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Abstract

New semantics for numerical values given to possibil-
ity measures are provided. For epistemic possibilities,
the new approach is based on the semantics of the
transferable belief model, itself based on betting odds
interpreted in a less drastic way than what subjec-
tive probabilities presupposes. It is shown that the
least informative among the belief structures that are
compatible with prescribed betting rates is nested,
i.e. corresponds to a possibility measure. It is also
proved that the idempotent conjunctive combination
of two possibility measures corresponds to the hyper-
cautious conjunctive combination of the belief func-
tions induced by the possibility measures. This view
differs from the subjective semantics first proposed
by Giles and relying on upper and lower probability
induced by non-exchangeable bets. For objective pos-
sibility degrees, the semantics is based on the most in-
formative possibilistic approximation of a probability
measure derived from a histogram. The motivation
for this semantics is its capability to extend a well-
known kind of confidence intervals around the mode
of a distribution to a fuzzy confidence interval. We
show how the idempotent disjunctive combination of
possibility functions is related to the convex mixture
of probability distributions.

1 Introduction

Quantitative possibility theory has been proposed as
a numerical model which could represent quantified
uncertainty (Zadeh, 1978; Dubois & Prade, 1988;
Dubois, Nguyen, & Prade, 2000). In order to sustain
this claim, it is necessary to examine the representa-
tion power of possibility theory regarding uncertainty
in both objective and subjective contexts. In the ob-
jective context, quantitative possibility can be devised
as an approximation of upper and lower frequentist
probabilities, due to the presence of incomplete statis-
tical observations (Dubois & Prade, 1986a; Gebhardt

& Kruse, 1993). In the subjective context, quanti-
tative possibility theory somehow competes with the
probabilistic model in its personalistic or Bayesian
views and with the transferable belief model (TBM)
(Smets & Kennes, 1994; Smets, 1997, 1998), both of
which also intend to represent degrees of belief. A
major issue when developing formal models that rep-
resent psychological quantities (belief is such an ob-
ject) is to produce an operational definition of what
these degrees are supposed to quantify. Such an op-
erational definition, and the assessment methods that
can be derived from it, provide a meaning, a seman-
tics, to the .7 encountered in statements like ‘my de-
gree of belief is .7’. Such an operational definition
has been produced long ago by the Bayesians. They
claim that any state of incomplete knowledge of an
agent can be modeled by a single probability distri-
bution on the appropriate referential, and that the
probabilities can be revealed by a betting experiment
in which the agent provides betting odds under an
exchangeable bet assumption. A similar setting ex-
ists for imprecise probabilities (Walley, 1991), relax-
ing the assumption of exchangeable bets, and more
recently for the TBM as well (Smets & Kennes, 1994;
Smets, 2001), introducing several betting frames cor-
responding to various partitions of the referential. In
that sense, the numerical values encountered in these
three models are well defined.

Quantitative possibility theory (QPT) did not have
such a wealth of operational definitions so far, despite
an early proposal by Giles (Giles, 1982) in the set-
ting of upper and lower probabilities, recently taken
over by De Cooman and colleagues (Walley, 1997;
De Cooman & Aeyels, 1999). One way to avoid the
measurement problem is to develop a qualitative epis-
temic possibility theory where only ordering relations
are used (Dubois & Prade, 1998).

Nevertheless QPT seems to be a theory worth explor-
ing as well, and rejecting it because of the current lack
of convincing semantics would be unfortunate. The



recent revival of a form of subjectivist QPT due to De
Cooman and colleagues, and the development of pos-
sibilistic networks based on incomplete statistical data
(Gebhardt & Kruse, 1998) suggests on the contrary
that it is fruitful to investigate various operational
semantics for possibility theory. This is due to sev-
eral reasons: first possibility theory is a special case
of most existing non additive uncertainty theories, be
they numerical or not. Hence progress in one of these
theories usually has impact in possibility theory. An-
other major reason is that possibility theory is very
simple, certainly the simplest competitor for proba-
bility theory. Hence it can be used as useful approx-
imate representation by other theories. A last reason
is that previous works have suggested strong links be-
tween possibility theory and non-Bayesian statistics,
especially the use of likelihood functions without prior
(Smets, 1982), and confidence intervals. It is not ab-
surd to think that, in the future, possibility theory
may contribute to unify and shed some light on some
aspects of non-Bayesian statistics.

