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Resolving misunderstandings about belief functions.

In Response to J. Pearl's Criticisms in
"Reasoning with Belief Functions: an Analysis of Compatibility"

Philippe SMETS1

IRIDIA-Université Libre de Bruxelles
50 av. F. Roosevelt, 1050 Brussels, Belgium

Judea Pearl has made an excellent presentation of many of the errors that pervade the
belief function (BF) literature, some being put forward, even though Pearl knows their
answer, for the mere purpose of provoking reactions. So it is a good opportunity for me
to clarify the situation. I shall start with a summary of my interpretation of the use of BF
to quantify someone's belief (called the transferable belief model) and follow on with a
systematic refutation of Pearl's criticisms. Sections and relations numbers are preceded
by a P or an S referring to Pearl's or my own presentation, respectively.

S.1. The Transferable Belief Model (TBM)

The transferable belief model (Smets 1988) is my interpretation of Dempster-Shafer's
model. It fits in essentially with Shafer's initial presentation (Shafer 1976) except
inasmuch as it rejects explicitly all connections with any probabilistic model. It is based
on the following assumptions:
1) our degree of belief is quantified by a number between 0 and 1
2) there exists a two-level structure:

- a credal level where beliefs are entertained and
- a pignistic level where beliefs are used to make decisions

3) beliefs at the credal level are quantified by belief functions.
4) beliefs at the pignistic level are quantified by probability functions.
5) the credal level precedes the pignistic level in that at any time beliefs are entertained

(and updated) at the credal level, the pignistic level appearing only when a decision
must be made.

6) when a decision must be made, beliefs at the credal level are transformed into beliefs
at the pignistic level, i.e. there exists a transformation, called the pignistic
transformation, from belief functions to probability functions. (Smets 1989)

1 The following text presents research results of the Belgian National incentive-program
for fundamental research in artificial intelligence initiated by the Belgian State, Prime
Minister's Office, Science Policy Programming. Scientific responsibility for this text is
assumed by its author. Research has been partly supported by the DRUMS projects
which is funded by the European Community as part of the ESPRIT Basic Research
Project 3085.
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To describe the TBM, one starts with Ω, a non-empty finite set called the frame of
discernment. Ω is equipped with a Boolean algebra ℜ  of some of its subsets. Every

element of ℜ  is called a proposition. The singletons of Ω are called the elementary

propositions. At most, one elementary proposition of Ω is "true". The singletons of Ω
can be seen as possible answers to a certain question, at most one answer being correct.
A proposition of ℜ is true if it contains the element of Ω that characterizes the true

singleton of Ω.

A credal state on Ω is a description of our subjective, personal judgment that the
propositions A∈ℜ  are true. It results from known, possibly inconclusive pieces of

evidence that induce partial beliefs on the propositions of ℜ . It is an epistemic construct

as it is relative to our knowledge.

The transferable belief model postulates that the impact of a piece of evidence
consists in allocating parts of an initial unitary amount of belief among the propositions of
ℜ . For A∈ℜ , m(A) is a part of our belief that supports A, i.e. that the 'truth' is in A, and

that, due to lack of information, does not support any strict subproposition of A. The m's
are called the basic belief masses (bbm).

If further evidence becomes available and implies that the proposition ¬B is false, then
the mass m(A) initially allocated to A is transferred to A&B. Hence, the name of
transferable belief model. This transfer of belief corresponds to Dempster's rule of
conditioning (except for the normalization factor).

S.2. Probabilities: to be or not to be.

An important but often neglected distinction must be made between the following two
types of probabilistic reasoning : (P.1.3)

Type 1. There exists a probability function P: ℜ→ [0, 1] where ℜ  is the finite

boolean algebra of propositions on which we rest our beliefs. But the values of P(A) for
A∈ℜ  are only known to belong to some intervals whose limits are called the upper

(P*(A)) and lower (P*(A)) probabilities. For ∀ A∈ℜ , one has:

P*(A) ≤ P(A) ≤ P*(A) (S1)

This is essentially the upper and lower probabilities (ULP) model.

Dempster (1967) created a similar model. He postulated the existence of a probability
function PX on some space X and a one-to-many mapping M from X to Y. The
probabilities PY induced on Y by PX through M are such that the lower (upper)
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probabilities function is a belief (plausibility) function. Up to here, Dempster's model
(which I call the PXMY model) is merely a particular form of ULP model2.

In both the ULP and the PXMY contexts, the interval [PY*(A) , PY*(A)] and its length

for A⊆ Y reflects the imprecision of our knowledge of PY(A).

Type 2. No probability function is postulated to exist on ℜ . The degree of

belief given to A∈ℜ , at the credal level, is quantified by a point-valued function bel(A).

Neither additivity nor Cox's axioms are postulated. The TBM postulates the primitive
concept of "part of belief", the basic belief masses (bbm)3. Such a model corresponds
closely to the one described in Shafer's book.

But in more recent publications, Shafer became less radical. He accepts the existence of
some underlying probability measure, but of a very different nature than that of the ULP
models.4 He claims that the meaning of a piece of evidence is random. He speaks about
the probability that the evidence means A, not the probability that A is true. His model is
essentially a PXMY model (see his translator paradigm, Shafer and Tversky 1986)

In type 2 context where underlying probability functions are not postulated, equations
like:

bel(A) ≤ P(A) ≤ pl(A) (S2)
are highly misleading. It is true that given a bel and its associated plausibility function pl,
there exists a set of compatible probability functions P that satisfy (S2), but one must
resist the temptation to give any interpretation to those probability functions other than to
be mathematical objects without relevance to our quantified belief. Only in type 1 context
does  the P function in (S2) have a perfectly well-defined relation with our belief.

