Boolean algebra ℜ  on which beliefs are defined is the power set of

Ω, the frame of discernment.

2) The paradigm4. Suppose a military officer must organise guard duty in his camp.
There are three possible posts (π1, π2 and π3) but only one is to be occupied. There are
three soldiers who could be appointed for guard duty (S1, S2 and S3). The officer will
randomly select one of the two soldiers by tossing a dice. Soldier S1 is selected if the dice
outcome is 1 or 2, soldier S2 is selected if the dice outcome is 3 or 4, and soldier S3 is

selected if the dice outcome is 5 or 6. Each soldier has a habit in that
- if selected, soldier S1 will always go to post π1 or π2,

- if selected, soldier S2 will always go to post π1 or π2 or π3.

- if selected, soldier S3 will always go to post π2,

Before the officer selects the soldier, each of them writes down on a piece of paper where
he will go if he is selected. As a result, there are six possible worlds wi, i=1,…6, where

each world corresponds to one particular selection of the posts (see left-hand column of
table 1). After the officer selects the guard, there are 18 worlds (referred as worlds wij if
soldier Sj is selected in world wi). You are about to attack the camp and You want to

know which post is occupied in order to avoid it. You know all the facts described up to
here, but You do not know which soldier was selected. What is Your belief about which
post is occupied. The frame of discernement Ω = {π1, π2, π3} and ℜ = 2Ω. Table 2

presents the degrees of belief for each sets of posts. Initially the basic belief assignment
on ℜ  is such that m({π1, π2}) = m({π1, π2, π3}) = m({π2}) = 1/3.

4 This paradigm was suggested by Yen-Teh Hsia.
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occupied post remaining worlds remaining worlds
post selected according to the  after case 1 after case 2

by each soldier  selected soldier conditioning conditioning
world S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

w1 π1 π1 π2 π1 π1 π2 π1 π1 π2 π1 π1

w2 π1 π2 π2 π1 π2 π2 π1

w3 π1 π3 π2 π1 π3 π2 π1 π3 π2 π1 π3

w4 π2 π1 π2 π2 π1 π2 π1

w5 π2 π2 π2 π2 π2 π2

w6 π2 π3 π2 π2 π3 π2 π3

worlds 1/3 1/3 1/3 18 worlds wij

wi probabilities of where soldier Sj

               being selected is selected in wi

Table 1: The set of six worlds that represent the six possible ways posts could be
selected by each soldier, and the post occupied in the eighteen possible worlds after the
soldier has been selected by the officer.

posts initial state case 1 case 2
m bel m bel m bel

π1 0 0 .33 .33 .5 .5

π2 .33 .33 .33 .33 0 0

π3 0 0 0 0 0 0

{π1, π2} .33 .66 0 .66 0 .5

{π1, π3} 0 0 .33 .66 .5 1.0

{π2, π3} 0 .33 0 .33 0 0

{π1, π2, π3} .33 1.0 0 1.0 0 1.0

Table 2: Degrees of belief and their related basic belief masses for the paradigm of
table 1. Before conditioning and after cases 1 and 2 conditionings.

3) Two cases of conditioning can then be considered.

Case 1: The soldiers and You learn that post π2 is so unpleasant to occupy that the

soldiers will not select it if they can go elsewhere (it applies thus to soldiers S1 and S2,
but not S3). Hence the worlds w2, w4, w5 and w6 become impossible (table 1). Table 2

presents Your beliefs about which post is occupied. The .33 basic belief masses given
initially to {π2}, {π1, π2} and {π1, π2, π3} are tranferred to {π2}, {π1} and {π1, π3},
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respectively. Suppose You decide to bet on which post is occupied. The betting frame is
{π1, π2, π3}. The pignistic probability is BetP(π1) = 3/6, BetP(π2) = 2/6 and BetP(π3) =

1/6.

Case 2: You are able to observe post π2 and it is empty. Hence, the selected soldier had

not selected π2 before being assigned guard duty. Thus the actual world is not one of the
worlds w2,2, w4,1, w5,1, w5,2 w6,1, w1,3,  w2,3,  w3,3,  w4,3,  w5,3,  and  w6,3. After

renormalization, basic belief masses .5 are given to {π1} and {π1, π3}. The betting frame

is {π1, π3}. The pignistic probability is BetP(π1) = 3/4 and BetP(π3) = 1/4.

4) A probability solution could be derived if You accept that the .33 masses given to each
soldier are somehow distributed among the six possible worlds. Suppose You accept an
equal distribution. So each of the eighteen worlds receives a probability of 1/18. Case 1
conditioning would leave a probability 1/6 to each of the six remaining worlds. The
derived probabilities on  {π1, π2, π3} are P(π1) = 3/6, P(π2) = 2/6 and P(π3) = 1/6, as in

the TBM analysis. In case 2 conditioning, the solutions differ: P(π1) = 5/7 and P(π3) =

2/7.

5) Even without postulating the equi-distribution of the .33 basic belief masses among the
eighteen worlds wij, probabilists might be tempted to defend the idea that the
probabilities .33 used for the soldier selection do not apply once the conditioning
information of case 2 is known. Indeed, they could defend that the fact that π2 is not
occupied somehow supports the hypothesis that soldier S2 was selected. Hence, an
updated probabilities P' should be such that P'(S2)>P'(S1). This is the basis of Levi's

criticisms (see section 8). The answer from the TBM point of view is that no probability
whatsoever is built on the wij space, only on the Sj space. So the fact that, in case 2, there
are fewer remaining possible worlds for S1 than for S2 (3 versus 4) is irrelevant. Case 2

really is the case in which the TBM acquires its originality when compared with the
probability approach.