The aim of this paper is to propose two new seman-
tics for possibility theory: a subjectivist semantics
and an objectivist one. We use the term ‘subjectivist’
to mean that we consider the concepts of beliefs (how
much we believe) and betting behaviors (how much
would we pay to enter into a game) without regard
to the possible random nature and repeatability of
the events. We use the term ‘objectivist’ to mean
that we consider data generated by random processes
where repetition is natural, and where histograms can
summarize the data. The distinction is somehow sim-
ilar to the one made between the personal and the
frequential interpretations of probabilities. It also re-
flects that in the ‘subjectivist’ case, we start from a
betting behavior, whereas in the ‘objectivist’ case we
start from a histogram.

The subjective semantics differ from the upper and
lower probabilistic setting of the subjective possibil-
ity proposed by Giles and followers, without ques-
tioning its merit. Instead of making the bets non-
exchangeable, we assume that the exchangeable bet-
ting rates only imperfectly reflect the agent’s beliefs.
The objectivist semantics suggests a flexible extension
of particular confidence intervals.

Moreover we show that the basic combination rules
in possibility theory, minimum and maximum, can be
interpreted in the proposed settings: the former using
a minimal commitment assumption in the subjectivist
setting; the latter using an information preservation
principle in the frequentist setting.

This paper provides an overview of these semantics.
Detailed theorems and proofs can be found in the long

version of this paper, which pursues an investigation
started in (Smets, 2000). Up-to-date presentations
of the TBM and possibility theory can be found in
(Smets, 1998; Dubois & Prade, 1998), respectively.

2 Subjectivist semantics

2.1 The transferable belief model and bets.

For long, it had been realized that possibility func-
tions are mathematically identical to consonant plau-
sibility functions (Shafer, 1976), so using the seman-
tics of the TBM for producing a semantics for quan-
titative epistemic possibility theory is an obvious ap-
proach, even if not explored in depth so far. This link
had already been realized long ago. What was missing
was to show that the analogy goes further.

Suppose You (hereafter You is the agent who holds
the beliefs) consider what beliefs You should adopt
on what is the actual value of a variable ranging on
a set Ω, called the frame of discernment. You have
decided that Your beliefs should be those produced
by a fully reliable source. It is assumed that such
beliefs can be represented by a belief function . A
belief function can be mathematically described as a
finite random set which has a very specific interpreta-
tion. The so-called basic belief mass assigned to each
set is understood as the weight given to the fact that
all You may know from the source is that the value
of the variable of interest lies somewhere in that set.
Sets with positive mass are thus pieces of incomplete
information, unspecific evidence, not only sets in the
usual sense of a conjunction of elements. Sets here
are disjunctions of elements, one of which is the true
one. A belief function (resp: plausibility function) is
a set-function that assigns to each event (subset of the
‘frame of discernment’) the sum of the masses given
to its subsets (resp: to the subsets that intersect it).
It evaluates to what extent the event is implied by
(resp. consistent with) the available evidence. When
the sets with positive mass are nested, the plausibil-
ity function is called a possibility measure, and can be
characterized, just like probability, by an assignment
of weights to singletons, called a possibility distribu-
tion.

Should You know the beliefs of the source, they would
be Yours. Unfortunately, it occurs that You only
know the value of the ‘pignistic’ probabilities the
source would use to bet on the actual value of Ω
(Smets, 1990; Smets & Kennes, 1994). The pignis-
tic probability induced by a belief function is built
by defining a uniform probability on each set of posi-
tive mass, and performing the convex mixture of these
probabilities according to the mass function. In terms



of game theory it corresponds to the Shapley value
of a game; in terms of upper and lower probabilities
it is the center of gravity of the set of probabilities
dominating the belief function. The knowledge of the
values of the probabilities allocated to the elements
of Ω is not sufficient to construct a unique underly-
ing belief function. Many belief functions can induce
the same probabilities. For instance, uniform betting
rates on Ω either correspond to complete ignorance on
the values of the variable, or to the knowledge that
the variable is random and uniformly distributed. So
all You know about the belief function that represents
the source’s beliefs is that it belongs to the set of be-
liefs that induce the supplied pignistic probabilities.
Under this scheme, we do not question the exchange-
ability of bets, as done by Walley, Giles and others.
What we question is the assumption of a one-to-one
correspondence between betting rates produced by
the source, and the actual beliefs entertained by the
source. Betting rates do not tell if the uncertainty of
the source results from the perceived randomness of
the phenomenon under study or from a simple lack of
information about it.