Pearl's definition of incomplete information (P.2 §1) is really unusual. By
incomplete knowledge, I mean knowledge that is insufficient to reduce the set of possible
worlds into a single element. Should I know "everything", I would know in which world
I am. The lack of complete knowledge is responsible for the fact that I can only express
my beliefs about which world prevails. Wether that belief should be quantified by a
probability function or a belief function is obviously THE crucial question.

Strat's (1989) statement quoted by Pearl is indeed unfortunate as it leads one to believe
that BF should be used for "unavailable probabilities". If "unavailable" means that

2  Mathematically lower probabilities functions are capacities of order 2. In the PXMY
model the induced lower probabilities functions are capacities of order infinite; see
Choquet (1953).
3 Note that undefined concepts appear also in plain probability theory: the word
"probability" itself is also a primitive concept !
4 Shafer's ideas - but not the solution - are similar to those defended in the Evidentiary
Value Model (Gardenfors et al. 1983)
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"it exists but we don't know its value", then ULP are to be used. If "unavailable" means
"it doesn't exist", then Strat is correct. Pearl's discussion and comments result from the
inappropriate use of BF for typical ULP problems, a confusion unfortunately shared by
many users of BF.

The lesson to be derived from this distinction is that the TBM is not a model for poorly
known probabilities. For this case the appropriate model is the ULP model - maybe
under the PXMY form, if one can explain the origin of its components. The TBM is a
model that uses whatever is available, not a model to be used when some probabilities are
missing. The reason for this formulation is that people will usually  interpret the idea of
"missing probabilities" not as absent probabilities but as existing probabilities whose
values are missing. The correct statement should read more like: "the TBM is a model in
which we are ignorant of the existence of probabilities" (whereas the ULP models are
models in which we know of the existence of probabilities but are ignorant of their
values).

S.3. The static and dynamic components.

To study any model for quantified belief, one must consider not only its static
component (how are beliefs allocated?) but also its dynamic component (how are
beliefs updated?). In the TBM, the static component corresponds to the basic belief
masses allocation and the dynamic component to
1) the transfer of those basic belief masses among the propositions and
2) the combination of the beliefs induced by several pieces of evidence.

It must be emphasised that any comparison of the TBM with others models must
consider both components. Far too often, authors concentrate on the static component
and discover many relations between the TBM and upper and lower probabilities (ULP)
models, inner and outer measures (Fagin and Halpern 1989), random sets (Nguyen
1978), probabilities of provability (Pearl 1988) (P.1.4.§2), probabilities of necessity
(Ruspini 1986)) etc. But these authors usually do not explain or justify the dynamic
component, i.e. how updating (conditioning) is to be handled (except in some cases by
defining conditioning as a special case of combination). So I feel these partial
comparisons are incomplete, especially since all these interpretations lead to different
updating rules.

Updating - Combination: which comes first?.

Shafer presents his model by introducing successively 1) the static component (the
belief functions), 2) the combination process (Dempster's rule of combination) and 3) the
updating process (Dempster's rule of conditioning) as a particular case of the combination
process. We present the TBM by introducing successively 1) the static component (the
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basic belief masses) 2) the updating process (the mass transfer) and 3) the combination
process that we derive from the previous processes by requiring essentially the
compositionality of the combination (i.e. bel1⊕ bel2 is only a function of bel1 and bel2)

(Smets 1990a). I think this order of presentation of the TBM is more natural.

Updating by a true fact (P.1.3) is the most fundamental dynamic component. Later, one
introduces the concept of updating by uncertain facts (as with Jeffrey's rule of
conditioning, Jeffrey (1983), Shafer (1980)) and finally the concept of combining
symmetrically two BF induced by two "distinct" pieces of evidence. That the two
updating processes turn out to be mathematically special forms of Dempster's rule of
combination is not required by the model.

To show why I feel the updating process precedes the combination process, let us
examine the equivalent processes within the probabilistic framework. Remember that
if both BF bel1 and bel2 are probability functions P1 and P2, then Dempster's rule of

combination can be reduced to m12(x) = P12(x) = α P1(x) P2(x) for x∈Ω  if 1) there is
an equi a priori probability on Ω and 2) the two pieces of evidence that induced P1 and

P2 are conditionally independent for each x∈Ω . If one tries to define the conditioning as

a special case of combination, the conditional probability  P(x|X) is no longer defined as
P(x)/P(X) for x∈ X. It is defined as the result of the combination (with the equi prior and

the conditional independence being postulated) of the probability function P with a
probability function P' such that P'(x) = 1/ |X| for x∈ X and 0 otherwise. Can such a new

definition of the conditional probability be regarded as acceptable? It is mathematicaly
correct but looks faintly surrealistic. To claim that conditioning with BF is a special form
of combination is one and the same thing and that is why I am not in favor of that kind of
an approach.

S.4. What is TBM not ?

The TBM is not a model based on random sets or on upper and lower
probabilities. They share the same static components, not the dynamic ones. With
random sets, conditioning should be performed by the application of the geometric rules
(Suppes and Zanotti, 1977), except in very twisted cases (Smets 1990b). With upper and
lower probabilities, the G-rule5 is usually appropriate.