6. The translator paradigm.

1) Shafer and Tversky (1985) have described a translator experiment to explain
Shafer's theory.  Let T = {ti: i = 1, 2 … n} be a set of translators and Ω = {cj: j=1, 2, 3}
be a set of messages that can be generated by a given device. For each message cj∈Ω , the

translator ti translates it into an element of some given space Θ. Let fi(cj) denotes the

element of Θ obtained by the translation performed by translator ti of the message cj.

Table 3 presents an example where Ω = {c1 ,c2 ,c3}, Θ = {θ,θ} and Τ = {t0,… t7}. The
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crosses in the right half indicate the elements of Ω that are translated into θ for each

translator. So translator t1 translates c1 into θ and c2 and c3 intoθ : f1(c1) = θ, f1(c2) =

f1(c3) =θ . Given θ∈Θ , let Ai”Ω be the set of messages that are translated as θ by

translator ti. In table 3, A1 = {c1}, A4 = {c1, c2}… Note that it was not said that Ai ∩Aj =

Ø for i ≠j. Suppose that a message is selected in Ω (we do not say randomly selected, see
section 8). Suppose that a translator is selected by a chance process among the set T
of translators and independently of the selected message. Let pi be the probability that
translator ti is selected. You observe only θ, the result of the transformation of the

unknown message, but You ignore which translator was selected. Furthermore You are
totally ignorant of how the message was selected.

What can be said about Your beliefs bel(c) for c”Ω given θ was observed?

      fi(cj)        given θ
Ω Ω

T P(ti) c1 c2 c3 c1 c2 c3


t0 p0 θ θ θ . . .
t1 p1 θ θ θ x . .

t2 p2 θ θ θ . x .

t3 p3 θ θ θ . . x

t4 p4 θ θ θ x x .

t5 p5 θ θ θ x . x

t6 p6 θ θ θ . x x

t7 p7 θ θ θ x x x

Table 3: Translator paradigm with 8 translators ti, 3 messages cj and 2 observations θ
andθ . The last part presents the values of fi(cj). The right part presents the elements of Ω
that are translated into θ for each translator.

2) With the TBM, the following basic belief masses are assumed on TxΩx Θ:
m( ∪ τ∈Θ   ∪ j∈ Jτ

  {(ti,τ,cj)} ) = pi where Jτ = {j: fi (cj) = τ} (5.1)

So p2 is allocated to  {(t2,θ , c1), (t2,θ, c2), (t2,θ , c3)}, p5 is allocated to {(t5,θ, c1),

(t5,θ , c2), (t5, θ, c3)}... The origin of such an assignment is to be found in section 8.

Learning that θ is true, the transfer of the basic belief masses m by Dempster's rule of

conditioning leads to the basic belief masses m* on TxΩx{θ}:
m*( ∪ j∈ Jθ

  {( ti, θ, cj)} ) = pi
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and m'( ∪ j∈ Jθ
  {( ti, θ, cj)} ) = 

pi
1-p0

 = p'i

i.e. the weight pi is given to those messages indicated by the crosses on the line ti in the
column 'given θ' (table 3, right part). The knowledge that there are only eight translators

(closed-world assumption) justifies the normalization of the basic belief assignment m*
into m' by dividing m* by 1-p0.

By marginalization of m' (i.e. bel') on Ω, one computes for c”Ω

belθ(c) = bel'( ∪  
i
     ∪

cj∈ c
 {(ti, θ, cj)} ) = ∑

i∈ I
  p'i

 with I = {i: f-1
i

(θ)”c } and where p'0 = 0. 

For example: mθ({c1}) = p'1, mθ({c1, c2}) = p'4.

Table 4 presents the value of belθ(c) and plθ(c) for some c”Ω.

Ω belθ(c) plθ(c)
   

{c1} p'1 p'1+p'4+p'5+p'7
{c1,c2} p'1+p'2+p'4 p'1+p'2+p'4+p'5+p'6+p'7

{c1,c2,c3} p'1+p'2+p'3+p'4+p'5+p'6+p'7 p'1+p'2+p'3+p'4+p'5+p'6+p'7

Table 4: Translator paradigm: TBM analysis.

3) For a Bayesian analysis, one claims the existence of some P(cj): j = 1, 2, 3, but
their values are missing. One must compute:

     P(cj | θ) = 
P(θ | cj) P(cj)

P(θ)
 .