Since several belief functions, lead to the same betting
rates, You have to select one that most plausibility re-
flects the actual states of belief of the source. A cau-
tious approach is to obey a ‘least commitment prin-
ciple’ that states that You should never presuppose
more beliefs than justified. Then, You can select the
‘least committed’ element in the family of belief func-
tions compatible with the pignistic probability func-
tion prescribed by the obtained betting rates. The
first result of this paper is that the least committed
belief function is consonant, that is, the correspond-
ing plausibility function is a possibility function. This
possibility function is the unique one in the set of be-
lief functions having a prescribed pignistic probabil-
ity, because the pignistic transformation is a bijection
between possibilities and probabilities. So this pos-
sibility function turns out to be the least committed
belief function whose pignistic transformation is equal
to the pignistic probabilities supplied by the source.

More formally let m(A) be the basic belief mass allo-
cated to subset A. The function m is called a basic
belief assignment (bba). The sum of these masses
across all events is 1. The degree of belief bel(A) is
defined for all A ⊆ Ω, by:

bel(A) =
∑

∅�=B⊆A

m(B)

The degree of plausibility pl(A) is:

pl(A) =
∑

B∩A �=∅
m(B) = bel(Ω) − bel(A).

In order to enhance the fact that we work with non-
normalized belief functions (m(∅) can be positive), we
use the notation bel and pl, whereas Shafer uses the
notation Bel and Pl. Another useful function that is
also in one to one correspondence with any of m, bel
and pl is the commonality function q such that:

q(A) =
∑

B:A⊆B

m(B).

2.2 Consonant belief functions

A belief function is said to be consonant iff its focal
elements are nested (Shafer, 1976, pg 219). By exten-
sion, we will speak of consonant basic belief assign-
ments, commonality functions, plausibility functions,
. . .

Theorem 2.1 Consonant belief functions.
(Shafer, 1976, Theorem 10.1, pg 220) Let m be a
bba on Ω. Then the following assertions are all
equivalent:

1. m is consonant.

2. bel(A ∩ B) = min(bel(A), bel(B)), ∀A, B ⊆ Ω.

3. pl(A ∪ B) = max(pl(A), pl(B)), ∀A, B ⊆ Ω.

4. pl(A) = maxω∈A pl(ω), for all non empty A ⊆ Ω.

5. q(A) = minω∈A pl(ω) = minω∈A q(ω), for all non
empty A ⊆ Ω.

Items 3 and 4 shows that consonant plausibility and
belief functions are possibility and necessity functions,
usually denoted by Π and N respectively, while the
pl(ω)’s define a possibility distribution, that contains
all the necessary information for building the other
set-functions. The fact that we work with unnormal-
ized bba’s does not affect these properties, being un-
derstood that we never require that possibility and
necessity functions be normalized. The difference be-
tween Π(Ω) or pl(Ω) and 1, that equals m(∅), rep-
resents the amount of conflict between the pieces of
evidence that were used to build these functions.

2.3 Least commitment

So far, what ‘least committed’ means has not been ex-
plained, and refers to the capability of comparing be-
lief functions by their informational contents. Dubois
and Prade (1987) have made three proposals to order
belief functions according to the ‘specificity’, or pre-
cision of the beliefs they represent. Let m1 and m2

be two bba’s on Ω. The statement that m1 contains
at least as much information as, is at least as precise



as m2 is denoted m1 �x m2 corresponding to some
x-ordering where we vary the subscript x. Then m2

is said to be x-less committed than m1. The proposed
information orderings are:

• pl-ordering. If pl1(A) ≤ pl2(A) for all A ⊆ Ω, we
write m1 �pl m2

• q-ordering. If q1(A) ≤ q2(A) for all A ⊆ Ω, we
write m1 �q m2

• s-ordering. If m1 is a specialization of m2, we
write m1 �s m2

where pl denotes the plausibility function and q de-
notes the commonality function.

The idea behind the pl-ordering is that a belief func-
tion is all the more specific as the intervals ranging
from the belief degree to the plausibility degree of each
event are small. Due to the duality between plausibil-
ity and belief, pl1(A) ≤ pl2(A) for all A ⊆ Ω is indeed
equivalent, for normalized bba’s, to bel1(A) ≥ bel2(A)
for all A ⊆ Ω, where bel denotes the belief function.

