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Ignorance is precious, for once lost it can never be regained.

Abstract

This paper advocates the use of non-purely probabilistic approaches to higher-order
uncertainty. One of the major arguments of Bayesian probability proponents is that representing
uncertainty is always decision-driven and as a consequence, uncertainty should be represented
by probability. Here we argue that representing partial ignorance is not always decision-driven.
Other reasoning tasks such as belief revision for instance are more naturally carried out at the
purely cognitive level. Conceiving knowledge representation and decision-making as separate
concerns opens the way to non-purely probabilistic representations of incomplete knowledge. It
is pointed out that within a numerical framework, two numbers are needed to account for partial
ignorance about events, because on top of truth and falsity, the state of total ignorance must be
encoded independently of the number of underlying alternatives. The paper also points out that
it is consistent to accept a Bayesian view of decision-making and a non-Bayesian view of
knowledge representation because it is possible to map non-probabilistic degrees of belief to
betting probabilities when needed. Conditioning rules in non-Bayesian settings are reviewed,
and the difference between focusing on a reference class and revising due to the arrival of new
information is pointed out. A comparison of Bayesian and non-Bayesian revision modes is
discussed on a classical example.

1 - Introduction

Should degrees of belief be represented by probabilities, and more precisely by point-
valued Bayesian probabilities ? This question is recurrently debated in the community of
Uncertainty in Artificial Intelligence, and the controversy has sometimes led to the publication
of very strong opinions about who is right and who is wrong. In this position paper we suggest

1 This work has been partially funded by the CEC-ESPRIT III Basic Research Project 6156 (DRUMS II).
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that the controversy is due to a basic misunderstanding of each camp about the background and
basic motivations of the theory advocated by the other camp. Theories are always developed
with certain purposes, and these purposes delimit what is to be a problem and what is not to be
a problem. Our aim is thus to try and suggest that the problems addressed by non-additive
uncertainty models, that is, the representation of and reasoning with incomplete knowledge and
partial belief, differ from the problem addressed by subjective Bayesians, that is, decision-
making.

The marriage of Artificial Intelligence (AI) with subjective Bayesian probability is
quarrelsome (to quote Garbolino (1988)) because they have been initially concerned with very
different purposes. Bayesian probability in its subjective form has been developed by Ramsey,
De Finetti and Savage (see, e.g., Kyburg and Smokler, 1964), with a view to explain what is a
rational decision under uncertainty. To quote Ramsey "the kind of measurement of belief with
which probability is concerned is a measurement of belief qua basis of action". Since then all
authors contributing to the subjective probability literature have emphasized this role of
probability, and the betting situation serves as a prototype of action under uncertainty.

On the contrary, the question of making decisions is almost absent from a large part of
the AI literature, although the situation is changing to-date. The claimed purpose of AI is
knowledge representation and inference rather than decision. Moreover AI contributors have
greatly insisted that knowledge should be represented by symbols, not numbers, hence the role
played by classical logic and computer languages like LISP in the development of AI. It is
striking to notice that even when numbers, such as certainty factors, have been empirically
introduced in pattern-directed inference systems, there has been a deliberate caution not to use
probability theory. Besides, it is also striking that an expert system like MYCIN (Buchanan and
Shortliffe, 1984) whose aim was both to diagnose diseases and advise on medical prescriptions
did not use utility theory for the latter task. More generally, the eighties have witnessed the
emergence of so-called decision-support systems, that were developed rather independently
from decision theory.

It is only recently that AI seems to have realized that making decisions is a particular
human activity that is worth considering as a particular subfield of interest, and that more than
50 years of decision theory might be relevant in that respect (e.g., Langlotz and Shortliffe,
1989). Moreover the reluctance of AI with respect to numbers seems to be alleviated, if not
vanishing. This reluctance was apparently due to two causes, at least: first the inadequacy of
first computer languages like FORTRAN to represent and process knowledge, because these
languages aimed at encoding algorithms that solve numerical problems, second, the ad hoc use
of numbers in the expert system literature that may have cast some discredit on the very idea of
using numbers in AI. It seems that many AI advocates of the symbolic approach have
misinterpreted the role of numbers and their nature. Namely, measurement theory (Krantz et
al., 1971) explains that numbers are a useful tool for representing and exploiting qualitative
structures such as orderings. Utility theory, after Savage (1972), completely adopts this point
of view which reconciles the use of numbers with the symbolic description of preference. The
last 10 years have led to the recognition of preference relations as a basic tool for modeling
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plausible reasoning by means of nonmonotonic logics (Shoham, 1988). It can be imagined that
the next step will be to consider numerical representations for these orderings.

Despite its apparent misunderstanding of numbers, AI has promoted the idea of
modeling various human activities that differ from decision, and especially various types of
reasoning tasks. The problem of knowledge representation is at the core of reasoning models.
In this position paper we claim that how knowledge should be represented depends upon the
reasoning task under concern. Knowledge is almost never perfect, accurate, complete. It is
pervaded with imprecision, vagueness and uncertainty. Hence it is natural to introduce these
aspects inside the various paradigms of knowledge representation. However, whether or not
we should adhere to Bayesian subjective probability for these many purposes is open to debate.
By closely relating probabilistic modeling to decisional tasks, and promoting this view inside
AI, Bayesian subjectivists implicitly ignore the existence of other kinds of human mental
activities that deserve scientific investigations. Our thesis here, is that such tasks as deductive
reasoning, plausible reasoning and belief revision under uncertainty require a framework for the
representation of incomplete knowledge that is broader than the one offered by Kolmogorov
axioms and their betting behavior interpretations. Far from rejecting the existing results on
Bayesian decision theory, we suggest that the acceptance of non-additive representations of
belief by Bayesian subjectivists is conditioned on their accepting the existence of knowledge
representation problems not directly aiming at decision-making.

Section 2 develops this point of view. Section 3 shows that a single probability distribution
cannot model total ignorance. Section 4 discusses various uncertainty models including second-
order probability in relation to this thesis and Section 5 shows that they all agree with respect to
the decision problem. Section 6 envisages belief revision. It reviews various conditioning rules,
trying to lay bare their role in specific belief change problems. Section 7 points out a
counterintuitive behavior of Bayes rule when it is used to revise betting rates induced by
degrees of belief that express a state of partial ignorance.

This position paper elaborates on ideas already advocated by the authors in particular
settings such as possibility theory and belief functions (e.g., Dubois and Prade, 1990, Smets,
1991, 1993a, Smets and Kennes, 1994).

2 - Partial Ignorance Versus Uncertainty about Decision

The basic claim that motivates the relevance of non-additive representations of belief is
summarized by the following postulate:

Postulate 1: Modeling incomplete knowledge differs from modeling a state of uncertainty
about how to act.

Very early Ramsey (1931) touched upon this issue when he distinguished between belief as
"intensity of feeling, …, of conviction" and belief "qua basis of action". Although he then
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focuses on the latter, his dismissal of the first point of view is rather unconvincing. Keeping
this distinction in mind we claim that there are at least two kinds of uncertainty that mirror
Ramsey's distinction: uncertainty about what is true or false, and uncertainty about how to act.
The first kind pertains to a state of (possible absence of) knowledge, the second kind refers to a
situation of risk. Especially, in the latter not only are there degrees of belief in the occurrence of
events, but there is also the possibility of losing or gaining something, depending on a choice
(as patent in the betting behavior setting).

Deductive inference and plausible reasoning differ from decision-making. Deductive
inference aims at deriving what can be said about a certain domain of investigation given what
is known. Plausible reasoning aims at deriving what is the normal course of things given what
is known. Decision-making aims at knowing what to do in the front of a given situation when
the state of the world is unknown. Deductive inference and plausible reasoning are question-
answering tasks, and should be at work in information systems such as deductive databases.
On the contrary, a decision-support system supplies advice.

Deductive inference tells us whether a given proposition is true, false or whether its
truth status is unknown, given the current state of knowledge. Plausible inference tells us if a
given proposition is normally expected to be true. If knowledge were complete in a certain area
of investigation, answering a question of the form "is a given proposition true (in that area)"
would be easy on a pure yes-no basis, provided that the proposition is clearly articulated. In the
absence of complete knowledge, not all questions can be answered in this simple way.
However beliefs can be entertained about propositions whose truth or falsity cannot be firmly
established. Here belief is understood according to Cohen (1993) as "a disposition, when
attending to issues raised, or items referred to, by the proposition that p, normally to feel it true
that p and false that not-p, whether or not one is willing to act or argue accordingly" (italics are
ours). In the scope of information systems, beliefs will be encoded as a preference relation (that
is quantified or not) among propositions of interest, and this preference relation enhances the
capability of the systems when answering questions. We shall assume that beliefs depend upon
how much knowledge is available and provide guidance about truth-values in deductive or
plausible inference.