One has:

     P(θ | cj) =  ∑
i

 P(θ | ti, cj) P(ti | cj)

= ∑
i∈ I

  pi    where I = {i: fi (cj)=θ}

because P(θ | ti, cj) = 0 if fi (cj) =θ
1 if fi (cj) =  θ

and P(ti | cj) = pi

as the translators are selected independently of the message.
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The ULP for P(cj | θ) are computed by evaluating its extremes where the P(cj) are allowed

to vary on their domain. Let ∆ be the set of all vectors (x, y, z) where x, y, z∈ [0,1] and

x+y+z=1. The vectors (P(c1), P(c2), P(c3)) are the elements of ∆. The upper and lower

conditional probabilities for cj given θ are

P*(cj | θ) = sup∆ P(cj | θ) = sup∆ 
P(θ | cj) P(cj)

∑
ν

P(θ | cν) P(cν) 
  = 1

P*(cj | θ) = inf∆ P(cj | θ) = inf∆ 
P(θ | cj) P(cj)

∑
ν

P(θ | cν) P(cν) 
  = 0

This ULP solution provides no information and is different from the TBM solution.

4) The Dempster-Shafer analysis of the paradigm leads to the same solution as the
TBM. But the origin of this solution is connected to probability theory and open to
criticisms about the appropriateness of the use of Dempster's rule of conditioning.

In Dempster-Shafer theory, it is postulated that there is a mapping M from T to TxΩxΘ,
that there is a probability distribution on T and bel(ω) for ω”TxΩxΘ is defined as the

probability of M*-1(ω) = {ti : M(ti)”ω}:

bel(ω) = P(M*-1(ω))

The knowledge that θ is true induces the adaptation of M into Mθ = M∩(TxΩx{θ}) and

bel is updated into:
belθ(ω) = P(Mθ*-1(ω)) = P({ti : Mθ(ti)”ω})

In the present paradigm, one has a.o. M(t4) = {(t4, c1, θ), (t4, c2, θ), (t4, c3,θ )} and

P(M(t4 )) = p4 is correct. Once θ  is known, the mapping M becomes Mθ  =

M∩(TxΩx{θ}): a.o. Mθ(t4) = {(t4, c1, θ),(t4, c2, θ)}) and bel(Mθ(t4)) = p'4 where the

denominator is the normalization factor related to the closed-world assumption (given θ,

we know that t0 was not the translator).

The problem with such a model is: why do we use p'i and not P(ti|θ) as it should

according to probability theory (Levi 1983)?

One has P(ti|θ) ≈ P(θ|ti) pi = P({cj: fi(cj)=θ} |ti) pi

 e.g. P(t1|θ) ≈ P(c1) p1, P(t4|θ) ≈ P({c1, c2}) p4… It is impossible to get P(ti|θ) = P(ti) for

all i. So the Dempster-Shafer solution can not be obtained.
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The difficulty with the paradigm lies in the fact that the values of P(ti|θ) are unknown as

the P(c)'s are unknown. Note that if one could assess P(ti|θ), then P(c) could be deduced.

In that case all problems would disappear. Each analysis, be it the TBM, the Dempster-
Shafer or any upper and lower probabilities analysis, would lead to the Bayesian solution.
But we are considering the case where P(ti|θ) cannot be assessed as P(c) is completely

unknown. In the TBM, such a probability measure on TxΩxΘ and the concept of P(ti|θ)

are neither assumed nor even defined. Once θ is known, the TBM conditions the initial

belief on TxΩx{θ} by transferring the basic belief masses.

Levi's criticism of the Dempster-Shafer analysis is based on the assumption that this last
analysis represents a generalized Bayesian analysis, in which case the concept of a
probability on TxΩxΘ is claimed. Once all relations with probability theory are set aside,

such grounds for criticism disappear (see section 8(5)).

The difference between the TBM and the Dempster-Shafer solutions
resides in the fact the TBM is free from any underlying probability theory. The
probability information relative to the translators explained the origin of the basic belief
masses at the credal level. But apart from that, any concept of probability is useless. A
statement like

belθ(c) ≤ P(c|θ) ≤ plθ(c)

is meaningless as we never build any probability measure on the frame of discernment Ω
at the credal level, so the symbol P is undefined. (P(c|θ) should not be confused with
BetPθ(c) derived at the pignistic level.). Note that given any belief function, one can build

a set of compatible probability functions such that
bel(A) ≤ P(A) ≤ pl(A) ∀Α∈ℜ

This is just a mathematical property without any interpretation relevant to the model
(except for the comments at the end of section 3.4).

The TBM could be viewed as a 'purified' Dempster-Shafer model, i.e. purified from any
probabilistic connotation. Hence, it forestalls criticisms aimed at the strange conditioning
process encountered in the Dempster-Shafer solution which is at odds with plain
probability approaches.

5) It is interesting to note that
plθ(cj) = P(θ | cj) = l(cj | θ)

where l(cj | θ) is the likelihood of cj given θ.  There are some analogies between the TBM

and likelihood theory. On the singletons of Ω, the two solutions are equivalent here.
The analogy between the likelihood solution and the TBM solution is not always present
as will be seen in the unreliable sensor paradigm.
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7. The unreliable sensor paradigm.

1) The paradigm. Let us consider a sensor with which You must check the
temperature of a preparation: either the temperature is 'cold' (Cold) or 'hot' (Hot). Under
correct working conditions, the sensor answers are given by a lamp that is "blue" (B) if
the temperature is cold, and "red" (R) if the temperature is hot.  Unfortunately, the sensor
is not reliable as its thermometer is sometimes broken, in which case the sensor status can
be B or R. In such a context, the sensor answer (B or R) is unrelated to the real
temperature (Cold or Hot).