A very important element of the TBM is its total disconnection with any concept of
randomness or additive probabilities. Whenever randomness (or decision) is
involved, additive probabilities are of course perfectly appropriate, but this context is not

5 G-rule of conditioning is what Pearl calls FH conditioning (see P.3.3, equation P19).
Its description can be found in Dempster (1967). I called it the G-rule as I traced the work
on upper and lower probabilities to Good's papers. (see also Planchet, 1989)
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the one covered by the TBM. In the TBM context (belief entertained outside any context
of randomness or decision process), the use of additive probabilities to quantify our
beliefs  can be justified by axioms like those of Cox (1946). Cox's axiom 1 states that the
belief of the negation of a proposition should be a function of the belief of the proposition

belief (¬A) = f (belief(A))
Cox's axiom is not postulated in the TBM… and therefore the additive probabilities that
derive from it are not required in the TBM.

I also dissociate the TBM from the PXMY  model because Dempster's rule of
conditioning can be criticized in the latter case. Why indeed should one apply Dempster's
rule of conditioning in a PXMY context? (Levi 1983). When the truth is known to be
mapped into a subset Z of Y, Dempster adapts the M mapping accordingly but does not
update the initial probability distribution P on X by taking the new fact Z into account. I
developed the TBM as a model totally unlinked to any underlying probability model just
to avoid any such criticism. When I build a BF on some space Y, I never postulate the
existence of some space X endowed with a probability function and of a one-to-many
mappings from X to Y.

Beware nevertheless that the Bayesian analysis is always a particular case of the TBM
analysis (P.5 §1). The conclusions reached by a Bayesian analysis require more
information than those reached by a TBM analysis. The fact is that in order to perform the
Bayesian analysis, many probabilities must be specified on top of those used by the TBM
analysis and of course these extra specifications lead to results different from those
reached by a TBM analysis that does not use them. If these extra specifications had also
been introduced in the TBM analysis, both analyses would have led to the same results.
In fact, all results derived from a Bayesian analysis can also be obtained from a TBM
analysis if the same information is used in both analyses.

S.5. Open or closed worlds?

In Smets (1988) I explain the difference between the open and closed world assumptions.
Reconsider the definition of Ω in S.1. We postulate either that at most one elementary
proposition of Ω is true (open world assumption) or that one and only one elementary
proposition of Ω is true (closed world assumption). The normalization results from the
closed world assumption. Shafer postulates the closed world assumption. We generalize
the problem, accept that both contexts could exist and select the appropriate assumption
according to the problem under scrutiny. (P.1.3.3)

Pearl could easily have generalized his description of Dempster's rule of combination in
P.1.4. by dropping the statement "given that the two pieces of evidence are non-
contradictory" (§3) or "to condition beliefs on the evidence being non contradictory"
(§4). Distinguishing between the open and closed world contexts would have solved the
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"counter examples" in P.1.4 §6 and §7 for which the paradoxical results are due to the
normalization factor. His criticisms on the adequacy of Dempster's rule of conditioning
concerns the normalization problem more than the rule itself. Under an open-world
assumption, there is no normalization when applying both Dempster's rules.

S.6. Belief about unknown probabilities.

The three examples in P.2.1 and the remarks in P.2.2 §5 are irrelevant to BF, they are
ULP problems. They correspond to the type 1 context as explained in S.2. To grasp the
origin of the confusion, let us analyse example 1, the other two being solved identically.

        
A B

C

a

a'

a"

b

b'

b"

c

Figure 1: Simplex ABC.

In example 1 of P.2.1,  Ω is the simplex ABC (figure 1) characterized by all three

elements vectors (x1, x2, x3) where xi ≥ 0 and ∑
i=1

3
 xi = 1. (xi represents the unknown

P(Ei)). The three pieces of evidence are xi∈ [0, .5], i=1,2,3. For instance the first piece
of evidence induces a belief function with basic belief masses m1(AbaB) = 1 (see figure
1). The second and third pieces of evidence induce the bbm m2(CacA) = 1 and
m3(BcbC) = 1. Their combination by Dempster's rule of combination leads to m123(abc)

= 1. So any point in the triangle abc is a solution to the problem raised in example 1.
Similar results are derived if one considers the three inequalities of equation P7 as a
single piece of evidence that just says the solution is in the triangle abc.

The object language of the probabilities deals with the events Ei. The object language of

our belief deals with the vectors of probabilities (points in the simplex ABC). The belief
statements do not concern the events Ei. An open question is how to build your beliefs on
Ei given your beliefs on their prtobabilities. The metalanguage (our belief statements)

expresses our knowledge about which "object" (vector of probabilities) is true. Example
1 (and the other two) confuses the two levels.
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The introduction of bbm mi is of course not very useful in these examples. So in order to

show what the difference between the object language and the metalanguage really is, I
shall generalize the problem raised in example 1 by considering e.g. that the bbm m1 are:
m1(Ab'a'B) = .3 m1(AbaB) = .4 m1(Ab"a"B) = .2 m1(ABC) = .1

which translates e.g.
I believe at level .3 that P(E1) ≤ .25
I believe at level .7 that P(E1) ≤ .50
I believe at level .9 that P(E1) ≤ .75
I believe at level .6 that .25 ≤ P(E1) ≤ .75 …

If similar bbm had been obtained for m2 and m3, then the full strength of the TBM could

be realized. Many errors, like those of Pearl's three examples, derive from the fact that
each BF is characterized by one focal element and the expression bel(P(E1) ≤ .5) = 1 is
translated into bel(E1) = .5. A belief about a probability of an event is not identical to a

belief about the event. In these examples, the BF are analogous to the meta-probabilities
(probabilities of order 2)

As to the remark after equation P8 in P.2.1, I agree that the function defined by P7 is not
a BF, but then, I never claimed that lower probability functions are belief functions. They
are unrelated. P* expresses one thing, bel another.