On the contrary, decision theory helps prescribe what to do not to lose “money”, and is
not concerned with computing truth-values.We do not argue against the expected utility theory
(DeGroot, 1970) for decision-making here. Whenever decision must be made, we accept here
that the decider must assess the probability of the various states of affairs and the utility of the
consequence of each act in each state of affairs. We also take it for granted that the probabilities
used in computing expected probabilities are genuine probabilities reflecting a betting behavior
and that Savage (1972)'s postulates are plausible.We do not consider here questionable aspects
of decision theory that are embodied in the Allais, Ellsberg and Newcomb paradoxes (e.g.
Gärdenfors and Sahlin, 1988).

Some Bayesians defend that even deductive inference is a form of decision (Levi,
1967). Accordingly 'to deduce that a proposition is true' is equivalent to 'deciding that a
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proposition is true'. A decision is unsually understood as the free choice of a course of action.
Clearly, the truth of a proposition is not the result of a decision, it is a property of the
proposition in a given state of the world, and partial belief is not a voluntary act (Cohen, 1993).
In practice, we shall assume that partial belief in the truth of a proposition mirrors a given state
of knowledge about the world.

Let us focus on deductive inference in an information system. Such a system contains
the description of a state of affairs ("the world"). A proposition p will be called "true" if the
system can establish that p holds in the state of affairs under concern. The case when the
system is not capable of telling whether a proposition is true or not is due to incomplete
information about the world, what can be called partial ignorance1. Hence there are three
extreme situations regarding the truth status of a given proposition p: its truth-value t(p) can be
true (T), false (F), or unknown (U). The latter is not a truth-value strictly speaking since it only
expresses that the value of t(p) cannot be determined. Ultimately this truth-value cannot be but
T or F if p is a classical proposition. Note that if a decision is to be made on the basis of the
truth-status of p (e.g., if p is true then choose d1, if p is false choose d2) then ignorance about

p results in uncertainty about how to act. But we may be far from a lack of information while
still being in a state of total uncertainty concerning the choice of an action. For instance, after
1000 000 throws of a new die, we are still uncertain about the outcome of the next throw
(hence about how to make a decision whose reward depends on this outcome) but we know
much more about the die than before the first throw (we -almost- know the values of the
probabilities of the possible outcomes). Before the first throw, we had not only uncertainty on
the outcome but also on the probability of these outcomes. After the throws, we are still
uncertain about the outcome, but no more on the probability of these outcomes. The clear
distinction between these two states of knowledge supports the validity of postulate 1. Namely,
distinct states of knowledge may lead to the same probability distribution. In the scope of
decision-making, it means that distinguishing between these states of knowledge is irrelevant
(one should bet in the same way whether one knows that the die is fair or if nothing is known
about the die). But if the aim is to represent knowledge for other purposes (for instance, answer
queries as in information systems), it might be useful to adopt a theory which is capable of
accounting for such a distinction between randomness and ignorance.

3 - Numerical Representations of Total Ignorance

In this section, it is suggested  that Bayesian probability is partially inadequate to
represent a state of total ignorance. Bayesian probability insists that any epistemic state be
represented by a single probability distribution on a suitable set, and that Bayes rule can be
systematically relied upon to integrate new information. The suggested failure is directly related
to the assumption of a unique probability distribution for representing a state of knowledge.

1 Here, the situation where one cannot establish the truth or the falsity of p due to limited computational
capabilities is ruled out.
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How to represent ignorance ? There are two issues. The first one is how to express the
contents of a piece of incomplete information. The crudest model is a disjunctive set namely a
collection of mutually exclusive objects, or situations, or worlds, one of which is the actual
one. For instance if we do not know the precise age of the President, we can say that his age x
is between 70 and 80 considering the referential set of ages in years. The set {70, 71, …, 80}
is disjunctive in the sense that it really means 70 OR 71… OR 80 where an exclusive OR is
used, these values are mutually exclusive, since x has a unique value at a given date. Hence
incomplete knowledge in its crudest form can be modeled by a disjunction between possible
states of the world.

Now the second issue is how to model the truth-status of a proposition p on the basis of
incomplete information, by means of some number g(p). Probabilistic tradition suggests the
unit interval as a valuation set and the following conventions: g(p) = 0 means that p is certainly
false and g(p) = 1 means that p is certainly true. Note that g(p) is not a truth-value but models
certainty of truth. Indeed we only have that g(p) =0 implies t(p) = F and g(p) =1 implies t(p) =
T. Now what about "unknown" ? how to model total ignorance ? Consider a finite set P of
propositions that form a Boolean algebra, built from the language used in the information
system. As usually done in logic, we indentify tautologies to T and contradictory propositions
to F, such that for any truth-assignment function t, t(T) = T and t(F) = F. In a given state of
knowledge the set P can be partitioned in three subsets T = {p, t(p) = T}, F = {p, t(p) = F},
U gathering the other propositions and being called the uncertainty set. They are respectively
the sets of true, false and unknown propositions. The state of knowledge will be called total
ignorance if and only if ∀  p ≠ T, F, p lies in U. The certainty function gø that models this state
of knowledge is called a total ignorance function. By convention, gø should attach the same

number α to all propositions p in U so as not to discriminate among propositions in U. Let Ω
be the set of possible worlds one of which is the actual world. Any proposition p can be
mapped to the subset M(p) of Ω of worlds in which p is true so that M(T) = Ω, M(F) = Ø, and

P is equated to 2Ω. Since total ignorance means T = {T} it corresponds to viewing Ω as the
disjunctive set of possible states of affairs or worlds. By convention the following postulate for
the representation of total ignorance looks natural insofar as it expresses that all propositions in
U are equally uncertain:

Postulate 2: The total ignorance function gø should be such that

∀ p, p' ≠ F, Τ, gø(p) = gø(p') ≠ 0,1.

The following consequence of postulate 2 is noticeable:

Corollary: The total ignorance function gø cannot be represented by a probability measure, as

soon as |Ω| > 2.

Proof: Assume |Ω| > 2. Assume there is a probability measure P that is a total ignorance
function gø. Let ω ∈  Ω, A ⊂  B ⊂  Ω such that B – A = {ω}. The existence of distinct subsets

such as A and B is ensured by the assumption that |Ω| > 2. Then P({ω}) = P(B) – P(A) = α –

α = 0. Hence ∀ ω ∈  Ω, P({ω}) = 0. Thus P is not a probability measure. Q.E.D.
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Actually ignorance can take a much more drastic form, namely one can ignore what are the
possible states of the world, i.e., Ω may fail to be exhaustive. Knowledge is expressed by

means of a language in which propositions p can be uttered. The language determines the states
of the world that are discernible and those which are not. The set of possible worlds where p is
true or false need not be precisely known when the truth-status of p is unknown. And Postulate
2 claims that, if nothing is known about the age of somebody, the way to express it should not
depend upon whether the considered age scale is [0,100], [0,150] or [0,200] nor on the choice
of an epistemically meaningful partition of the scale. Representing ignorance about die throws
must include the fact that the number of facets of the die can be unknown as well. Clearly this is
hardly the case with a probabilistic representation. In probability theory, one always starts with
a set Ω on which an algebra is built, algebra endowed which a probability measure. Probability
theory does not consider a permanently changing or atomless algebra.

In Bayesian theory, uninformed priors are usually represented by uniform probability
distributions. For instance, in the die case P({i}) = 1/6 for i ∈  {1, 2, …, 6}. Clearly with this

representation P({1}) < P({2, 3, 4, 5, 6}) hence it is not genuine ignorance, but a default fair
die assumption. However uniform probabilities look natural as representing total uncertainty
about how to act with a (6-facet) die in a betting situation. When making a decision we must
know what is the set of possible decisions and what is the set of possible situations. As pointed
out by Cohen(1993) this is a matter of acceptance, not a requirement that the decision-maker be
omniscient. The uniform probability represents the fact that we are not ready, due to ignorance,
to put more money on one outcome than on another one, given that the bet is on guessing
which facet will be revealed by the throw. Clearly, if the betting situation is described in terms
of two alternatives {win, lose} driven by an unknown device producing numbers between 1
and 6, such that you win if the outcome is 1, and loose otherwise, the uninformed prior is
P(win) = P(lose) = 1/2. If the decision-maker does not know that this unknown device is a fair
die, he has implicitly assumed that P({1}) = P(not({1}) = P({2, 3, 4, 5, 6}) = 1/2. In another
situation, you might hear that the procedure for getting the numbers is the throw of an
octaedron, with the following decision rule for the output: outcome i is reported if the obtained
facet is i < 6, and is 6 if the obtained facet is 6, 7, 8. The uninformed prior is then P({i}) = 1/8
if i < 6 and 3/8 if i ≥ 6. The uninformed prior P({1}) = 1/2, P{not{1}) = 1/2 is neither
consistent with the uninformed prior where it is known that a regular die is used, nor with the
case where it is known that the octaedron is used with the above output. This inconsistency
makes no difficulty with the betting problems since in a given betting problem the situation is
clearly defined. However this inconsistency is not permitted in a knowledge representation
problem where several partitions of the world correspond to different points of view that must
coexist in an information system. The deduction of the truth of a proposition and the belief
allocated to it should not depend on the way worlds are defined. The representation of total
ignorance should not depend on the existence of the die or the octaedron, and should leave
room for these possibilities as they become known. Bayesian probability was never tailored for
taking into account this situation. It can cope with the canceling of possibilities (through
renormalization of the probability distribution function) but it has not been made for the case
when a new possibility emerges (e.g., suddenly the die breaks), or when the granularity of the
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representation changes (what was thought as a single outcome is made of several distinct
mutually exclusive situations).