The only information known by You is what is indicated on the box containing the
sensor: "Warning: the thermometer included in this sensor can be broken.  The
probability that it is broken is 20%. When the thermometer is not broken,
the sensor is a perfectly reliable detector of the temperature situation. When the
thermometer is not broken: a blue light means the temperature is cold, a red light means
that the temperature is hot. When the thermometer is broken, the sensor answer is
unrelated to the temperature".

You use the sensor and the light is red. What is Your degree of belief bel(Hot|R) that the
temperature is hot given the red light is on?

Let Θ = {R, B}, Ω = {Cold, Hot}, T = {ThW, ThB} where ThW and ThB mean

'thermometer-sensor in working conditions' and 'thermometer-sensor broken'.

2) The TBM solution consists in assuming that the masses .8 and .2 are allocated on
ΘxΩxT such that (see figure 2)

m( {(R, Hot, ThW) , ( B, Cold, ThW)} ) = .8

m( {(R, Cold, ThB) , (R, Hot, ThB) , ( B, Cold, ThB) , ( B, Hot, ThB)} ) = .2

When You learn that the light is red (R), the masses are transferred such that
m'( {(R, Hot, ThW)} ) = .8
m'( {(R, Cold, ThB) , (R, Hot, ThB)} ) = .2

Marginalization on Ω provides:
belR(Hot) = .8 belR(Cold) = .0
plR(Hot) = 1. plR(Cold) = .2
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Should You have any a priori knowledge about the risk that the temperature is hot or
cold, the credal equivalent of P(Hot) and P(Cold), it should be combined with the present
results by Dempster's rule of combination.

3) The Bayesian solution assumes P(ThW) = .8,  P(ThB) = .2. One also has P(Hot|R,
ThW) = 1, P(Cold|B, ThW) = 1. Note that we do not have P(R|ThB) = 0, the light can be
red when the thermometer is broken. Furthermore, when the thermometer is broken, the
probability that the system is Hot is independent from the sensor answer, and the
thermometer is broken independently of the status of the system: P(Hot|R, ThB) =
P(Hot). Also when the thermometer is in working condition (ThW), the probability that
the light is red is the probability that the temperature is hot (Hot): P(R|ThW) = P(Hot).
Then:

P(Hot|R) = P(Hot|R, ThW) P(ThW|R) + P(Hot|R, ThB) P(ThB|R)

= 
1 . P(R|ThW) P(ThW)

P(R)  + 
P(Hot) P(R|ThB) P(ThB)

P(R)

= 
.8 P(Hot) + .2 P(Hot) P(R|ThB)

P(R|ThW) P(ThW) + P(R|ThB) P(ThB)

= 
P(Hot) ( .8 + .2 P(R|ThB) )

8 P(Hot) + .2 P(R|ThB)

The real problem encountered by the Bayesians is not so much in assessing P(Hot), which
could be known in practice but P(R|ThB), i.e. the probability that the light is red when the
thermometer is broken. It is hard to imagine a serious hypothesis for such an ill-defined
probability. There are so many ways for a thermometer to be broken that any particular
value seems hardly justified. Bayesians could go on by assuming such a value … but of
course the quality of their conclusions is strictly related to the quality of their
assumptions.



The TBM. 27/7/99 33

R

B
.8

R

B
.2

R

B

.8 R

B

.2

Before Conditioning

After Conditioning on R

Hot    ColdThW ThB Hot    Cold

Hot    ColdThW ThB Hot    Cold

Figure 2: The unreliable sensor paradigm, basic belief assignment and impact of
conditioning on R.

4) The likelihood solution l(Hot|R) = P(R|Hot) cannot be derived in this example as
we cannot assess P(R|Hot)

P(R|Hot) = P(R|ThW, Hot) P(ThW|Hot) + P(R|ThB, Hot) P(ThB|Hot)
= 1x.8 + .2 P(R|ThB)

and we are faced with the same problem as the Bayesians: what is P(R|ThB)?  In this
example plR(Hot) = 1: it is different from l(Hot|R) (except if you can defend P(R|ThB) =
1). Hence the TBM solution is not the likelihood solution.

5) The TBM solution is also different from the fiducial solution.  A fiducial analysis
might consist in assuming:

P(R|Hot) = P(B|Cold) = .8
P(B|Hot) = P(R|Cold) = .2

in which case, whatever P(Hot),
P( {(R, Hot) , ( B, Cold)} ) = .8

and P( {(B, Hot) ,  (R, Cold)} ) = .2

As we know that R is true, the .8 mass is transferred to (R, Hot) and the mass .2 to (R,
Cold).  Marginalization on Ω gives P(Hot|R) = .8 and P(Cold|R) = .2. The solution is
similar to the TBM as far as bel(Hot|R) is concerned, but not as far as bel(Cold|R) is
concerned. The TBM does not provide any support to Cold, whereas the fiducial model
gives it a .2 support, hence the difference between them.
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8. Origin of the basic belief masses.

1) In each paradigm, a certain probability is associated with a certain basic belief mass.
Such underlying probabilities are not necessary, as shown in the example of section 3.2
(2), but they simplify our presentation. Should they had been omitted, the origin of the
basic belief masses might have been felt as somehow misterious. We explain now the link
between the basic belief masses and the probabilities when they exist.