S.7. The unspoiling of the sandwich.

The sandwich principle raised in P.2.2 example 4 and P.3.2 can be stated as
bel(A) ∈   [ bel(A|B) , bel(A|¬B) ] (S3)

It is an important issue that must be solved as S3 is not required with the TBM. I shall
present an example in which S3 seems not to be required, proceed to explain the relation
between bel(A), bel(A|B) and bel(A|¬B) as deduced from the Generalized Bayes
Theorem, then why S3 is not required within the TBM, and, finally, answer a few
specific questions raised by Pearl.

S.7.1. Examples against the sandwich principle.

Suppose a given person X that can be either male (M) or female (F), young (Y) or old. I
try to assess my belief that X is young.
Consider the following pieces of evidence.

E1: A not fully reliable witness W1 claims he saw X and says: "X is not an old
man". By 'not fully reliable' I mean that maybe W1 saw X and is telling the

truth about X, or maybe he did not see X and saw somebody else.
E2: Another not fully reliable witness W2 says : "X is not an old woman".

M: I know that X is a man
F: I know that X is a woman
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For simplicity's sake, let us accept that the reliabilities of both witnesses are the same and
our prior belief about X's age is independent of our knowledge about X's sex.

How would I compare bel12(Y) and bel1M(Y) where :
bel12(Y) is the belief that X is young given E1 and E2.
bel1M(Y) is the belief that X is young given E1 and M.

Which of the following relations is more natural?
bel12(Y) = bel1M(Y) (S4)
bel12(Y) < bel1M(Y) (S5)

bel1M(Y) reflects the fact that X is male (known for sure) and W1 was reliable when he
said that "X is not an old man". So bel1M(Y) is related to the reliability given to W1.
bel12(Y) results from the combination of the pieces of evidence provided by the two

witnesses. If both witnesses are reliable, then X is young. Otherwise I do not know. So
bel12(Y) is related to the fact that both W1 and W2 are reliable.

I personally feel that (S4) is not required, and (S5) is more appropriate. But once (S5) is
accepted, it is proved below that:

bel12(Y) < min ( bel12M(Y) , bel12F(Y) ) (S6)
where bel12M(Y) and bel12F(Y) are respectively the beliefs that X is young given the
pieces of evidence E1, E2 and M or F. They correspond in fact to the conditional beliefs
that X is young given X is male or female (and E1 and E2).

So the inequality S6 contradicts the "sandwich" principle described in S3 (P.3.2 §2) as
S6 is equivalent to:

bel12(Y) < min ( bel12(Y|M) , bel12(Y|F) )

Proof that (S5) implies (S6).
The symmetry of the reliabilities implies that bel1M = bel2F, so (S5) becomes bel12(Y) <
bel2F(Y). Once M is known, E2 becomes a tautology, so bel1M = bel12M. Identically
bel2F = bel12F. Replacing bel1M and bel2F in (S5) one gets (S6). QED

In conclusion, the sandwich principle might seem natural though I think my example
casts some doubt on any such naturalness. If you accept the sandwich principle, you
must accept S4. (In fact S4 results from a Bayesian analysis, whereas S5 results from a
TBM analysis.)

As another example, suppose you have 3 potential killers, A, B or C. Each can use a gun
or a knife. I shall select one of them but you will not know how I select the killer. The
killer selects his weapon by a random process with p(gun) = .2 and p(knife)=.8. Each of
A,B,C has his own personal random device, the random devices are unrelated, and it just
so happens they share the same probabilities (the .2 values).
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Suppose you are Bayesian and must express your 'belief' that the killer will use a gun.
The BF solution gives bel(gun) = .2x.2x.2 = .008. What about you? Would you defend
.2?  But this only applies if I select the killer with a random device (in which case the BF
also gives .2 as a result). But I never said I would use a random device, I might be a very
hostile player, and cheat whenever I can.

So before assigning the killing to A, B and C, I will order each of them to note, on a
piece of paper,  the weapon they would use if selected. They use their personal random
device and note the name of the weapon they would use if selected. Suppose I am an
hostile player. In that case, I would do whatever I could to show your prediction about
the weapon used is wrong. You express your belief about the gun, so if I can, I will
assign the killing to somebody who wrote 'knife' on his paper (I just look at the papers).
So what is the 'chance' I cannot beat you? What is the probability that whatever I do you
win. Answer: the chance that the 3 killers wrote 'gun', i.e. .008.

So your .008 belief for gun corresponds to the strength of your belief that whatever
selection procedure I use - even the most hostile - you will win if you bet on  'gun'.

So you could interpret bel(x) as the probability that you are sure to win whatever Mother
Nature (however hostile) will do (and pl(x) = 1 - .8x.8x.8 then corresponds to what a
most friendly Nature would do). The betting behaviour proposed by Stratt (1989) is in
fact based on these ideas.

S.7.2. Marginal beliefs based on conditional beliefs.