4 - Various Models of Partial Ignorance

In this section several non-Bayesian approaches to uncertainty are reviewed so as to
assess their capability at representing partial ignorance.

4.1. Two numbers are needed for the quantification of partial ignorance

The previous section has modeled partial ignorance in a very crude way by attaching to
any proposition p representing a subset M(p) ⊆  Ω of possible worlds a tag mentioning "true"

(T), "false" (F) or "unknown" (U), and defined the corresponding sets T , F , U  of
propositions that partition P. It is easy to check that if p ∈  T then ¬p ∉  T, otherwise we face

an inconsistency, more specifically t(p) = T ⇔  t(¬p) = F and p ∈ U  ⇔
¬p ∈  U. Now T can be viewed as the set of certainly true propositions. Similarly let F =

{p | t(p) = F} = {¬p | p ∈  T }can be viewed as the set of certainly false propositions. The set

T  ∪  U  contains the propositions which are either certainly true or unknown, i.e., the

propositions which are possibly true. Let E ⊆  Ω be the set of worlds where all propositions in

T are true, then partial ignorance is expressed by the disjunction of worlds in E since the actual
world lies in E. Complete knowledge is then when E reduces to a singleton of Ω. It
corresponds to the case where the set U is empty (no uncertainty).

For representing the certainty of propositions in the state of partial ignorance, one might
try to keep the convention based on mapping T to 1, F to 0, and U to some α ∈  [0,1], and use

a single function g, called a partial ignorance function. In order to obtain some nicely behaved
function, one would like it to be compositional with respect to classical logic connectives, that
is, g should ideally behave as a truth assignment function. This means especially that g(p ∨  q),

g(p ∧  q) are determined by g(p) and g(q) only, and g(¬p) is determined by g(p) only. This is

maybe too ambitious. Indeed this is not true for probability measures, since while P(¬p) is
indeed determined by P(p) only, P(p ∨  q) is the sum of P(p) and P(q) only if p ∧  q = F. Hence

a partial ignorance function g that satisfies g(p ∨  q) = D(g(p), g(q)) and g(p) = n(g(¬p))

whenever p ∧  q = F might be searched for the following rules:

Proposition: A partial ignorance function g cannot be compositional with respect to
conjunction nor disjunction, but is compositional with respect to negation only. Moreover g is
not decomposable with respect to union, i.e., g(p ∨  q) is not a function of g(p), g(q) even if

p ∧  q = F.

Proof:  Function n such that g(p) = n(g(¬p)) can be defined by: g(p) = 0 ⇔  g(¬p) = 1, and

g(p) = α ⇔ g(¬p) = α, i.e., g is compositional for negation. Let p be such that g(p) = α and

some operation I be such that g(p ∧  q) = I(g(p),g(q)), ∀ p,q, assuming that g is compositional
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for conjunction. Then if q = p with g(p) = α we have I(α,α) = α and if q = ¬p with g(p) = α
we have I(α ,α) = g(¬p ∧  p) = 0. Hence I(α ,α) = 0 which contradicts the compositionality

assumption. A similar reasoning applies to disjunction. Namely, let q = ¬p, then g(p ∨  ¬p) = 1

even if g(p) = α = g(¬p), while g(p ∨  p) = α, hence there is no way to find a function D such

that g(p ∨  q) = D(g(p),g(q)). The last statement of the proposition is also established this way

since p ∧  ¬p = F. Q.E.D.

A consequence of the lack of compositionality and even decomposability of function g is that it
will be very cumbersome to use. Especially the strength of probability theory is that a
probability assignment to elements of Ω is enough to represent a probability measure on 2Ω.
The above result states that this is not possible for partial ignorance functions that attach a single
number to each proposition.

For the sake of numerically representing partial ignorance in a more efficient way one

might be tempted to use one numerical scale for certainty of truth (testing whether p ∈  T or

not) and another one for possibility of truth (testing whether p ∈  T∪ U or not).The idea is that

since we have three distinct alternatives, we need two bits to encode them. Let us consider the

following convention, involving a function SN describing the amount of necessary support and

a function SΠ describing potential support, and mapping P = 2Ω to the set {0,1} and defined

by

SN(p) = 1 if p ∈  T and 0 otherwise

SΠ(p) = 1 if p ∈  T∪ U and 0 otherwise1.

SN(p) = 1 means that p is fully supported by the available information, i.e., p is necessarily or
certainly true. SΠ(p) = 1 only means that p might prove to become true if further information is

obtained (but it might turn out to be false as well). SN(p) and SΠ (p) are special cases of

degrees of necessity and possibility respectively and denoted N and Π  in possibility theory

(Dubois and Prade, 1988a).  It is easy to check that SN(p) = 1 ⇒  SΠ(p) = 1, and that p ∈  U

if and only if SN(p) = 0 and SΠ(p) = 1. Hence the truth-status about p is expressed by the pair

(SN(p),SΠ(p)), (1,1) represents (certainty of) truth, (0,0) (certainty of) falsity and (0,1)

ignorance. Clearly these conventions do not depend on the number of elements in Ω.

We can carry the compositionality of truth assignments over to the pair (SN,SΠ) as a

whole in the presence of incomplete information. Indeed it is easy to check that:

SN(p ∧  q) = min(SN(p),SN(q)) , SΠ(p ∨  q) = max(SΠ(p),SΠ(q)) , SN(p) = 1 – SΠ(¬p).  (1)

1 By convention, the notation SN and SΠ is used for the binary concepts of necessary and potential support as
well as their generalization. So SN (resp.: SΠ) will denote necessity (possibility) in modal logic, necessity
(resp.: possibility) measures, lower (resp.: upper) probabilities functions, belief (resp.: plausibility) functions...
depending on the context. We keep the same notation in order to stress the coherence between the various
concepts underlying the particular measures.
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Note that SN is not compositional for the disjunction nor is SΠ  compositional for the

conjunction. The disjunctive encoding of the state of incomplete knowledge by means of the set
E = {ω | p is true in ω, ∀  p ∈  T} is sufficient to derive both SΠ and SN functions since:

SΠ(p) = 1 ⇔ M(p) ∩ E ≠ Ø

SN(p) = 1 ⇔ E ⊆  M(p).

where M(p) is the set of worlds of Ω in which p is true.

The membership function of the disjunctive set E is called a possibility distribution. The above
encoding of partial ignorance is in agreement with Zadeh's possibility theory (Zadeh, 1978,
Dubois and Prade, 1988a). It is easy to show that SN = SΠ  if and only if E reduces to a

singleton of Ω and that in this situation (where the uncertainty set is empty), SN coincides with
a truth assignment. This is the state of complete knowledge.

Note that one way of recovering a partial ignorance function g is to let g(p) =
SN(p) + SΠ(p)

2   (then α  = 1/2). The certainty factor of MYCIN is also a partial ignorance

function on [–1,+1] such that F maps to –1, T to 1, and U to 0. Such a certainty factor is
obtained if we let CF(p) = SΠ(p) – SΠ(¬p) (see Dubois and Prade, 1988b).

4.2 Ordinal representations of partial ignorance.

The above model of partial ignorance, based on (SN,SΠ ) functions is not very

expressive compared to probability theory since the ordering of propositions is crude. The
model can be enriched first by distinguishing propositions which are more or less certain and
more or less possible. This can be done by introducing intermediary levels between 0 and 1, the
extreme case being to turn {0,1} into [0,1]. In that case we recover, insofar as we keep
equations (1), Zadeh's possibility theory. The membership function π of the set E becomes the
one of a fuzzy set, albeit a disjunctive one since π(ω) expresses to what extent it is possible that

ω be the actual world, π(ω) = 0 corresponding to complete impossibility.

At that point the model is not genuinely numerical since (1) only requires a linearly
ordered scale {π0 < π1 <… < πn} as the range of SΠ (with π0 = 0, πn = 1) and another one

{η0, …, ηn} as the range of SN, the duality between possibility and certainty being expressed

by SN(p) = ηi ⇔  SΠ(¬p) = πn–i. [0,1] is thus used as an ordinal scale. Possibility theory is

the basic tool for uncertainty modeling based on ordinal preference on what is possible and
what is not. Starting with a set E ⊆  Ω containing the actual world, and a partitioning E1 ∪ … ∪
En of E such that ∀ω,ω '∈Ω , ω ∈  Ei, ω' ∈  Ej, i > j means that ω is considered more possible

than ω', we can build a possibility distribution π on Ω such that π(ω) = πi if ω ∈  Ei, π(ω) = π0
if ω ∉  E and build possibility and necessity functions SΠ and SN describing our knowledge

about any proposition p as follows:
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SΠ(p) = max{π(ω), ω ∈  M(p)}. (2)

for instance we may refine our knowledge about the age of the President by rank-ordering the
set {70, 71, …, 80} in terms of values that are unsurprizing and values that are more surprizing
(using the terminology of Shackle (1961)), thus determining a possibility distribution π. Note
that this ordinal setting is not only the one of possibility theory but also belongs to a class of
nonmonotonic logics that are called "preferential" by Shoham (1988) and "rational" by
Lehmann and Magidor (1992), who carefully study the notion of "ranked models". It is also
closely related to so-called well ordered partitions considered by Spohn (1988) and to the
theory of potential surprize of Shackle(1961).