Let (Ω, ℜ ) be a propositional space. Let us suppose that Your evidential corpus ECt
Y

induces a belief on ℜ  such that there is a coarsening ℜ ' of ℜ  on which Your beliefs are

described by a probability distribution P'. To obtain Your degrees of belief bel' on ℜ ',

only the frame ℜ ' needs to be considered. One gets: ∀ A∈ℜ ', bel'(A) = P'(A), and

m'(x) = P'(x) for all atoms x of ℜ '

m'(A) = 0 for non atomic A of ℜ '.

The numerical equality between bel' and P' can be justified by generalizing Hacking’s
Frequency Principle (Hacking 1965) to belief functions. The original Principle is: when
the objective probability of an event A is p, then the subjective probability of A is p. We
just generalize it by requiring that the belief in A is p when the probability of A is p
(whatever the nature of the probability).

In our paradigms, the atoms of the coarsenings ℜ ' are:

-in the murder of Mr. Jones: {Mary} and {Peter, Paul}
-in the guards and posts paradigm: the three soldiers
-in the translator paradigm: the eight translators
-in the unreliable sensor: the states ThW and ThB.

Problems appear once ℜ  is considered. Probabilists claim that the probability P'(x) given

to atom x∈ℜ ' is the sum of the probabilities P(y) given to the atoms y of ℜ  that belong to

Λ(x), where Λ is the refining from ℜ ' to ℜ  corresponding to  the coarsening from ℜ to

ℜ ':
 P'(x) = ∑

y∈Λ (x)
  P(y)

Given ECt
Y that tells nothing about the value of P, You can only compute ULP for the

P(A)'s for A∈ℜ or create P by using some general principles (like the insufficient reason

principle or maximum entropy principle…). The major point about probability analyses is
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that the probabilists postulate the existence of a probability distribution P on ℜ , an item

of information in fact not included in ECt
Y.

The TBM considers only the information in ECt
Y, hence it does not postulate any

probability distribution P on ℜ . Nowhere in the paradigms are such functions P

on ℜ claimed. In practice to build bel on ℜ,  we only allocate the masses m'(x) to Λ(x)∈ℜ
m(Λ(x)) = m'(x)  for all atoms x∈ℜ '

= 0 otherwise

Such allocation is justified by the Principle of Least Commitment (Smets 1991c). This
principle translates the idea that You should not give more support to a proposition than
justified. The least committed belief function bel induced by bel' on ℜ  is the vacuous

extension of bel' on ℜ  (Shafer 1976 pg 146). Let B be the set of belief functions bel*

defined on ℜ  such that bel*(X) = bel'(X) ∀ X∈ℜ '. The vacuous extension bel of bel' is the

minimal element of B such that bel(A) ≤ bel*(A) ∀ A∈ℜ,  ∀ bel*∈ B.

2) We selected paradigms for which there exists a probability distribution on a coarsening
because at least the numerical values given initially to the basic belief masses can be
explained. The evaluation of the basic belief masses when there is no coarsening ℜ ' on

which a probability distribution can be defined is discussed in 3.4.

3) The major difference between the TBM and probabilistic approaches obviously lies in
the way we create the beliefs on ℜ  knowing the belief on ℜ '. The TBM is based on what

is available and nothing else, whereas the probability analysis requires the existence of a
probability distribution on ℜ . Consider the murder of Mr. Jones: in the case of a male

killer (odd number thrown) the TBM accepts that Peter is arbitrarily selected by Big
Boss whereas the probabilists claim that Peter is randomly  selected by Big Boss.

4) The non existence of a probability distribution on ℜ  resolves the problem raised by

Levi (1983). Let us consider the translator paradigm. Once θ is learnt, why don’t we

condition the pi = p(ti) on θ and thus use p(ti|θ) as should be the case in a bona fide

probability analysis? The concept of p(ti|θ) is valid iff one can describe a probability

distribution at least on the space TxΘ, which is not claimed in the TBM analysis. Hence,

Levi's criticism does not apply to our model, but it does apply to some interpretations of
the Dempster-Shafer model (those with an ULP connotation).

9. Handling evidence at the credal level.
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We shall now detail how evidence is handled in the TBM and Bayesian models.

The TBM is based on the following underlying model:

- credal states that represent the impact of the evidential corpus ECt
Y on a boolean

algebra ℜ  are described by belief functions on ℜ ,

- pieces of evidence are to be taken into consideration at the credal level,  conditioning
being obtained via Dempster's rule of conditioning, the rule that underlies the TBM.

- whenever a bet has to be established, the betting frame must be defined and the credal
state prevailing at that time t induces a pignistic probability distribution on the
elements of the bet.

This schema becomes in the case of the murder of Mr. Jones:

E1 E2

credal m0 -------------> m01 -------------> m012

state throwing the dice Peter's alibi
| |
| |
↓ ↓

pignistic P01 P012

probability

In the Bayesian model,  the same pattern reduces to:

E1 E2

probability P0 -------------> P1 -------------> P2

throwing the dice Peter's alibi

The difference between the credal and pignistic levels is reminiscent of the difference
between thought and action, between "inference" (how belief is affected by evidence) and
"action" (which of several possible courses of action seems best) (Smith 1961, pg 1).