The idea behind the q-ordering is maybe less obvi-
ous. The commonality function of an event reflects
the amount of support this event may received from
its supersets. So, q(A) represents the portion of be-
lief that may eventually be assigned to A. The more
amount of belief remains unassigned, i.e. the bigger
the focal elements having a high mass assignment, the
higher the commonality degrees and the less informa-
tive is the belief function. In particular, if m(Ω) = 1,
then q(A) = 1 for all non empty sets. More gener-
ally, to consider m(Ω) as a rough measure of unin-
formativeness of a belief function seems reasonable.
Suppose now we know that the actual world belongs
to A ⊆ Ω. Then m[A](A) obtained by conditioning
m with Dempster’s rule of conditioning becomes the
‘conditional measure of uninformativeness’ in context
A. It just happens that m[A](A) = q(A), so the com-
monality function is the set of conditional measure of
uninformativeness, and the fact that a measure of in-
formation content turns out to be a function of the
q’s becomes very natural.

The concept of specialization (s-ordering) (Dubois &
Prade, 1986b; Yager, 1986) is at the core of the trans-
ferable belief model (Klawonn & Smets, 1992). The
intuitive idea is that the smaller the focal elements,
the more focused are the beliefs. Let mΩ

Y [BK] be
the basic belief assignment that represents Your belief
on Ω given the background knowledge (BK) accumu-
lated by You. The impact of a new piece of evidence
Ev induces a change in Your beliefs characterized by
a redistribution of the basic belief masses of mΩ

Y [BK]
such that mΩ

Y [BK](A) is reallocated to the subsets of

A. In a colloquial way, we say that ‘the masses flow
down’. The new belief function is said to be a spe-
cialization of the former one. More generally, m2 is
a specialization of m1 if every mass m1(A) is reallo-
cated to subsets of A in m2. See (Dubois & Prade,
1986b) for the technical definition.

When the belief functions are consonant, all these
comparisons become equivalent and reduce to fuzzy
set inclusion between the membership functions rep-
resenting the corresponding possibility distributions.
Formally for x = pl, q, s, m1 �x m2 if and only if
pl1(ω) ≥ pl2(ω) for all ω ∈ Ω. We say that pl1 is less
specific than pl2.

Dubois and Prade (1986b) prove that :

• m1 �s m2 implies m1 �pl m2 and m1 �q m2,
but the converse is not true, and

• m1 �pl m2 and m1 �q m2 do not imply each
other.

2.4 Pignistic probabilities

Suppose a bba mΩ that quantifies Your beliefs on Ω.
When a decision must be made that depends on the
actual value ω0 where ω0 ∈ Ω, You must construct
a probability function in order to make the optimal
decision, i.e., the one that maximizes the expected
utility. This is achieved by the pignistic transforma-
tion. Its nature and its justification are defined in
(Smets, 1990; Smets & Kennes, 1994; Smets, 1998).

Let F be the betting frame, the set of ‘atoms’ on which
stakes will be allocated. Bets can then only be built
on the elements of the power set of that frame. Let
BetPF denote the pignistic probability function You
will use to bet of the alternatives in F . BetPF is a
function of F and mΩ,

BetPF = Γ(mΩ, F ).

Smets (1990) has shown that the only transformation
from mΩ to BetPF that satisfies some rationality re-
quirements is the so-called pignistic transformation
that satisfies:

BetPF (f) =
∑

A:f∈A⊆F

mF (A)
|A|(1 − mF (∅)) , ∀f ∈ F

(1)

where |A| is the number of elements of F in A, and
mF is the bba induced by mΩ on F , (we have assumed
that F is compatible with Ω (Shafer, 1976, pg. 114 et
seq.)).

It is easy to show that the function BetPF is indeed a
probability function and the pignistic transformation



of a probability function is the probability function
itself. We call it pignistic in order to avoid the con-
fusion that would consist in interpreting BetPF as
a measure representing Your beliefs on F . From the
mathematical point of view, the pignistic probability
of bel is its Shapley value in a game-theoretic setting.

The result showing that the least committed set of
beliefs yielding a prescribed pignistic probability can
be represented by a possibility function, has been for-
mally obtained in two ways, depending on how be-
lief functions are compared in terms of information
contents. Comparing the belief functions having a
prescribed pignistic probability, it can be proved that
the least informed one in the sense of the q-ordering
is a possibility function. The belief functions having a
prescribed pignistic probability are called isopignistic.
The following theorem has been obtained:

Theorem 2.2 Let BetPΩ be a pignistic probability
function defined on Ω with the elements ωi of Ω so
labeled that :

BetPΩ(ω1) ≥ BetPΩ(ω2) ≥ . . . ≥ BetPΩ(ωn)

where n = |Ω|. Let BisoP (BetPΩ) be the set of
isopignistic belief functions induced by BetPΩ. The
q-least committed element in BisoP (BetPΩ) is the
consonant belief function of mass m̂ whose only focal
elements are the subsets Ai = {ω1, ω2, . . . , ωi} and:

m̂(A) = |A| · (BetPΩ(ωi) − BetPΩ(ωi+1))

where BetPΩ(ωn+1) is 0 by definition.