4.3 Belief functions

A higher level of sophistication is obtained when the propositions are quantitatively
ordered by means of numerical (SN, SΠ ) pairs, for which the concepts of addition and

multiplication are meaningful, but only the duality property SN(p) = 1 – SΠ(¬p) holds in

equations (1). For instance, we may consider a probabilistic structure on top of a disjunctive
representation of partial ignorance, like in the so-called Dempster-Shafer theory (Dempster,
1967). Suppose we know that the available knowledge can be described as a disjunctive set E
which is itself unknown. E can be any one of the family {E1, …, Ek} of non-empty subsets of
Ω. Let m(Ei) = mi be the probability that indeed our partial ignorance is represented by Ei, so
that ∑i=1,k mi = 1. We leave it open whether m(Ei) is a frequency-driven probability, a
subjective probability or whatever. We just assume that a probability distribution on {E1, …,
Ek} exists. Computation  of functions of potential and necessary  support can then be based on

expectations (Zadeh, 1979), namely:

SΠ(p) = Exp(SΠE(p)) = ∑i=1,k mi.SΠi(p) (3)
SN(p) = Exp(SNE(p)) = ∑i=1,k mi.SNi(p) (4)

where SΠE and SNE are the random possibility and necessity functions that depend on E and

SΠ i, SNi are the {0,1}-valued possibility and certainty functions based on Ei. It is easy to

verify that SΠ and SN are exactly plausibility and belief functions (Shafer, 1976) respectively,

and that they obey the duality axiom SN(p) = 1 – SΠ(¬p). SN is usually denoted Bel and SP is

denoted Pl by Shafer and his followers. These set-functions satisfy all the properties in (1) if
and only if the family {E1, …, Ek} of focal elements is nested (consonance case). Moreover if
we rule out partial ignorance, i.e., the sets E1, …, Ek never contain more than one possible

world, the probability structure is located right on Ω and SN(p) = SΠ(p) = P(p), ∀ p. Potential

and necessary support evaluations collapse to probability functions in that case. The
mathematical property stating that the sets E1, …, Ek never contain more than one possible

world in a probabilistic model, gives a precise meaning to the claim that probability measures
do not account for partial ignorance, since each Ei then expresses complete knowledge.
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Other interpretations of the Dempster-Shafer model exist. For instance, the transferable
belief model (Smets and Kennes, 1994) corresponds to assuming that degrees of certainty SN
are quantified right away by Shafer(1976)'s belief functions. Bayesians claim that beliefs
should be additive, their arguments being essentially based on rational decision-making
behavior. The transferable belief model exists without reference to any decision and therefore
does not postulate the additivity axiom. Owing to its flexibility, it copes easily with partial
ignorance. However it does not rule out the case of purely probabilistic frequency-based
beliefs.

4.4 Upper and lower probabilities and beyond.

It is interesting to consider the converse situation where partial ignorance is put on top
of a probability structure, namely a partially unknown probability structure. Let P be a
probability measure which is partially unknown, i.e., P is one of the probability measures in a
set p of mutually exclusive ones. Hence we have an all-or-nothing possibility distribution π on
p such that π(P) = 1 if P ∈  p and 0 if P ∉  p. Now P(p) is usually ill-known and can be any

number in {P'(p), P' ∈  p}, and we can define upper and lower probabilities SΠ (p) =
supP'∈ p P'(p), SN(p) = inf P'∈ p P'(p) which are set functions more general than plausibility

and belief functions (e.g., Kyburg, 1987).

We may also introduce some preferential ordering, encoded by a fuzzy set membership
function, each time we have incomplete information expressed by means of a subset. Thus, we
can extend Dempster-Shafer theory to a probability distribution on disjunctive fuzzy sets (see
Yager, 1982, Yen, 1990). Another worth mentioning extension is when we have some
preference ordering among the probability measures in the set p introduced above. A fuzzy set
`p can naturally be induced by considering the family of probability measures obeying some
elastic constraints such that, "the more or less possible values of P(p) are represented by the
fuzzy subset M of the real line", i.e., µM(r) is the possibility that P(p) = r. This captures the

idea of ill-known probability values (Zadeh, 1984).

A still more elaborate uncertainty model can be obtained by considering the existence of
a probability measure on p, therefore a probability of probability, what leads to higher order
probabilities. Such meta-probability theory suffers nevertheless from some weaknesses when
p is a family of objective probability functions.1 The subjective probability P(A) of an event A
is usually defined as the price an agent is willing to pay to play a game where he/she receives $1
from the banker if the event A occurs and nothing if the event A does not occur. Furthermore
the bet is fair if the agent is indifferent between being the player or the banker once the price has
been fixed. Such a procedure leads to the construction of probabilities that satisfy
Kolmogoroff's axioms for probability measures and provides a nice semantics to the concept of
subjective probability. This definition is based on the decidability of the underlying bet. When it
comes to meta-subjective-probabilities over objective probabilities, such decidability cannot be
achieved if the objective probability is defined as the limit of a proportion. Thus the semantics
based on fair bets cannot be used to define meta-probabilities, a concept that therefore becomes

1 De Finetti solved that problem by claiming that objective probabilities do not exist.
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'undefined'. Other authors suggest that meta-probabilities are nothing but conditional
probabilities (see Kyburg (1989) for a detailed discussion), so that in some sense the higher
level disappears.

Assumption Type of construction Theory

incomplete information on the
set of situations

disjunctive sets of situations

error intervals
propositional calculus

ordinal knowledge on the set
of situations

disjunctive sets of situations
equipped with a complete

preorder

possibility theory

preferential logics

numerical betting rates or
frequencies on the set of

situations

a probability distribution over
the set of situations

probability theory

probabilities on a set
which is related

with the set of situations

a probability distribution on
disjunctive sets

Dempster-Shafer theory

numerical non-additive
degrees of belief on the set of

situations

a belief function transferable belief model

imprecisely known
probability distribution on the

set of situations

convex set of probabilities upper and lower probabilities

numerical additive degrees of
belief on the set of possible

probabilities

probability over a set of
probabilities

higher order probabilities

Table 1. Partial ignorance models.

Metaprobability might also be suggested to quantify introspective probabilities about
one’s own subjective probabilities. It would quantify our doubts about our own beliefs.
Classical modal logics for beliefs (the KD45 model, see Chellas(1980))reject such metabeliefs.
In these theories, for instance Hintikka(1962)'s epistemic logic, the functions SN and SP are
represented by modal symbols for necessity and possibility. The existence of introspective
metaprobabilities about one’s own probabilities can be questionned. It surely contradicts the
idea that an agent has always a belief about every event.

The above review, also pictured in Table 1, covers most of the non-additive probability
models available to-date. Especially, second order probabilities appear to formally contrast with
these models since they are probability structures on top of probability structures (see Table 1).

5  Decision Under Partial Ignorance
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How to make a decision in the face of partial ignorance ? If we follow the Bayesian
approach, and we start from a set of possible worlds Ω, we must

A) Partition Ω into a family of subsets θ1, …, θn that forms a frame of discernment for the

decision problem (the betting frame), i.e., one accepts to bet on some element of Θ =

{θ1, …, θn}.

B) Define a probability function P on Θ that agrees with our representation of partial

ignorance.

C) Compute the expected utility of any act a depending on Θ as U(a) = ∑P(θi)ui(a) where

ui(a) is the utility of the act a when the actual world is in θi.

This procedure corresponds to the expected utility theory for decision-making and is applicable
whenever the frame, the probability P and the utility function u are given. Alternative schemes
that refrain from selecting a probability function P but use the Choquet integral applied to the
lower probability function SN (Schmeidler, 1989) or generalize the De Finetti consistency
argument to belief functions (e.g., Jaffray, 1988) will not be discussed here insofar as they
violate Savage postulates of decision. The above selection procedure of a betting probability
that agrees with a given state of partial ignorance does not apply to qualitative, ordinal
representations such as possibility theory where only a plausibility ordering of worlds is
available. Nevertheless, Boutilier (1993) recently suggested to put probabilities on top of
possibilities. Namely given the available knowledge, select the most plausible worlds according
to our (non-probabilistic) beliefs, and build a betting probability on this set.

Suppose now that we do not know exactly the values of P(θi), but that we accept to

describe our knowledge by a second order probability on Θ. Let PP denotes this second order

probability. It is well-known (e.g., Kyburg, 1989) that the resulting utility function is:

U(a) = ∑
i
 E(P(θi)) ui(a) (5)

where E(P(θi)) is the expected probability of P(θi) with respect to the second order probability

PP. This result is well accepted among Bayesians.