Which model fits "reality"? Justifications of the Bayesian model are based on betting and
decision arguments through the introduction of some requirements that lead to additive
measures. But at the pignistic level, we also represent Your beliefs by a probability
distribution, therefore we satisfy those requirements. This does not mean that additivity
also pervades the credal level. No justifications are given by Bayesians for such
requirements except that they just do not distinguish between a credal and a pignistic
level. Their axioms always centre on forced decisions (or preferences) but not on belief
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itself. They relate to observable behaviors that reflect an underlying credal state, not to
the credal state itself.

To understand the difference between the two models, let us re-analyse in detail the
Bayesian solution for the case of Mr. Jones. Re-consider the formula: P(killer is

Mary|Peter's alibi) = 
1

1+x where x = P(killer is Paul|dice = odd).

The only way to arrive at a Bayesian solution which is identical to the TBM solution is by
postulating x = 1, i.e. that Big Boss will select Paul if an odd number is thrown. This case

does not fit in with the available evidence (those in ECt
Y). The case x = 1 fits in with the

case 'Peter was not  and could not have been the killer' whereas the case x < 1 fits with
the available information: 'Peter was not the killer but could have been'.

Intuitively, the real conceptual problem is to decide if, given Peter was not the killer, the
knowledge that Peter might have been the killer or not is relevant to the bet 'male versus
female'. Bayesians say it is, the TBM says it is not.

Mathematically,  the difference between the 2 solutions results from the necessity, in the
context of probability, to split the .5 probability given to the males by the throwing of
dice among the two males. Then later, the mass given to Peter cannot be given back to
Paul once the alibi for Peter becomes available. Instead, in the TBM, the mass is not split,
and is later transferred as a whole to Paul.

10. Conclusions.

1) An argument we encountered when comparing the respective merits of the Bayesian
model and the TBM runs as follow.

Let us consider the case of Mr. Jones.
Let M = "the male chosen is always Paul"

B = "the TBM is true"
P = "the Bayesian model is true"
C = the odds on male versus female are 1 to 1 once  Peter's alibi is available"

One has to be careful not to use the following deceptive reasoning:
B implies C
assumption M is necessary in order to get C
I dislike assumption M
therefore I dislike B.
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The second proposition is wrong. The correct reasoning is:
B implies C
If P then  assumption M is necessary in order to get C
I dislike assumption M
therefore If P then I dislike B.

which is not sufficient to conclude that "I dislike B".

2) For the case of Mr. Jones, the Bayesian approach leads to a bet on Male versus Female
with the odds at 1 to 2 whereas the belief functions approach leads to a bet  with the odds
at 1 to 1. Which of the two is adequate is a matter of personal opinion? We feel that 1 to 1
is adequate. Others might prefer 1 to 2.

The argument that the Bayesian approach is correct because it complies with the
probability theory is circular, hence useless.  Description of credal states can be done by
at least two normative models: the classical Bayesian and the TBM. Which of the two is
correct cannot be established. It can only be tested. As Smith (1961 pg 1) stated: "beliefs
are insubstantial mental processes and it is not easy to lay down generally acceptable
principles according to which our belief is 'better' than another".

The interest of the "Mr. Jones" example lies in the fact that there is a case where both
theories lead to different results. As a result, this particular example can be used as a test,
a discriminating tool to distinguish between the two models. That it would convince the
Bayesians is not sure but we hope here to have suggested some answers to Lindley's
challenge (1987).

3) In summary, we have presented the TBM through the analysis of some paradigms
and the comparison of the TBM solutions with the classical Bayesian solutions. The
TBM aims at quantifying our degree of belief that a given proposition is true (where
'belief' could be renamed 'support', 'assurance',  'commitment'...). We use belief as it is the
most natural word even though one could argue about the value of such a choice.

The principal assumption on which the TBM depends is the concept of 'parts of belief'
supporting propositions and that due to a lack of further information cannot support a
more specific proposition. We show how betting behaviors can be established by
constructing pignistic probabilities, and explained why Dutch Books cannot be
constructed to disprove the TBM. The semantics of our model are provided by its betting
behavior. It is essentially identical to the ‘exchangeable bets’ semamtics of the Bayesians.
The difference lies in the way bets are adapted when the betting frames are changed.  The
paradigms illustrate the model and allow us to enhance its originality in comparison to
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the classical probability models. The two-level structure of our belief (credal and
pignistic) is detailed. The missing element of our presentation, a clear axiomatic
justification of the TBM, is presented in a forthcoming paper (see also Wong 1990). The
present paper concentrates on the presentation of the model rather than its foundations.

4) Uncertainty is a polymorphous phenomenon (Smets 1991a). There is a different
mathematical model for each of its varieties.  No single model fits all cases.  The real
problems when quantifying uncertainty is to recognize its nature and to select the
appropriate model.  The Bayesian model is only one of them. The TBM is also only one
of them.  Each has its own field of applicability. Neither is always better than the other
(Saffiotti 1988). As Fisher once put it (1948, pg 193): '…La seule direction pratique qui
nous est ouverte, est de concevoir clairement le processus intellectuel exact d'une
méthode et ensuite de peser, considérer, critiquer et finalement décider si la méthode est
ou non acceptable, si j'ose dire, pour notre conscience scientifique…'5.

Appendix 1.

Proof of Theorem 3.1: Let (Ω, ℜ , bel) be a credibility space and m be the bba

associated to bel.  Let A denotes the set of atoms of ℜ . Given Assumption A1, there is a

f function such that, for x∈ A, BetP(x,m) = f({m(X): x”X}).