Proof. Let q̂ and BêtP be the commonality func-
tion and the pignistic probability function related to
m̂. The pignistic transformation of m̂ being BetP , m̂
belongs to BisoP (BetPΩ). Let m ∈ BisoP (BetPΩ)
be a bba also defined on Ω with q and BetP its re-
lated commonality function and pignistic probability
function. Let Ai = {ω1, ω2 . . . , ωi} for i = 1, . . . , n.
In order to prove that q̂ is the q-least committed el-
ement in BisoP (BetPΩ), we need only to show that
q ∈ BisoP (BetPΩ) implies q(A) ≤ q̂(A), ∀A ⊆ Ω.

Consider An. Suppose q(An) > q̂(An). It is equiva-
lent to m(An) > m̂(An), in which case BetP (ωn) >
BêtP (ωn), contrary to the hypothesis. So

• either m(An) = m̂(An) and for all A ⊆ An with
ωn ∈ A, m(A) = 0 so that we keep BetP (ωn) =
BêtP (ωn).

• or m(An) < m̂(An) in which case q(An) < q̂(An),
and thus q is not q-less committed that q̂.

Therefore the first alternative is true.

Consider An−1. We repeat the same reasoning replac-
ing n by n − 1 and get m(An−1) = m̂(An−1) and for
all A ⊆ An−1 with ωn−1 ∈ A, m(A) = 0. Iterating
for n − 2, n − 3 . . . , we prove the theorem. �

The probability-possibility transformation described
by the theorem was independently proposed by
Dubois and Prade (1982; 1983) a long time ago, using
a very different rationale. The other informational or-
derings do not lead to unique least informed solutions.
However a scalar index for comparing belief functions
in terms of specificity has been proposed in (Dubois &
Prade, 1985). The idea is based on the fact that the
level of imprecision of a set used to represent a piece
of incomplete knowledge is its cardinality (or the loga-
rithm thereof). A belief function is formally a random
set, and the degree of imprecision of belief function is
simply its expected cardinality (or expected logarithm
of the cardinality). Let

I(m) =
∑
A⊆F

|A| · m(A)

Comparing isopignistic belief functions in terms of ex-
pected cardinality, the same result as above obtains:

Theorem 2.3 The belief function of maximal ex-
pected cardinality I(Bel) among isopignistic belief
functions induced by BetPΩ is the unique possibility
function having this pignistic probability.

Proof. (sketch). Consider a belief function Bel with
mass function m. Denote Bet(Bel) = BetPΩ = p
its pignistic probability. Conversely given a proba-
bility distribution on Ω, Let π = Bet−1(p) be the
possibility distribution whose pignistic transforma-
tion yields the probability distribution p. Overall
π = Bet−1(Bet(Bel)). It is easy to see that I(π) =∑

ω∈Ω π(ω) and π(ω) =
∑

ω′∈Ω min(p(ω), p(ω′)) (See
(Dubois & Prade, 1983)). The technical part of the
proof consists in proving that I(Bet−1(Bet(Bel)) ≥
I(Bel). Since each of these expressions is a linear
function of the masses m(A), we prove that for each
focal element A, the coefficient of m(A) in I(Bel)
is not greater than the corresponding coefficient in
I(Bet−1(Bet(Bel)). �

3 The minimum rule

The story goes on. Suppose we collect the pignistic
probabilities about the actual value of Ω from two
sources. From these two pignistic probabilities,You
build two consonant plausibility function’s, i.e., the
two possibility functions induced by the observed bet-
ting rates as presented above. How to conjunctively



combine the data collected from the two sources? Do
we have to redo the whole betting procedure or can
we get the result directly by combining the two pos-
sibility functions? We will show in this section that
indeed the last idea is correct.

In possibility theory, there exists such a combination
rule that performs the conjunction of two possibility
functions. Let π1 and π2 be two possibility distri-
butions on Ω that we want to combine conjunctively
into a new possibility function π12. The most classical
conjunctive combination rule to build π12 consists in
using the minimum rule: π12(ω) = min(π1(ω), π2(ω))
for all ω ∈ Ω and its related possibility measure is
given by Π12(A) = maxω∈A⊆Ω π12(ω). Could it be
applied in the present context? We will show here
that it is indeed the case.