 Now assume we start with partial ignorance, and we have chosen the betting frame Θ.

In the most general case we have partial ignorance about the probability distribution. We only
know that the actual probability measure P belongs to a set p of possible probabilities. The
requirement that the chosen probability measure agrees with our representation of ignorance
means that we should select P in p so that P(p) ≤ SΠ(p), which is here equal to the upper

probability. This is a version of Zadeh's consistency principle that claims that what is probable
must be possible (e.g., Dubois, Prade and Sandri, 1993).
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Starting with a set p and no special knowledge on which elements of p corresponds to
the actual probability measure, the Bayesian approach usually leads to considering a uniform
second order probability distribution over p and to applying the second order utility formula
(5). In other words, p is represented by its center of gravity äP.

Note that the maximum entropy method for selecting äP in p is not suitable here. For
instance consider a coin problem where {head, tail} is the referential set and assume that it is
known that SN(head) = 0.2, SN(tail) = 0.4. It indicates that "tail" is rather preferred to "head"
as the most plausible outcome. The set of probabilities corresponding to this information can be
represented by x = P(head) ∈  [0.2,0.6] and 1 – x = P(tail) ∈  [0.4,0.8]. The probability

measure which has maximal entropy in this set is the uniform probability on {head, tail}, which
throws away the information on the preference for tail. However the center of gravity
äP(head) = 0.4, äP(tail) = 0.6 preserves this information.

In the case of belief functions, we have a probability distribution over pieces of
incomplete evidence Ei . They induce upper and lower probabilities on Θ. Smets (1990) has

advocated and justified by some rationality requirements the use of a "pignistic transformation",
a transformation that had already been intuitively suggested by Williams (1982), and Dubois
and Prade (1982). Namely if the belief function is represented by {(Ej,mj), j = 1,k} where the
Ej’s are the focal elements and the mj’s are the basic belief masses (basic probability masses),

the selected probability P', called the pignistic probability, is such that:

∀ i, P'(θi) = ∑θi∈ Fj
 
mj
|Fj|

.

If SΠ is the plausibility (expected potential support) function induced by {(Ej,mj), j = 1,k} and

defining p = {P: P ≤ SΠ} then it can be proved (see, e.g., Kruse et al., 1991, Dubois et al.,

1993) that the pignistic probability coincides with the center of gravity of p. Note that the
pignistic transformation, even though justified by rationality requirements outside any
probabilistic context, comes down to being mathematically equivalent to changing each piece of
partial ignorance Ei into a uniform probability Pi on Ei representing a Bayesian uninformed
prior, and P' is then the convex mixture of the Pi's with weights mi. Hence the pignistic

transformation approach to decision with belief functions is consistent with the higher-order
probability approach, viewing the weights mi as meta-probabilities. It is thus a generalized

indifference Laplacean principle. Note that the same approach still applies when the belief
function is consonant, and satisfies the decomposability property (1). Hence numerical versions
of possibility theory are liable of the same treatment of the decision problem, although the
axiomatic justification of the pignistic transformation proposed by Smets and Kennes (1994)
does not apply to the subclass of consonant belief functions alone.

This property should not be misunderstood when applied to the transferable belief
model. In that case, the initial concept is the belief function that quantifies our beliefs over Ω.
When a decision must be made on the betting frame Θ, one computes the pignistic probability

P' and uses it to compute expected utilities. It turns out that SN(A) = Bel(A) ≤ P'(A) ≤ Pl(A) =
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SΠ(A) ∀ A subset of Θ. If one then considers all possible betting frames Θi derived from Ω
and the set of the pignistic probabilities P'i derived on each frame Θi, one has (Wilson, 1993):

SN(p) = mini P'i(p)  and SΠ(p) = maxi P'i(p) ∀ p ∈  P

In the transferable belief model, SN = Bel is not the lower bound of a family of probability
measures on Ω that satisfy some particular constraints (as in Dempster-Shafer theory). SN
directly quantifies the degrees of belief and turns out to be the lower bound of the pignistic
probabilities that can be built on the betting frames related to Ω. The lower bound concept is a
derived property, not an essential one as in Dempster-Shafer theory.

Nonadditive theories of uncertainty are not in total disagreement with probability
theory. Owing to the pignistic transformation, they can even remain coherent with Bayesian
decision theory. It is important to stress that the probability measure at the pignistic level does
not represent our state of partial ignorance, it only results from it. It is the representation of
uncertainty  needed for rational decision-making and justified by Savage's axioms. More
specifically the use of an additive measure at the pignistic (betting) level protects the user from a
synchronic Dutch Book. The avoidance of diachronic Dutch Book (Teller, 1973, Jeffrey, 1988)
is also obtained with the pignistic probability generated in the transferable belief model, but the
procedure is more tricky than the one described here, since the information about a relevant
forthcoming but yet unknown experimental result must be included in the model (Smets,
1993b).

The above results also indicate that all numerical representations of partial ignorance are
completely compatible with the Bayesian second order probability approach in the decision
problem. This fact may be used as an argument against non-Bayesian formalisms, as being
useless, if it is the case that there is no uncertainty management problem but decision. But the
Bayesian representation of ignorance leads to results that differ from those obtained by other,
less biased representations, for problems such as belief revision, as seen in the next sections.

Additional remarks
1) The pignistic transformation can also be generalized to the case when the Ej's are disjunctive

fuzzy sets, that is, to belief functions with fuzzy focal elements. Then we turn each numerical
possibility distribution πj = µEj into a probability measure Pj such that pij is the probability of

θi induced by distribution πj, and the pignistic transformation is then generalized to fuzzy focal

elements using

∀ i, P'(θi) = ∑θj∈ Support(Ej)
 pij · mj.

3) In the case of fuzzily-known or interval-valued probabilities we can also compute the
possibility distribution restricting the possible values of an expected utility given the fuzzy set
of possible values of the P(θi)'s and/or of the u(ai)'s (e.g., Dubois and Prade, 1988c). In this
case, the acts ai cannot be linearly ordered in general (because we only have interval or fuzzy
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interval values for the U(ai)'s) and we cannot always decide what is the best act to perform, but

it enables the user to see if the partial ignorance pervading the probability and/or utility values
prevents or not from safely isolating a best act.

6. Focusing versus Revision.

There are two kinds of information that may convey some form of partial ignorance:
factual evidence and generic knowledge. Factual evidence consists of information gathered on a
case at hand, or the description of the actual world in a given situation. This information can be
more or less precise and more or less reliable. Generic knowledge pertains to a class of
situations considered as a whole, but does not refer to a particular case. Sometimes this class of
situations is well defined (it is a population  in the sense of statistics) and the generic knowledge
is of a frequentist nature. Sometimes the relevant class of population is much more vaguely
described (as in the famous "birds fly" example), and the generic knowledge describes rules of
plausible inference of the form "if all I know is A then plausibly conclude B". The levels of
confidence expressed by the rules can be numerically modelled via a conditional probability, or
be handled in a purely ordinal setting (as in default reasoning). The difference between generic
knowledge and factual evidence can be illustrated by a diagnosis problem. The generic
knowledge of a clinician consists in his knowledge about the links between the diseases and the
symptoms and the distribution of the diseases in the population (in practice, the likelihoods and
the prior probabilities). The factual evidence consists in the symptoms collected from the patient
under consideration.

Focusing and revison are two distinct forms of conditioning. The difference between
focusing and revision is most clear in settings where generic knowledge is represented and
processed as distinct from factual evidence. Such a distinction is not relevant in propositional
logic for instance, since every piece of information takes the form of a propositional sentence.
Focusing consists in conditioning the generic knowledge by the factual evidence, i.e., in the
example, changing the reference class in order to focus on those cases that share the same
symptoms as those of the patient. In probability theory, focusing is achieved by applying the
Bayes rule of conditioning.

Revision consists in either conditioning the generic knowledge by another piece of
generic knowledge (G-revision, in the following), or the factual evidence by another piece of
factual evidence (F-revision). G-revision consists in revising the clinician knowledge about the
relation on the disease-symptom space by learning new medical knowledge. F-revision consists
in conditioning the clinician’s beliefs about which symptoms prevail for the patient by learning
new information about the symptoms.

In the setting of Bayesian probability the distinction is conceptually meaningful but
focusing and revising are both expressed by the same conditioning rule, that is Bayes rule.
Hence some disputes among probabilists as to the meaning of conditioning. The most widely
found view is that Bayes rule operates a change of reference class, namely going from a prior to
a posterior probability is not a revision process. Posterior probabilities are precalculated and the
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input information just prompts the selection of a particular posterior. With this view, the prior
probability together with the likelihoods determine a unique joint probability over a space of
interest, construed as a body of generic knowledge (the clinician’s experience on a certain
disease), and conditioning means integrating factual evidence so as to configurate the generic
knowledge properly with respect to the reference class of the object on which this factual
evidence bears (test results on the patient). This point of view, which is shared by the expert
system literature, culminates with the advent of Bayesian networks.