Suppose bel is such that there is an A∈ℜ  with m(A)>0 and a pair of atoms y and z of ℜ
with y≠z and y∩A=Ø, z∩A≠Ø. Let 0 ≤ δ ≤ ε ≤ m(Α).

Let m' be the bba on ℜ  such that m'(A) = m(A)-ε, m'(y) = m(y)+ε-δ , m'(z) = m(z)+δ and

m'(B) = m(B) for all B∈ℜ , B≠A, B≠y, B≠z.

Let g(x,A,ε) = f(m(x),...m(A)-ε,...) - f(m(x),...m(A),...) if x”A

= 0 otherwise.
Let h(x,y,ε-δ) = - f(m(y)+ε-δ,…) + f(m(y),…) if x=y

= 0 if x≠y.
Let h(x,z,δ) = - f(m(z)+δ,…) + f(m(z),…) if x=z

= 0 if x≠z.

As  ∑
x∈ A

   BetP(x,m) = ∑
x∈ A

  BetP(x,m') = 1,

5‘...The only practical direction open to us is to conceive clearly the exact intellectual
process of a method and then to weight, consider, crticize and finally decide whether or
not the method is acceptable, if I dare say it, to our scientific conscience...’
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then,  ∑
x∈ A

   ( BetP(x,m') - BetP(x,m) ) = 0.

Therefore, for the given A∈ℜ ,

 \I\su(x∈ A, x\S\UP1(”)A,,        g(x,A,ε)) = h(y,y,ε-δ) + h(z,z,δ)         (3.2)

As g(x,A,ε) is independent of δ for all x”A, h(y,y,ε-δ) + h(z,z,δ) is also independent of δ.

Let h(y,y,ε-δ) + h(z,z,δ) - f(m(y),…) - f(m(z),…) = H(ε)

K(ε-δ) = - f(m(y)+ε-δ,…)

L(δ) = - f(m(z)+δ,…)

The relation
h(y,y,ε-δ) + h(z,z,δ) = - f(m(y)+ε-δ,…) + f(m(y),…)  - f(m(z)+δ,…) + f(m(z),…)

can be written as:
H(ε) = K(ε-δ) + L(δ).

It is a Pexider's equation whose solutions for H, K and L, given Assumption A2, are
linear in their argument. (Aczel, 1966, theorem 1, pg 142).
Hence f(m(z), ...) = α + β m(z)

where α and β may depend on the bbm given to the strict supersets of z.

The important point up to here is that both h(y,y,ε-δ) + h(z,z,δ) is linear in ε and does not

depend on δ. Let h(y,y,ε-δ) + h(z,z,δ) = cε + d

The proof that g(x,A,ε) in (3.2) is linear in all its arguments m(.) is based on the
following procedure given in case A is the union of four atoms y1, y2, y3, y4.

Let m(A) =a.

For i, j, k = 1, 2, 3, 4, i≠j≠k≠i, let xi = {m(yi∪ B)∪ B: B⊂_ A},

xij = {m(yi∪ yj∪ B)∪ B: B⊂_ A}, xijk = {m(yi∪ yj∪ yk∪ B)∪ B: B⊂_ A}, and

x1234 = {m(y1∪ y2∪ y3∪ y4∪ B): B⊂_ A, B≠Ø}.

Then (3.2) becomes: (the m(A) term is put as first element of f, and is not included in
x1234)

f(a-ε, x1, x12, x13, x14, x123, x124, x134, x1234)
- f(a, x1, x12, x13, x14, x123, x124, x134, x1234) +

f(a-ε x2, x12, x23, x24, x123, x124, x234, x1234)
- f(a, x2, x12, x23, x24, x123, x124, x234, x1234) +

f(a-ε, x3, x13, x23, x34, x123, x134, x234, x1234)
- f(a, x3, x13, x23, x34, x123, x134, x234, x1234) +

f(a-ε, x4, x14, x24, x34, x124, x134, x234, x1234)

- f(a, x4, x14, x24, x34, x124, x134, x234, x1234) = cε + d
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Let xi = u, xij = v, xijk = w, x1234 = t for all i, j, k = 1, 2, 3, 4. One gets:

4 ( f(a-ε, u, v, v, v, w, w, w, t) - f(a, u, v, v, v, w, w, w, t) ) = cε + d

hence f(a, u, v, v, v, w, w, w, t) is linear in a.

Keep all equalities as before except for x123 ≠ w, then:

3 ( f(a-ε, u, v, v, v, x123, w, w, t) - f(a, u, v, v, v, x123, w, w, t) )

+ ( f(a-ε, u, v, v, v, w, w, w, t) - f(a, u, v, v, v, w, w, w, t) ) = cε + d

The second term in the LHS is linear in a, so the first term in the LHS is also linear in a.

Suppose now x124 ≠ w, then

2 ( f(a-ε, u, v, v, v, x123, x124, w, t) - f(a, u, v, v, v, x123, x124, w, t) )

+ ( f(a-ε, u, v, v, v, x124, w, w, t) - f(a, u, v, v, v, x124, w, w, t) )

+ ( f(a-ε, u, v, v, v, w, w, w, t) - f(a, u, v, v, v, w, w, w, t) ) = cε + d

The second and third terms in the LHS are linear in a, hence so is the first. Therefore f is
linear in a whatever the xijk terms and x1234. We drop them in the following relations

about f.