Let ΩA and ΩB be two finite frames of discernment.  Let ℜ A be an algebra on ΩA. Let

B = {Bi: i=1,…n} where the Bi are the elementary propositions of ΩB. Suppose one

knows bel(A | Bi) for each A∈ℜ A and each Bi∈ B. Suppose the conditional BF are

distinct. Let ℜ B be an algebra on ΩB. Given some prior belief bel0 on ℜ B (with bbm

m0), then the marginal bel(A) = bel(A|  ∪
i=1
n  

Bi) defined on ℜ A is:

bel(A) = \i\su(Β∈ℜ B,,  { m0(B) )\i\pr(Bi∈ B, Bi⊆ B,,      bel(A | Bi) })

(S7)

(This relation is deduced from the so-called conditional embedding underlying the
Generalized Bayes Theorem, see Smets (1978, 1979, 1981, 1986, 1987), Shafer
(1982)).

In Pearl's example 4, I consider that I am in a state of total ignorance as regards ΩB,

hence by S7
bel(A) = bel(A | B) bel(A | ¬B) ≤ min( bel(A | B) , bel(A | ¬B) )

which contradicts the sandwich principle.
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S.7.3. Why is the sandwich principle not required?

Let cyl(A), cyl(B) and cyl(¬B) be the cylindric extensions of A∈ℜ A , B and ¬B∈ℜ B
on the cartesian product Ω = ΩA x ΩB. Let belΩ be the BF defined on Ω that could

generate the various bel(A), bel(A | B) and bel(A | ¬B) by marginalization or
conditioning.

Then bel(A) = belΩ(cyl(A) | cyl(B)∨ cyl(¬B))
bel(A | B) = belΩ(cyl(A) | cyl(B))
bel(A | ¬B) = belΩ(cyl(A) | cyl(¬B))

All these bel concern the same event on Ω (cyl(A)) but the last two result from some
updating on some true facts (cyl(B) and cyl(¬B)). In the latter two cases we know more
than in the first. It seems reasonable to accept that to some context the more we know the
stronger our belief could be6. Each piece of evidence (the one inducing the updating on
cyl(B) and the one inducing the updating on cyl(¬B)) induces some information about
cyl(A). That the resulting beliefs on A (bel(A | B) and bel(A | ¬B)) are increased in
both cases (min (bel(A | B) , bel(A | ¬B)) ≥ bel(A)) becomes perfectly acceptable. In
particular, when we know nothing our belief is vacuous and it will increase by the
accumulation of new pieces of evidence. So our belief on cyl(A) increases also once we
know that B is true (or that ¬B is true).

In fact, suppose one knows there is no a priori whatsoever on B, then (S7) becomes:

bel(A) = ∏
i=1

n
 bel(A | Bi) (S8)

Hence with large n, bel(A) tends in general towards a vacuous belief function, which I
consider to be perfectly reasonable. Should I have some probabilistic a priori on B, then
bel(A) would be some weighted average of the bel(A | Bi) (as required by the sandwich

principle). But when the belief on B is vacuous, the principle does not hold. That bel(A)
tends to 0 reflects the fact that cyl(A) is hardly supported when n is large.

S.7.4. Further considerations.

1) The conclusions at the end of P.2.2.§2 are wrong. I agree that conditional beliefs
bel(A | Bi) for A in ΩA within each context Bi∈ B are usually the real foundation for

expressing expert opinions and that there is no prior over the space ℜ B. Our

Generalized Bayes Theorem was developed with exactly that idea in mind. Pearl's

6 This argument does not mean that bel(A) will always increase as new pieces of evidence
become known, as the latter could also be in contradiction with A.
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criticism is inappropriate. It results, of course, from his erroneous requirement of relation
S3.

2) The pork eating problem. (P.2.3. reasoning by cases §2)
Again see relation S8 for the origin of the .63 result. Furthermore, one should be very
careful when subdividing a category (the Jews) into sub-categories. One must remember
that relation (S8) must be respected. Pearl's data .7 imply that there is an a priori bbm m
on the four Jews sub-categories (OJ, CJ, RJ, NAJ) among the Jews such that:

.70 = .999 · m(OJ) + .8 · m(CJ) + .4 · m(RJ) + .2 · m(NAJ) +
+ .999 ·  .8 · m(OJ∨ CJ) +…   + .999 · .8 · .4 · .2 · m(OJ∨ CJ∨ RJ∨ NAJ)

How to derive m is still an open question. Should we apply the least specific principle as
advocated by Dubois and Prade, or minimize some measure of information (Smets,
1983).

S.8. De re and de dicto conditionals.

Pearl (P.2.2 §2 and §3, and P.2.3) raises the problem of the quantified conditional,
already studied by Harper et al. (1981). In fact most problems come from the ambiguity
of the proposition:

"I believe that A implies B at level p " (S9)

Should (S9) be translated into:

if A then (belief(B) = p) A ⊃ (belA(B) = p) de re interpretation

belief(if A then B) = p bel(A ⊃  B) = p de dicto interpretation

I call these two interpretations the de re and de dicto interpretations (Smets et al.,
1990).

The implication A ⊃  B is translated as a material implication ¬A∨ B. belA(B) denotes

the belief given to B in a context where A is true. It corresponds to bel(B | A).

With BF one has:

belA(B) = bel(B | A) = 
bel(¬A∨ B) - bel(¬A)

1 - bel(¬A)  = bel(¬A∨ B) = bel(A ⊃  B)

if bel(¬A) = 0, an accepted requirement as it only translates the idea that the knowledge
of an implication should not induce any a priori belief on the antecedent domain. The de
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re and de dicto interpretations lead to the same results - a nice property that
resolves most (if not all) conflicts related to the concept of probability of conditionals
versus conditional probabilities (Lewis, 1976).