 The revision view of conditioning is typically advocated by people working in
probability kinematics. Philosophers like Jeffrey (1983), Domotor (1985), Williams (1980),
and Gärdenfors (1988), understand Bayes rule as a revision process, by which a prior
probability P is changed into a new one P' due to the input information A. This latter view is
supported by maximal cross-entropy arguments whereby it is established that Bayes rule obeys
a minimal change requirement. This school of thought is called probability kinematics: the input
information A is understood as the discovery that P'(A) = 1 while the prior is P(A) < 1, and
must be modified. The possibility that the input information is itself probabilistic is commonly
envisaged in probability kinematics: the input information enforces the probability of some
event to take on a value which differs from the prior value. In this view the input information is
at the same level as the prior information: both are (possibly uncertain) factual evidence or
pieces of generic knowledge. For instance the "observation by candlelight" example proposed
by Jeffrey involves prior factual beliefs about a particular piece of cloth which are changed
upon observing again the cloth with a candle, i.e., a new piece of uncertain factual evidence,
this is F-revision. Revision of generic knowledge would correspond to the following case: a
probability distribution over sizes of adults in a given country is available, and some input
information comes in that nobody in the population is more than 6ft tall.

7  Implementing Revision and Focusing under Partial Ignorance

Suppose we happen to learn that the variable x the actual value of which is partially
ignored in Ω has been observed to belong to some subset A. How do we change our belief
about x ?

7.1 Propositional and ordinal settings

If the state of partial ignorance is described by a disjunctive set E ⊆  Ω containing x then

the resulting state of knowledge is simply x ∈  A ∩ E. Note that this revision does not work if

A ∩ E = Ø, which should not happen insofar as the piece of information x ∈  E is absolutely

sure. The language used here, namely the one of propositional logic, is not rich enough to
express the concept of focusing as distinct from revision. Namely the treatment necessary to
handle a query pertaining to x, to a database containing the piece of information x ∈  E, given

that x ∈  A, is the same as when the statement x ∈  A is to be added to the database: one must

compute A ∩ E when not empty. This is what Gardenförs(1988) calls "expansion".
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The revision problem in the ordinal approach to possibility theory is treated in Dubois
and Prade (1992b). Namely, each subset B of Ω is changed into B ∩  A, and the level of

possibility Π(B) is carried over to B ∩ A if B ∩ A ≠ Ø. Finally, all subsets C ⊆  Ω such that

SΠ(C) = max{SΠ(B ∩  A), B ⊆  Ω} are assigned a maximal level of possibility 1. It

corresponds to a notion of conditional possibility SΠ(B | A) defined in (Dubois and Prade,

1988a) as:

SΠ(B | A) = sup {a ∈  [0,1], SΠ(A ∩ B) = min(a, SΠ(A))}.

This type of ordinal conditioning has been also recently studied by Williams (1994)
under the name "adjustment".  Recalling that in the ordinal case, the partial ignorance function
pair (SN, SΠ) is equivalent to a subset E of possible worlds equipped with a complete ordering

relation expressing plausibility, revision by subset A comes down to restricting (without
changing) this ordering to A ∩  E. Just as in the case of Bayes conditioning the ordering of

elements in A ∩ E is left unchanged. This revision satisfies all of Gärdenfors (1988) revision

postulates, and the SN function coincides with what Gärdenfors calls an "epistemic
entrenchment" (see Dubois and Prade, 1991). Again, as in the case of propositional logic, the
language of possibility theory is not capable, when a single possibility distribution is used and
fixed, of accounting for the notion of focusing as distinct from revision.

The question of representing generic knowledge in possibility theory can be addressed if

possibility theory is related to conditional theories of default reasoning (Kraus, Lehmann,

Magidor, 1990, Lehmann and Magidor, 1992).A body of generic knowledge ∆ is  encoded as

a set of default rules p → q, each being interpreted as a nonmonotonic inference rule " if p is

true then it is normal that q be true". The arrow  → is nonclassical. ∆ is also called a

conditional knowledge base. As proved in Benferhat et al. (1992), it is natural to interpret a

default rule p → q, as a constraint on possibility measures of the form S∏( p ∧ q) > S∏( p ∧
¬q), i.e., such a default rule can be viewed as expressing that  p ∧ q is more normal than p ∧
¬q. A set of default rules ∆ = {pi → qi, i = 1,n} with noncontradictory condition parts can be

viewed as a family of constraints

C(∆) = {S∏( pi ∧  qi) > S∏( pi ∧  ¬qi), i = 1,n}

  restricting  a family   ∏∏(∆) = {S∏, S∏ ∈  C (∆),S∏( pi) > 0} for all i of possibility

distributions over the interpretations of a language. Given a piece of evidence encoded as a
propositional sentence p and the conditional knowledge base ∆, the sentence q is a plausible

consequence of (∆,p) iff the rule  p → q can be deduced from ∆. This inference has a precise

meaning in the framework of possibility theory namely the (classical) inference of the srict
inequality S∏( p ∧ q) > S∏( p ∧ ¬q)  for all S∏ in ∏∏(∆) derived from the set of constraints

C(∆) (Dubois and Prade, 1994b). This inference also perfectly fits with the so-called

"preferential inference system" of Kraus et al.(1990) and with the logic of conditional objects
(Dubois and Prade, 1993, 1994b). Another more productive type of inference is the socalled
"rational closure"(Lehmann and Magidor, 1992). It can be captured in the possibilistic setting
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by selecting a particular possibility measure SP* in ∏∏(∆) (the least informed one, see Benferhat

et al, 1992) and checking the condition S∏*(p ∧ q) > S∏*(p ∧ ¬q). These methods of

inference of a default rule p → q from a body of generic knowledge ∆ can be viewed as a

focusing on the reference class pointed at by p, for the purpose of plausibly inferring q. On the
contrary a revision process consists in modifying the set of rules ∆ by adding or deleting rules,

of by resticting the set of possible worlds.

7.2. Numerical settings.

If the state of partial ignorance is represented by a probability distribution P then, in the
scope of revision,  P is changed into P(· | A) such that:

P(B | A) = 
P(B ∩ A)

P(A)
     (Bayes rule).

The assumption behind Bayes rule is that the resulting probabilities of subsets of A should not
change in relative value (see Gärdenfors, 1988). The same difficulty as above occurs if A is
such that P(A) = 0. This case is usually ruled out by assumption. Bayesians often object to
interpreting conditioning as the result of a revision of P by the new information
P'(A) = 1 into P' = P(· | A). They rather interpret the probability distribution as describing
generic knowledge and P(B | A) as the result of changing the reference class of P from Ω to A,
a process that we have called "focusing" (Dubois and Prade, 1992a), in which we compute
what can be deduced from P for elements in A. Furthermore the Bayesian justification of
probabilistic conditioning depends on the temporal coherence principle that is arguable (Smets
and Kennes, 1994, Walley, 1991, pp.546-547, Smets, 1993b).

We now consider the case of belief functions and upper and lower probabilities. It can
be pointed out that while revision and focusing do coincide in probability theory, they no longer
coincide in more general settings (Dubois and Prade, 1992a).

Revision in belief function theory is defined by Dempster rule of conditioning that
combines the conjunctive revision mode of the crude partial ignorance model, with Bayes rule
normalization underlying a stability of the degrees of uncertainty in relative value. Indeed
Dempster rule of conditioning can be described as follows:

• Given the new piece of information A, turn each focal element Ei into Ei ∩ A, and attach the

mass mi to it, adding the masses mi and mj if Ei ∩ A = Ej ∩ A.

• Renormalize the masses allocated to non-empty subsets Ei ∩ A ≠ Ø as with Bayes rule, so as

to reallocate the masses mi such that Ei ∩ A = Ø proportionally (note that the renormalization

is not required in the transferable belief model in which case the mass given to Ø represents
the incoherence underlying the pieces of evidence that induce the beliefs, see Smets(1992).
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This is the most classical form of conditioning, but other cases can be described that reflect
other conditioning events (Smets 1991, 1993a). It is well-known (Shafer, 1976) that it comes
down to compute the expected degree of potential support:

S∏(B | A) = 
S∏(A ∩ B)

S∏(A)

Interestingly, Dempster's rule of conditioning can also be derived in a pure upper and lower
probability context. If the belief function is viewed as characterizing a set of probabilities p =
{P ≤ SΠ}, then it can be proved that:

S∏(B | A) = 
S∏(A ∩ B)

S∏(A)
 = sup

P(A ∩ B)
P(A)

, P ≤ S∏, P(A) = S∏(A)
(6)

This result is due to the fact that the constraint P(A) = SΠ(A) never forbids sup{P(A ∩  B),

P ≤ SΠ, P(A) = SΠ(A)} to be equal to SΠ(A ∩  B), i.e., we can always have P(A) = SΠ(A)

and P(A ∩  B) = SΠ (A ∩  B) for the same probability measure P, if SΠ  is a plausibility

function. Equation (6) makes it clear the kind of revision at work with Dempster rule in the
upper and lower probabilities context: the constraint P(A) = SΠ(A) corresponds to the selection

of a maximum likelihood probability, which is very usual in statistics. As a generalization of
this principle, Moral and De Campos (1991) have suggested that the magnitude of P(A) reflects
the possibility of accepting the corresponding conditional probability P(· | A) in the updated set
of probabilities.