We must first avoid a classical trap. In belief func-
tion theory, the conjunctive rule of combination for
the bba’ produced by two distinct pieces of evidence
is Dempster’s rule of combination. It is well known
that Dempster’s rule of combination applied to two
consonant plausibility functions does not produce a
consonant plausibility function. So Dempster’s rule of
combination does not seem adequate to combine pos-
sibility measures. It seems thus that the analogy be-
tween consonant plausibility functions and possibility
functions collapses here. This is not the case. Demp-
ster’s rule of combination requires that the involved
pieces of evidence are ‘distinct’, a concept analogous
to independence in random set theory. All we have
here are the betting behaviors of the two sources, and
‘distinctness’ of the sources cannot be assumed.

In fact, other combination rules exist in the TBM,
based on some kind of cautious approach and where
‘possible correlations’ between the involved belief
functions are considered. How to combine two bba’s
conjunctively, when you cannot assume they are pro-
duced by two ‘distinct’ pieces of information? You
may assume that the result of the combination must
be a specialization of each of them (since the result of
the combination should be a belief function at least
as informative as the ones You start with). As said
above, a specialization of a bba m1 is a transforma-
tion of m1 into a new bba m2, both on the same frame
of discernment, such that every mass m1(A) given by
the first bba to a subset A of its frame is split and re-
allocated to the subsets of A so as to form the second
bba.

So consider all belief functions that are specialization
of both initial possibility functions derived from the
pignistic probabilitys produced by the two sources. In
that family, apply again the ‘cautious’ approach and
select as Your belief the least committed element of

that family in the sense of specialization, which is the
stronger notion of information comparison. The main
result is that this procedure again yields a consonant
plausibility function and it turns out to be exactly the
result obtained within possibility theory when using
the minimum rule.

More formally: Let SP(m1) and SP(m2) be the set of
specializations of m1 and m2, respectively. The result
of the conjunctive combination of m1 and m2 should
then belong to SP(m1) ∩ SP(m2). That family is
never empty as long as the result of Dempster rule
of combination, itself a specialization, always belongs
to it. As far as no information on the correlation be-
tween the sources is available, the cautious attitude
would consist in representing Your beliefs by m1 �©2,
the least committed element in SP(m1) ∩ SP(m2),
in the sense of the s-ordering. Unfortunately such
a minimum does not always exist, except when m1

and m2 are both consonant. In that case , we con-
sider what would be m1 �©2, and prove that it is equal
to the result found when conjunctively combining two
possibility functions by the minimum. Note that if Π1

and Π2 are two possibility functions with q1 and q2

their related commonality functions, the commonality
function q12 of their minimum-based conjunctive com-
bination Π12 satisfies : q12(A) = min(q1(A), q2(A))
for all A ⊆ Ω.

Theorem 3.1 Let m1 and m2 be two consonant be-
lief functions on Ω with q1 and q2 their correspond-
ing commonality functions. Let SP1 and SP2 be the
set of specializations of m1 and m2, respectively. Let
q12(A) = min(q1(A), q2(A)) for all A ⊆ Ω, and m12

its corresponding bba. Then m12 = m1 �©2 = min{m :
m ∈ SP(m1) ∩ SP(m2)} in the sense of s-ordering,
and this minimally specific element is unique.

Proof. If m12 is a specialization of m1, then,
for all A ⊆ Ω, q12(A) ≤ q1(A) . So
q12(A) ≤ min(q1(A), q2(A)). Thus the s-least spe-
cific element is obtained when we have q12(A) =
min(q1(A), q2(A)), ∀A ⊆ Ω. The only problem left is
to prove that this computed q12 is indeed a common-
ality function, i.e., that its related basic belief masses
are non negative. For it, we only need to prove that
q12(A) = minω∈A q12(ω). m1 and m2 being conso-
nant, we have qi(A) = minω∈A qi(ω) for i = 1, 2. So

q12(A) = min(q1(A), q2(A))
= min(min

ω∈A
q1(ω), min

ω∈A
q2(ω))

= min
ω∈A

(min(q1(ω), q2(ω))

= min
ω∈A

(q12(ω)).

So q12 is consonant, in which case m12 is a belief func-
tion. �



We call the last combination the hyper-cautious con-
junctive combination rule.