A particular case is raised in Pearl's Footnote 5: If all we know is bel(If B then A) =
p, then the use of bel(B ⊃  A) = bel(¬B∨ A) = p leads to the results derived by the

deconditionalization process (called conditional embedding in Shafer 1982) (see relation
S7 in S.7.2 with m(A|B) = p).

Using deconditionalization  (see S7),  one can solve the case where I know that:
I believe at level pi that Bi implies Ai for i = 1, 2…n,

with Bi∈ B and Ai ∈ℜ A (see P.2.2). Each uncertain implication is translated into the

simple support functions with m(¬Bi∨ Ai) = pi, and combined via  Dempster's rule of

combination.

Suppose that B∈ℜ B is known to be true. Then from S7 the BF induced on A∈ℜ A by

"B is true" and the set of uncertain implications is
bel(A | B) = ∏

Bi∈ B
  bel(A | Bi) = ∏

i:Bi∈ B

  ci p i  (S10)

with ci = 1 if Ai ” A, 0 otherwise.

A pity these formulae (S7 and its special case S10) never became very popular. In actual
fact, they were completely ignored. Let us hope the present papers will help to promote
them.

S.9. Constraints or combinations.

I would like to introduce another problem concerning the meaning to be given to the
available information on our belief (P.2.3).

Situation 1: With probability theory, one usually postulates the existence of some
underlying probability function on some space and all pieces of evidence correspond to
some constraints on this probability function (e.g. I know P(A) and P(B) but not
P(A&B) as in P.2.1 example 2).

Situation 2: With BF, it is usually postulated that each piece of evidence induces a BF on
some space, that they are distinct (a concept which incidently still requires a formalized
definition) and that they must be combined through  Dempster's rule of combination.

The two situations are totally different.
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The first situation can also be encountered with BF even though I do not think it is often
relevant. This is what Pearl tries to solve in P.2.1, examples 1 and 2. In such partly
defined belief functions, one can always try to apply the minimum specificity
approach of Dubois and Prade (1987), i.e. find the least specific BF that satisfies the
given constraints where bel1 is less specific than bel2 if bel1(A) ≤ bel2(A) ∀ A in Ω.

The second situation can also be encountered with probability function … but it raises the
problem of how to aggregate probabilities (Genest and Zidek, 1986).

For instance, in (P.2.3.reasoning by cases §1) one must distinguish between the fact that
Pearl's equations P11 are
1) either two constraints on the same underlying BF: in that case bel(B | A) = .9 and bel

(B | ¬A) = .7 and the least specific underlying BF is such that m(B) = .6, m(A∨ B)

= .1 and m(¬A∨ B) = .3.)

2) or produced by two distinct pieces of evidence, in which case one will obtain bel(B) =
.63 by the application of (S8). That solution does not run counter to common sense
as explained in S.7.

S.10. Tweety splashed by the Sprinkler while eating his sandwich.
(P.2.3.chaining and example 5)

Tweety and the Sprinkler examples deserve a full TBM analysis in order to avoid the
erroneous conclusions derived from shallow analysis.

Tweety is an atypical bird.

The TBM analysis of the Tweety problem  is the following :
Let B = {TB, NTB, NB} where TB = typical bird, NTB = non typical bird and NB =
non-bird. Let F = {F, ¬F} where F = "it flies". The data are presented in table 1. They
translate:

In general typical birds fly.
In general non-typical birds do not fly.
In general non-birds do not fly.

TB NTB NB

F α 0 0

¬ F 0 β γ
Table 1: The bbm allocated to F and ¬F given TB, NTB and NB.
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Furthermore, "in general birds are typical birds" (bel(TB | ¬NB) = δ). δ is the bbm

given to TB∪ NB that is transferred to TB by the conditioning on ¬NB.

case 1: Let it be known that Tweety is a bird. The application of (S7) implies that
bel(F | TB∨ NTB)

= m(TB | TB∨ NTB) bel(F | TB)

   + m(NTB | TB∨ NTB) bel(F | NTB)

   + m(TB∨ NTB | TB∨ NTB) bel(F | TB) bel(F | NTB)

= δ α
bel(¬F | TB∨ NTB) = 0

case 2: Let it be known that Tweety is a penguin and all penguins are NTB, then by (S7)
bel(F | NTB) = 0
bel(¬F | NTB) = β

and Tweety is still a bird as it should (bel(NTB) = 1, so bel(TB∨ NTB) = 1). Who said

that BF is essentially a theory of monotonic logic? (see P.2.2 §3)

case 3: Let it be known that Titi is a typical bird. Thus by S7, bel(F|TB) = α, bel(¬F|TB)

= 0 and bel(B) = 1. Hence our belief that typical birds fly is larger than our belief that
birds fly…  which is required (but not always derived in the penguin analysis).

The TBM analysis of the Tweety example (and rules subject to exceptions) deserves
a fuller treatment (see Smets and Hsia, 1990). As shown in case 2, the facts "Tweety is a
penguin" and "Tweety is a bird" lead to bel(F) = 0 and bel(¬F) = β, not to a vacuous BF

as claimed by Pearl (P.5 §6).

Sprinkler is on and it does not rain.

The sprinkler problem is indeed a tricky one, but so is it with many probabilistic
problems (see Székely G., 1986).

Let S = "Sprinkler was on" S = {S, ¬S}
R = "It rained" R = {R, ¬R}
W = "Ground is wet" W = {W, ¬W}

bel1(S⊃ W) = 1

bel2(R⊃ W) = 1

bel3(W⊃ S∨ R) = 1

bel4(¬S) = α
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The BF express that the antecedents "Sprinkler was on" (bel1) or "It rained" (bel2) imply
the consequent "Ground is wet" and no other causes could be invoked (bel3). bel4
expresses that usually sprinklers are not on.