Gilboa and Schmeidler (1992) have given a decision-theoretic interpretation of SΠ(B| A)

in the setting of upper and lower probabilities, i.e., when the set p does not necessarily
represent a belief function. Indeed equation (6) does hold when Π  satisfies order 2

subadditivity only, that is SΠ(A ∪ B) ≤ SΠ(A) +SΠ(B) – SΠ(A ∩ B). The reason is that the

property stating that we can always have P(A) = SΠ(A) and P(B) = SΠ(B) for a subset B of A

for the same probability measure P is characteristic of order two subadditivity (see Huber,
1981). However equation (6) does not hold for upper probabilities deriving from any set of
probabilities p.

The alternative conditioning rule, already suggested by Dempster (1967), De Campos
al. (1990), Fagin and Halpern (1989) and Jaffray (1992) and here referred to as focusing, is
defined in the setting of upper and lower probabilities as:

S∏A(B) = sup
P(A ∩ B)

P(A)
, P ≤ S∏  = 

S∏(A ∩ B)

S∏(A ∩ B) + SN(A ∩ B
.

(7)

The idea of focusing is to compute the probability of B in the state when A is supposed to be
true without making any assumption about how the set of probabilities should be revised if A
were actually true, especially without considering any probability measure in the set {P ≤ SΠ}

as impossible except those such that P(äA) = 0. It leads to performing a sensitivity analysis on
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Bayes rule, when the probability function ranges over the set {P ≤ SΠ}. Interestingly, if SΠ is

a plausibility function then SΠA is still a plausibility function, the counterpart holds if SΠ is a

possibility measure.

SΠA is generally much less informative than SΠ( · | A) and even sometimes less

informative than SΠ itself. For instance if A ∩ Ei ≠ Ø, and A z Ei  ∀ i, then SΠA(B) = 1 and

SΠA(äB) = 1, ∀  B ≠ A, B ⊆  A, i.e., we get a total ignorance function on the referential set A.

This is surprising in a learning process where A is a new piece of information and revision
should improve our knowledge. The reason is that focusing is not made for revision and
achieves no learning. To make it clear, suppose that the set of probabilities p represents
knowledge stored in a database. Then SΠA(B) is part of the response of a query asking for the
probability of being in B for an individual in A (focusing rule). One should give SNA(B) = 1 -

SΠA(äB) as well. On the other hand SΠ(B | A) is the result of modifying the database by

enforcing P(A) = 1 (revision). This distinction is in good agreement with the one arising in the
ordinal (and logical) setting in the previous section. Instead of a set of default rules ∆ = {pi →
qi, i = 1,n}, consider a set p(∆) of probabilities induced by conditional probability bounds ∆ =
{P(Bi | Ai) ≥ ai, i = 1,n}, where Bi (resp.: Ai) is the set of models of qi (resp.: pi) . Then

focusing on a reference class A gathering the models of the proposition p leads to compute
bounds of P(B | A) induced by p(∆) for some B of interest. Let B be the set of models of q. If

the coefficients ai are infinitesimally close to 1, that is, of the form 1- ε, finding that P(B | A)

≥1- ε in  p(∆) is strictly equivalent to inferring the rule p → q from ∆ in the possibilistic setting

(or equivalently, in the preferential system of (Kraus et al. 1990)). See details in Lehmann and
Magidor (1992). This is not surprizing because the rule p → q can be viewed as a conditional

event B | A, in the sense of De Finetti, such that P(B | A) is the probability of p → q , and the

logic of conditional events is a model of preferential system of (Kraus et al. 1990)(see Dubois
and Prade, 1993).

Focusing can be justified in terms of belief functions only, namely SΠA(B), as obtained

in (7), can be viewed as the upper limit of a family of belief functions obtained by transferring
for all focal elements such that Ej ∩ A ≠ Ø, Ej ∩ äA ≠ Ø only one part of the mass mj to the set

Ej ∩  A (see De Campos et al., 1990). Each possible partial mass transfer from each focal

element Ej to Ej ∩ A determines a possible way of revising the belief function into another one.

The focusing process refrains from choosing among these revisions by considering the lower
envelope of all the possible revised belief functions.

However the focusing rule, as conditioning generic knowledge by factual evidence, is
not part of the belief function theory as introduced by Shafer(1976) in his book and further
developed by Smets (1988, 1990), Smets and Kennes, 1994). If we consider belief functions
as such, it must be remembered that Shafer (1976) presents it as a theory of evidence, as does
Smets in the transferable belief model. All uncertain pieces of information are factual, deal with
a particular situation. Generic knowledge valid for a class of situations is never envisaged. In
such a state of affairs, Dempster rule of conditioning is justified as a F-revision rule that
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integrates a new piece of evidence into an already existing body thereof. Dempster rule of
combination is essentially the extension of Dempster rule of conditioning to uncertain pieces of
new evidence, considered on equal grounds with respect to former evidence and assumed to be
distinct of it.

On the contrary Dempster's view of belief functions as he originally produced it
corresponds to a probability structure on top of partial ignorance, that produces a particular
family of upper and lower probabilities. Dempster-like belief functions can then be viewed as
modelling generic knowledge with higher order uncertainty, and the focusing rule really makes
sense in order to assess the impact of new evidence on plausible conclusions to be derived on a
case at hand.  But the very rule Dempster laid bare in his paper is then not warranted, since it is
a F-revision rule.

It is somewhat unexpected that, while a belief function is more general that a probability
function, and Dempster rule of conditioning mathematically subsumes the Bayesian
conditioning, Bayesian probability  and belief functions (after Shafer(1976 book and the TBM
model of Smets) seem to apply to rather different fields of investigation: Bayesian probability is
tailored to focusing generic knowledge on proper reference classes described by pieces of
factual evidence, belief function theory is construed as a tool for pooling pieces of uncertain
evidence, and captures the notion of F-revision. On the contrary, Bayes rule of conditioning
appears debatable in the scope of F-revision, and belief function theory proper (i.e. outside the
framework of upper and lower probabilities) has never proposed anything to address the
representation of generic knowledge about a population. This state of facts has been the cause
of many a misunderstanding between Bayesians and advocates of belief functions.

On the contrary the setting of upper and lower probability generalizes the Bayesian
theory to higher order uncertainty of the disjunctive type. Then,  focusing and revision
correspond to different forms of conditioning. If a set p of probability distributions encodes
generic knowledge involving partial ignorance, accounting for a piece of factual evidence A
leads to compute the focusing rule (7) and obtain for some conclusion B of interest the
probability bounds SΠA(B) and SNA(B) = 1 – SΠA( not B). This if quite different if a G-

revision must be performed by enforcing the constraint P(A) = 1 in p, that is, add a new piece
of generic knowledge (it leads to the conditioning rule of equation (6)).

7.3 Example
In order to tell focusing from revision let us consider a case where an assumption h is to

be confirmed on the basis of an observation e. If we know the a priori probability P(h) and the
conditional probabilities P(e | h), P(e | ¬h), the computation of the posterior probability comes
down to the well-known formula:

P(h | e) = 
P(e | h) · P(h)

P(e | h) · P(h) + P(e | ¬h) · P(¬h)
.

At this point, the computation has an ambiguous meaning: what does the data set {P(h), P(e |
h), P(e | ¬h)} really encode? It may express what we know about the presence of a disease h in
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a population, and the probability of observing symptom e when h is present or absent.
Observation e is made on an individual, supposed to be a typical element of class e. P(h | e) is
the generic probability of h in class e that is applied to the individual. This is focusing. But
nothing prevents us alternatively to imagine a situation where "observing e" means discovering
that after all P(¬e) = 0 in all cases so that P(h) must be changed accordingly. Then the above
computation is a G-revision.

On the contrary the data set {P(h), P(e | h), P(e | ¬h)}may encode uncertain evidence
about a particular patient one is very familar with, P(h) being the probability that disease h is
present now, P(e) the probability that symtom e will eventually show up. By assumption, this
data set encodes a probability judgment that stems from preliminary investigation on the patient,
not by using base rate disease statistics. Observing e is a new piece of evidence whereby P(e) =
1 is enforced. This is again revision, namely F-revision however.

What to do when no prior probability P(h) is known but only total ignorance is present?
It is well-known that from P(e | h) = α < 1, P(e | ¬h) = α  < 1 and no prior, from sensitivity

analysis on Bayes rule formula, we reach total ignorance, namely

P(h | e) = xα
xα + α(1 – x)

, x ∈  [0,1]  = [0,1]. (8)

Here we have used a focusing rule and we find SΠe(h) = 1 and SΠe(¬h) = 1. It makes sense

to use this conditioning rule in the first scenario whereby {P(e | h) = , P(e | ¬h) = α } is
generic knowledge and e a piece of evidence. It proves that the knowledge of likelihoods tells
nothing about the individuals in class e (except in the degenerated case when one of α or α  i s

0) .