So the direct combination approach developed in pos-
sibility theory and the one derived using the TBM de-
tour are the same (see Figure 1). This result restores
the coherence between the two models, and thus using
the TBM operational definition to explain the mean-
ing of the possibility values is perfectly valid and ap-
propriate. The fact that applying the same approach
to the combination of general belief functions does not
yield a unique least specialized belief function stresses
the difficulty of characterizing a feasible idempotent
combination rule for non-consonant belief functions,
a problem that remains open.
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Figure 1: Epistemic possibilities. Isopign = finding
the set of belief functions that share the same pignistic
probabilities. LC = least committed.

4 Objectivist semantics

Since possibility measures are special cases of plau-
sibility functions, they are also, at the mathematical
level envelopes of special families of probability func-
tions (See, e.g. (Dubois & Prade, 1992; De Cooman
& Aeyels, 2000). Let Π be a possibility measure and
P(Π) be the set of probability functions dominated
by Π.

Suppose a probability function P is obtained via some
statistical experiment. This probability function is a
very rich piece of information, if the number of statis-
tical experiments supporting it is high enough. Sup-
pose that for some reason one wishes to use a possi-
bilistic representation of this information, maybe be-
cause we just need an approximation of it, or because
we want to compute a linear convex combination of
them without knowing the weights (see section 5).
The possibility measures Π that are candidates for
representing P must clearly be such that P ∈ P(Π).
We shall say that Π covers P . Again there are many
possibility measures obeying this constraint. It again
makes sense to use an informational principle to pick
the best Π induced by P . However the situation is
very different from the subjectivist setting. In the
latter the pignistic probability is just what is revealed
about the epistemic state of the agent by the betting
experiments. So a principle of cautiousness prevails

in order to be faithful to the incompleteness of the
information. In the objectivist setting of precisely
observed identical and independent, and sufficiently
numerous experiments, P is supposed to represent all
the information that can ever be captured. Moving
from a probabilistic to a possibilistic setting means
losing information since we only get (special) proba-
bility bounds.

So the natural informational principle for picking a
reasonable possibility distribution representing P is
to preserve as much information as possible, hence
picking the most informative possibility distribution
( in the sense of any x-ordering above) in Π(P ) =
{Π : P ∈ P(Π)}, that is, in the sense of fuzzy set
inclusion (i.e., by taking the possibility function that
is pointwise minimal). It has been proved that gener-
ally this maximally informed possibility distribution
exists and is unique. Namely this is the case when P
defines a total order of a finite referential. It is also
true for ”bell-shaped” unimodal distributions on the
real line. When there are elements of equal probabil-
ity, unicity is recovered if, due to symmetry, we also
enforce equal possibility of these elements. See details
in (Dubois, Prade, & Sandri, 1993; Lasserre, Mauris,
& Foulloy, 1998).

In the case of unimodal continuous pdfs, the level
cuts of the obtained possibility distribution π, namely
Aα = {ω : π(ω) ≥ α}, are closely related to some
kinds of ‘confidence intervals’ (with confidence lev-
els α) around the mode of the distribution. Namely,
let p be a unimodal continuous density. Let Iα =
{r, p(r) ≥ α}. Let lα be the length of this interval.
It is easy to prove that Iα is the interval of highest
probability among all those whose length is lα. Iα is
conversely the most precise interval representative of
p with a given confidence level equal to P (Iα). The
most specific possibility distribution π containing P
is such that π(inf Iα) = π(sup Iα) = 1 − P (Iα). So
the cut at level α of π that is, Aα = {r, π(r) ≥ α}
is the confidence interval around the mode of p with
confidence level 1 − α.

These setting equips quantitative possibility theory
with a reasonable objectivist semantics. Note that
this semantics can be considered as indirect, as it re-
lies on the frequentist view of probability, and is built
on top of it. It differs from the direct frequentist se-
mantics that considers a possibility distribution as the
one-point coverage mapping of a random set describ-
ing imprecise statistical data.

However our approach provides a convenient repre-
sentation of a family of confidence intervals used by
statisticians when they try to estimate a parameter
from a sample. So-doing, they trade-off randomness



for incomplete knowledge with a view to get an easier-
to-interpret and ready for use representation of infor-
mation. It is as if they move to a (crude) possibilistic
representation. One of the weaknesses of this proce-
dure is the arbitrariness of the confidence level used
to pick the proper interval (usually 0.95, but why not
another figure close to 1?). Our approach captures the
whole family of confidence intervals by means of fuzzy
intervals ((Dubois, Kerre, Mesiar, & Prade, 2000))
thus postponing the decision on the confidence level.