Suppose x12 ≠ v, then

2 ( f(a-ε, u, x12, v, v) - f(a, u, x12, v, v)  )

+ 2 ( f(a-ε, u, v, v, v) - f(a, u, v, v, v) ) = cε + d

The second term in the LHS is linear in a, hence so is the first.

Suppose x13 ≠ v, then

( f(a-ε, u, x12, x13, v) - f(a, u, x12, x13, v) )

+ ( f(a-ε, u, x12, v, v) - f(a, u, x12, v, v) )

+ ( f(a-ε, u, x13, v, v) - f(a, u, x13, v, v) )

+ ( f(a-ε, u, v, v, v) - f(a, u, v, v, v) )     = cε + d

The second, third and fourth terms in the LHS are linear in a, hence so is the first.
Therefore f is linear in its first argument a whatever its other arguments.

The general proof of the linearity of f in its arguments m(.) is obtained by tediously
generalizing this reasoning for any A. Let nX be the number of atoms of A in X∈ℜ . The

proof is valid if nA < nΩ -1, as we need at least two atoms of ℜ  not in the set A used in

the derivation.

Let F = { X: x”X}. The general solution can be written as:

f({m(X): x”X}) = ∑
G”F

  β(G) ∏
Y∈ G

   m(Y) (3.3)
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where the β(G) might depend on the m(Y) with nY ≥ nΩ - 1.

Suppose a belief function bel with m(X) = 1-ω and m(Ω) = ω for X∈ℜ  and nX < nΩ - 1.

Then for all atoms x in X,
BetP(x,m) = β({}) + β({X}) (1-ω) + β({Ω}) ω + β({X,Ω}) ω (1-ω)

and for the y not atom of X
BetP(y,m) = β({})  + β({Ω}) ω 

By adding these terms on the atoms of ℜ , one gets:

1 = nΩ β{}) + nX β({X}) (1-ω) + nΩ β({Ω}) ω + nX β({X,Ω}) ω (1-ω)

This being true for all ω in [0,1], the coefficients of the terms in ω and ω2 must be nul. So

β({X,Ω}) = 0, nΩ β({Ω}) = nX β({X}),       and 1 = nΩ β({})+ nX β({X}).

The same argument can be repeated in order to show that every coefficients β(G) = 0

whenever there are more than one elements in G. Relation (3.3) becomes:

BetP(x,m) = β({}) + ∑
x”X

  β({X}) m(X)

where the β may depend on the bbm given to those elements of ℜ  with nΩ-1 or nΩ atoms.

We show that β does not depend on those bbm.

Let (Ω, ℜ , bel) be a credibility space. Suppose it is known (by You) that the actual world

ϖ is not an element of the set B that contains two atoms b1 and b2 of ℜ . So ∀ A∈ℜ,
A≅ A∪ X where X= b1, b2 or b1∪ b2,  and bel(A) = bel(A∪ X) by the consistency axiom.
Let (Ω' , ℜ ' , bel' ) be the  credibility space where Ω' = Ω-B, the set A'  of atoms of ℜ '

equal to A-(b1∪ b2),  and bel'(A) = bel(A) for all A∈ℜ '. By construction, for all Y∈ℜ ,

nY ≥ nΩ-1, m(Y)=0. Let BetP(x,m) and BetP'(x,m') , x atom of ℜ ', be the pignistic

probabilities derived from bel (m) and bel' (m'). The bbm involved in the coefficients β
are explicitely written. One has:

BetP(x,m) = β({}, {m(Y): nY = nΩ-1}, m(Ω)) +

 ∑
x”X∈ℜ

      β({X}, {m(Y): nY = nΩ-1}, m(Ω)) m(X)

= β({}, {0: nY = nΩ-1}, 0) +

 ∑
x”X∈ℜ '

       β({X}, {0: nY = nΩ-1}, 0) m(X)

where all terms m(X) = 0 if nX ≥  nΩ-1, or equivalently m(X) = 0 if X∉ℜ '.

One has also:
 BetP' (x,m' ) = β({}, {m(Z): nZ = nΩ' -1}, m(Ω' )) +
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∑
x”X∈ℜ '

       β({X}, {m(Z): nZ = nΩ'-1}, m(Ω' )) m(X)

By Assumption A4, BetP(x,m) = BetP' (x,m') for all x atom of ℜ ' . Hence:

β({X}, {m(Z): nZ = nΩ'-1}, m(Ω' )) =β({X}, {0: nY = nΩ-1}, 0)

so β does not depend on the bbm m(Z): nZ ≥ nΩ'-1.

Furthermore, by Assumption A3, the coefficients β depends only on the number of atoms

in their arguments. Hence:

BetP(x,m) = 1/nΩ - β({Ω}) +  nΩ β({Ω}) ∑
x”X

   m(X) / nX

Let m(A) = 1 for A∈ℜ  and nA < nΩ-1. By Assumption A3, BetP(x,m) = 1/nA for every

atom x subset of A. It implies: β({Ω}) = 1/nΩ.

Hence: BetP(x,m) = ∑
x”X

   m(X) / nX QED
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