The vacuous extension of the four BF on the product space SxRxW  and their
combination induces the BF whose bbm are

m((¬W,¬S,¬R) ∨  (W,¬S,R)) = α
m((¬W,¬S,¬R) ∨ (W,S,¬R) ∨  (W,¬S,R) ∨  (W,S,R)) = 1 - α

By conditioning on S, α is transferred to Ø, and 1 - α is transferred to (W,S). So after

normalization, bel(S) = 1, bel(W) = 1 and bel(R) = 0 as it should.

By conditioning on W, α is transferred to (W,¬S,R) and 1-α to (W,S,¬R) ∨  (W,¬S,R)

∨  (W,S,R). So bel(W) = 1 and bel(R) = α , which translates the idea that "Ground is

wet" suggests "It rained".

The paradoxes described by Pearl do not exist  when BF are used correctly.

The Peter, Paul and Mary sandwich (P.3.2. example 5)

Consider the product space CxS where C ={H, T} and S = {h, t} (translation: Coin,
Head, Tail, Sandwich, ham, turkey). Let the four elements of CxS be a = (H,h),
b = (H,t), c = (T,h), d = (T,t). The problem is to build a belief function on CxS. We
know that Pr(H) = Pr(T) = bel(H) = bel(T) = .5. (I think that you should always accept
Hacking's frequency principle: if Pr(x) = p then bel(x) = p.). So on CxS,

bel(a∪ b) = bel(c∪ d) = .5.

Next what are bel(H|h) and bel(H|t). The first remark is that they must satisfy the
constraint:

'bel(H|h) = x' ≡ 'bel(H|t) = x'

whatever x (here x = .5). The only way to build a belief function on CxS such that this
constraint is always satisfied is by allocating the basic belief masses on CxS such that
m(a∪ b) = m(c∪ d) = .5 . It satisfies all constraints (the one relative to bel(a∪ b)... and the
very strong "correltation" ('bel(H|h) = x' ≡ 'bel(H|t) = x').

What is the chance that Paul will win $1000. To win (W) is equivalent to obtaining a∪ d.

If Paul knows that the sandwich is h, then his chance of winning is .5. (idem if turkey).
(one has bel(W|h) = bel(H|h) = Pr(H|h) = .5, etc...)

If Paul does not know which sandwich was prepared, then bel(W) = bel(a∪ d) = 0 =

bel(¬W) = bel(b∪ c). But if Paul must bet on W, which of course is his real problem (the
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$1000 attest to it), then Paul builds his pignistic probabilities on CxS by applying my
pignistic transformation: The .5 basic belief mass given to a∪ b is split equally between a

and b (idem for the other .5) . So each singleton of CxS receives a BetP of .25, and
BetP(W) = BetP(a) + BetP(d) = .5, as requested by Pearl.

Other paradoxes.

Most paradoxes raised by Pearl in P.2.3.contraposition are paradoxes related to the
translation of IF…THEN by material implications. They exist in logic and are
unrelated to the use of BF.

I consider it logically correct to state "If you are hungry, you haven't eaten cakes". That it
is not a useful statement is irrelevant. One should be careful not to confuse truth and
usefulness.

With regard to the bird, in a world with "only" birds, the translation of "typical birds
fly" has to be done as with Tweety. Two categories need to be created: Typical birds
(those who usually fly) and Non-typical birds (those who usually do not fly). The
paradox then disappears.

With the kind person, if all I know are the two rules given by Pearl, then I cannot
understand Pearl's conclusion. I feel it is perfectly reasonable to believe that Joe is
unkind (with strength m2). Note that the same conclusion (and Pearl's dissatisfaction)
would appear in plain logic. Given the two rules, F will imply ¬K. To avoid such a
conclusion - as seems to be Pearl's intention - there must be further rules. If someone
would only tell me what they are I would include them in the TBM analysis.
Dissatisfaction with BF models is often due to the fact that only some rules are
considered, which then lead to unsatisfactory conclusions. But the reason why these
conclusions are unsatisfactory is that there are extra constraints we would like to see
fulfilled… but did not include in our initial analysis. Introduce them in the TBM analysis,
and the results will be satisfactory.

S.11. The three prisoners problem. (P.3.1)

The three prisoners problem is a nice problem that deserves a TBM analysis. Let A1,
A2 and A3 be the three prisoners. Everybody knows that two prisoners are going to be
executed. I (A1) call the guard and ask him to give me the name of one of the other two
prisoners that is going to be executed. He answers A3. Should I change my belief that I
will be saved given I know A3 is going to be executed?
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Before I ask the guard, my belief that the saved prisoner S was A1 was: bel(S=Ai) = 1/3.

It was based on the accepted idea that the judge would randomly select (with probability
1/3) the prisoner that would be saved. Two situations could then be considered.

Context 1: The guard looked over the judge's shoulder, saw the result of the selection,
came to my cell and told me "A3 is not saved". It is equivalent to saying "A3 was not
selected": conditioning on ¬A3 seems to be realistic. Hence my belief that I would be

saved increased to 1/2.
bel(S=A1 | S≠A3) = 1/2

This is how the solution disliked by Pearl is arrived at. But it does not correspond to the
context that concerns Pearl.