5 The maximum rule

Again the story can be pursued considering the fu-
sion of two probability distributions P1 and P2 com-
ing from two statistical experiments pertaining to the
same phenomena. If the fusion takes place on the
data, it is usually enough to add the two sets of data,
and derive the corresponding probability. It comes
down to a linear convex combination of P1 and P2

whose weights reflect the relative amount of data of
each source.

However if the original data sets are lost and only P1

and P2 are available, the relative weights of the data
sets are unknown. The probability distribution re-
sulting from merging the two data sets is of the form
αP1 + (1− α)P2 where α is unknown. It gives a fam-
ily of probability distributions F and the question is
to find the most informative possibility distribution
Π such that F is included in P(Π) using the above
principle of information preservation. Let Π1 and Π2

be the possibility measures encoding the most infor-
mative confidence sets respectively associated to P1

and P2. Then Π1 ≥ P1 and Π2 ≥ P2, eventwise. Now
it is obvious that

max(Π1,Π2) ≥ max(P1, P2) ≥ αP1 + (1 − α)P2

It turns out that the set function Π12 = max(Π1,Π2)
is also a possibility measure with possibility distri-
bution max(π1, π2). So Π12 = max(Π1,Π2) en-
codes a family of probability measures that contains
αP1 + (1 − α)P2 for any α in the unit interval. How-
ever there are events A, B such that P1(A) = Π1(A),
and P2(B) = Π2(B), basically the complements of
the confidence sets. So Π12 = max(Π1,Π2) is actu-
ally the valid upperbound, i.e. it covers all the convex
mixtures of P1 and P2. Now let Πα be the most infor-
mative possibility measure covering αP1 + (1− α)P2.
Obviously, the intersection over α of all sets of possi-
bility measures less specific than Πα has supα Πα as
a lower bound and it is the most specific possibility
measure covering all the convex mixtures of P1 and
P2. However it is clearly less than or equally specific
as Π12. Hence it is equal to it. It is thus proved that

the most informative possibility distribution covering
all the convex mixtures of P1 and P2 can be obtained
as the idempotent disjunctive combination of the pos-
sibility measures Π1 and Π2 obtained from P1 and P2.
Hence this setting justifies the maximum combination
rule of possibility theory (see Figure 2).
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Figure 2: Objective possibilities. DΠ = DomΠ =
dominating possibility measures. MI = MaxInf =
maximally informative possibility measure. ∩α = in-
tersection over all α in [0,1]. ∪α = union over all α in
[0,1]. Other symbols as in text.

6 Conclusion

This paper studies two operational settings for the
measurement of degrees of possibility. In the first
one, Quantitative Epistemic Possibility theory can be
viewed as a very cautious application of the TBM. It
uses the operational definition of the TBM as an oper-
ational definition of the values of the possibility func-
tion whereby the betting rates provided by an agent
only partially reflect beliefs. In a frequentist setting,
a possibility measure can be induced from frequency
observations as a consonant family of certain confi-
dence sets. These operational settings shed light on
well-known idempotent combination rules of possibil-
ity theory. The minimum and maximum rules are
justified, one in each setting, based on opposite infor-
mation principles. The link between possibility func-
tions and membership functions of linguistic terms
had been pointed out from the start by Zadeh (1978)
and is discussed by Walley and De Cooman (2000)
in the upper/lower probability setting. Here we in-
directly provide other semantics for fuzzy set theory
through quantitative possibility theory, based either
on standard behavioral methods of subjective proba-
bility or as an extension of standard statistical prac-
tice. In both cases a probability measure is replaced
by a possibility measure. Some may find it debatable
or pointless. However, in the subjective setting, it is
based on the claim that taking a subjective probabil-
ity as a faithful representation of an agent’s beliefs
is far too optimistic, considering that people usually



have incomplete knowledge. Our possibilistic repre-
sentation is arguably more faithful because more cau-
tious since explicitly accounting for this situation. In
the objective setting, moving from the probabilistic
to the possibilistic representation corresponds to an
apparent loss of information and looks all the more
debatable. However, a confidence interval alone cor-
responds to a more drastic loss of information with
respect to the original provability distribution. Our
proposal makes confidence intervals more expressive
by refraining from choosing a confidence level. Note
that the obtained transformation is again bijective so
that the probability measure can be entirely recovered
from the possibility measure.
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