Context 2: The context that Pearl uses is the following: I called the guard, told him I
knew one of A2 or A3 had to die, that knowing the name of one of those who would be

executed would not change my belief that I would be saved, so that the guard could
answer my question. And so he did. Why did he agree ? Because the guard had made
sure that answering the question would not change my belief about being saved. To reach
this goal, all he had to do was to make it clear to me that he would select with probability
1/2 between A2 and A3 in case I was going to be saved. In such a case, the TBM

analysis is reduced to a plain probabilistic analysis. One gets:

bel(S=A1 | guard accept to answer and say S≠A3) = 1/3.

The TBM and probability solutions are identical, which is normal as the probability
solution corresponds to the TBM solution whenever beliefs happen to be additive.

S.12. Decision making.

Pearl (P.1.4.§5) raises the problem of decision based on BF. A frequent error
consists in interpreting bel(A) as the maximal rate at which one would be willing to bet on
event A. This interpretation concerns lower probabilities, not belief functions. In both
Shafer and the TBM interpretation bel provides only the strength of our belief that A is
true. It does not directly claim the probability that A is true, as A may be true by chance
over and above the necessity implied by bel(A). Where betting context is concerned,
let me refer to the paper (Smets 89) in which I explain what pignistic probability is,
i.e. the probability derived from my belief and used in order to bet "coherently". Beliefs
quantified by BF can be used as a basis for rational decision making. Once decision
is involved, our BF is transformed into an additive measure (a probability function) on
the set of alternatives, and decisions are then based on these probabilities (and the utilities
involved).
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Tu Quoque Judea

The translation of the sandwich principle into decision theory cannot be used as a
criticism against BF. The fact is the principle is violated even within probability theory as
shown by the Newcomb paradoxes (Eells, 1982, Gärdenfors and Sahlin, 1988).

As an example of such a paradox, take the story of King David and Bath-Cheba. (2
Samuel 11.2-4). King David fell in love with Bath-Cheba, Urie's wife. He could easily
have sent his guards to get her but worried about the consequences of such an act: the
pleasure of Bath-Cheba's company had to be weighed against the risk that this iniquitous
act would cause a revolt,which for him would be disastrous. So, he was going to abstain
when the grand vizier Seyab explained to him that revolts result from lack of charisma,
not from iniquitous acts. Either a King has charisma and revolts are unlikely or he does
not have charisma and revolts are likely. That he has committed iniquitous acts is
irrelevant in both contexts. So why not enjoy Bath-Cheba's presence? Where does the
paradox come from?

Origin of the paradox.

The fact is King David was well-versed in statistics and decision theory, so before
deciding, he collected data from a hundred previous kings, on their charisma status (C),
on whether they had committed iniquitous acts (B) and whether there had been a revolt
(R).

C ¬ C

B ¬ B B ¬ B
R 2 3 24 16

¬ R 18 27 6 4

20 30 30 20

Table 2: Distribution of 100 kings according to charisma (C), the committing of
iniquitous acts (B) and occurrence of revolt (R).

B ¬ B

R 26 19
¬ R 24 31

Table 3: Distribution of 100 kings according to the committing of iniquitous acts (B)
and occurrence of revolt (R).
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The utility of each act and consequences are given in table 4.

u B ¬ B

R -β+ε -β
¬ R ε 0

Table 4: Utility of each act (B or ¬B) and consequence (R or ¬R). ε is the (positive)

utility that results from Bath-Cheba's company, -β is the (strongly negative) utility that

results from revolt (β>>ε)

King David's first computation is based on the probabilities given in table 3 where he
does not consider the charisma status. In that case, the expected utilities are

u(B) = ε - β · 
26
50  <<   u(¬B) = -β · 

19
50

As β is much larger than ε, King David should not send his guards to get Bath-Cheba.

But if King David considers his charisma status (therefore the probabilities given in table
2), one gets:
- if King David has charisma

u(B) = ε - β · 
2
20   >  u(¬B) = -β · 

3
30

- if King David does not have charisma

u(B) = ε - β · 
24
30    >  u(¬B) = -β · 

16
20

So in both contexts, King David should send his guards and get Bath-Cheba. What are
we to make of this?

The sandwich principle questioned once already in S.7 does not stand up to criticism
within strict probability theory.

S.13. Conclusion.

I think I have answered all of Pearl's criticisms against BF and therefore also against the
TBM.

Pearl complains about the lack of effective procedure for deciding whether a problem can
be represented by BF. He is right, but I would also like to have an effective procedure for
deciding whether a problem can be represented by a probability function (or possibility
functions, or fuzzy sets theory etc)
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 I think it is equally important to expect a procedure that could correctly describe a BF
problem (see the Tweety, the Sprinkler and Pork Eating solutions). It is so awfully easy
to be wrong. But this is, unfortunately, not specific for BF. Just consider the case where
you collect the conditional probabilities on A given B, on B given C and on C given A.
Careless manipulations could easily lead to absurdity as many constraints underlying the
three sets of conditional probabilities might be violated.

The comparison between BF and likelihood is not so enlightening. In fact a more
interesting relation exists between likelihood and possibility theory (Smets, 1982).

I wish to apologize for possibly being somewhat harsh in some of my replies. I was very
happy that Pearl's paper provides me with an opportunity to show how the TBM can
resist assaults of that kind. Pearl's criticism, unfortunately, reflects the status of BF
literature. I think the foundation of any models for quantifying belief is a very important
and all too often neglected topic. To use BF and  Dempster's rules blindly can be very
dangerous indeed. Their use must be justified by the nature of the problem to which they
are applied, not by fad or ad hoc argument.
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