In the two other scenarios (revision), we must enforce P(e) = 1. The set {P(e | h) = α,
P(e | ¬h) = α , P(e) = 1} is considered as new data from which we should compute new

bounds for P(h), but here the identity P(e) = αP(h) + α (1 – P(h)) ≤ max(α, α ) < 1 shows that

the new data set is inconsistent. If we apply a maximum likelihood strategy, maximizing P(e) in
(8), we find, if α > α , x = 1 in (8), and SΠ(h | e) = 1 and SΠ(¬h | e) = 0. This very strong

result  is  clearly debatable. It turns out that conditioning on this maximum likelihood set {P,
P(e | h) = α , P(e | ¬h) = α , P(e) maximal} is not equivalent to computing SΠ(h ∧ e)/ SΠ(e)

where SΠ(h ∧ e) and SΠ(e) are upper probabilities computed from {P, P(e | h) = α, P(e | ¬h)

= α }. So, a Dempster-rule-like computation does not apply since equation (6) fails. The
maximum likelihood probability Pe(h) = 1 is not sensible, and it  casts doubts on the maximum

likelihood strategy in such a situation.

More generally the use of Bayes rule (which is a particular case of (6) anyway) is
debatable for the purpose of revision while it is quite reasonable for focusing. Indeed the
postulates for justifying Bayes rule are more difficult to advocate for (F- or G-) revision. Bayes
rule is debatable for the purpose of revision especially when, as it is the case here, the input
information conflicts with the prior information. It might be interesting to investigate the results
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that minimal change principles of probability kinematics would produce in the above example.
Indeed the maximum likelihood rule is clearly not a minimal change rule here.

8  Revising Degrees of Belief Versus Revising Betting Probabilities

Insofar as we admit the presence of non-purely probabilistic representations of higher
order uncertainty and particularly of partial ignorance, we are faced with a dilemma in a
decision-making situation where we are provisionally prevented from betting due to the arrival
of some new information. How should we assign betting probabilities so as to account for the
new information? Indeed we are in a setting where beliefs are entertained at the credal level
(encoded in some higher-order uncertainty model) and betting probabilities are derived from
degrees of belief for decision purposes. Two strategies offer themselves: we can revise the old
betting probabilities with Bayes rule applied to the input information or revise the knowledge at
the credal level and recompute new betting probabilities. The problem is that the two strategies
do not lead to the same final betting rates generally.

Let us consider a typical example where this phenomenon occurs. Namely, the mode of
representation of prior knowledge affects the result of the revision process, and especially the
enforced use of uniform betting probabilistic priors lead to debatable results under Bayes rule,
for the purpose of revision. We shall reconsider the Peter, Paul and Mary saga (Smets and
Kennes, 1994):

Example: The Peter, Paul and Mary saga

Big Boss has decided that Mr. Jones must be murdered by one of the three people
present in his waiting room and whose names are Peter, Paul and Mary. Big Boss has decided
that the killer on duty will be selected by the throw of a die: if it is an even number, the killer
will be female, if it is an odd number, the killer will be male. You, the judge, know that Mr.
Jones has been murdered and who was in the waiting room. You know about the die throwing,
but You do not know what the outcome was and who was actually selected. You are also
ignorant as to how Big Boss would have decided between Peter and Paul in the case of an odd
number being observed.

Then You learn that if Big Boss had not selected Peter, then Peter would necessarily
have gone to the police station at the time of the killing in order to have a perfect alibi. Peter
indeed went to the police station, so he is not the killer. Note that the alibi evidence makes
'Peter is not the killer' and 'Peter has a perfect alibi' equivalent. Now the case is summarized
by the following items of information:

Item 1: The killer is only Peter, Paul or Mary (one of them)
Item 2: The facts that the killer is a male or a female are equally probable.
Item 3: Peter produces an alibi
Question: Who is most likely to have been the killer ?



26

If we model this case in the crudest way by means of propositional logic we get that Item 1 is
the disjunction Peter ∨  Paul ∨  Mary, Item 2 is interpreted as total ignorance and Item 3 to

¬Peter. The F-revision leads to (Peter ∨  Paul ∨  Mary) ∧  ¬Peter = Paul ∨  Mary, i.e., Paul and

Mary with equal possibility. Note that all items of information are considered of the same nature
here: they are pieces of evidence on the case at hand, and are not generic. They do not pertain to
a population.

It can be noticed that the Bayesian analysis based on Item 2 (P(female) = P(male) = 1/2)
implies P(Paul ∨  Peter) = P(Mary) = 1/2. Then we compute the effect of Item 3 as

P(Mary | ¬Peter) = 
P(¬Peter | Mary) . P(Mary)

 P(¬Peter | Mary) . P(Mary) + P(¬Peter | ¬Mary) . P(¬Mary).

One has: P(¬Peter | Mary) = 1
but, P(¬Peter | ¬Mary) = P(Paul | Paul ∨  Peter) is unknown.

Hence using a Bayesian postulate (the Principle of Insufficient Reason, an arguable postulate
but nevertheless quite reasonable in the present case) one can assume that given that the killer is
either Paul or Peter, both are equipossible. Then Paul and Peter are equally probable, i.e.,
P(Paul | Paul ∨  Peter) = 1/2. And it is obtained:

P(Mary | ¬Peter) = 1/2
1/2 + 1/4

 = 2
3

P(Paul | ¬Peter) = 1/3

Hence contrary to the analysis based on propositional logic, a Bayesian policeman discovering
Peter's alibi should be tempted to put Mary in jail, or at least to become suspicious towards her.
In order to make any sense out of this result, a frequentist interpretation will help: assume
Peter, Paul and Mary are prototypes of a group of people say Peter-like and Paul-like, and
Mary-like. What the result says is that, given that killers are as often found to be male as female
in the union of these three groups (because of the die experiment in the saga, but it could also
be obtained by assuming the prior knowledge that there are as many male as female killers), and
given that the proportion of killers in Paul-like group is the same as in Peter-like group, then
Mary-like killers are found twice more often than Paul-like killers. This result is applied to the
particular characters of the saga. But this is focusing, not F-revision since Item 1 and Item 2 are
interpreted as two pieces of generic knowledge, namely that killers are as often found to be
male as female, and that killers in Paul-like group are as numerous as in Peter-like group,  this
knowledge is further applied to the particular murder case, considering Item 3 (Peter has an
alibi) as factual evidence indeed. The reference class on which the focusing takes place is Paul
∨ Mary. This is not exactly our original problem which only involves pieces of uncertain

evidence.

The Bayesian result should not be surprising at the mathematical level since using the
so-called Bayesian postulate for ignorance representation we can compute a unique distribution
on the whole space:
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P(Paul) = P(Paul | Paul ∨  Peter) · P(Paul ∨  Peter) + P(Paul | Mary) · P(Mary)

= 1/2 · 1/2 = 1/4 = P(Peter) = 1/2 · P(Mary).

In some sense,  Bayesian analysis comes down to claim that we know from the start that Mary
is more likely to be the killer than any of the males. This piece of information is much stronger
than what evidence suggests us but derives right away from the generic knowledge about killers
(namely : P(Mary) = P(Paul ∨  Peter), P(Paul | Paul ∨  Peter) = 1/2). However from the available

evidence, the dice experiment does not allow us to conclude that 'Mary is the killer' is more
probable than that 'Paul is the killer'. We only know that the probability that Mary is the killer
is equal to the probability that the killer is 'Peter or Paul'. And nobody told, in the case at hand,
that Peter, Paul and Mary were typical representatives of distinct populations relevant to the
case (maybe Peter and Paul are typical elements of the same population).

A belief function analysis of the case might consider a stronger interpretation of Item 2
than the one of propositional logic, and admit m(Peter ∨  Paul) = 1/2 = m(Mary). The latter is

viewed as an uncertain piece of evidence pertaining to the Peter Paul and Mary case. But such
an analysis would certainly refrain from splitting forever the weight on Peter and Paul into
equal parts (nor in any other way), as the latter is not at all suggested by the pieces of evidence.
Then Dempster rule of conditioning would simply transfer the mass 1/2 over to Paul, given that
Peter has an alibi. Finally one would get P(Paul) = P(Mary) = 1/2 consistently with the
propositional logic solution. Here we have performed a genuine F-revision of Item 1 and 2 by
Item 3, not a focusing operation.

The present example is typical of the counter-intuitive results one can obtain if Bayesian
uninformed priors are used as substitute to partial ignorance functions before a revision process
takes place, although the results obtained by Bayesians can be interpreted as sensible if an
interpretation is given to the uniform probabilities in terms of generic knowledge (e.g.,
frequentist). Note that if we have to bet on who is the killer before Peter's alibi is known, we
would clearly use P(Mary) = 1/2, P(Paul) = P(Peter) = 1/4 for the bet. But after Peter's alibi is
known using P(Mary) = 2/3 sounds strange. This should be a new bet involving only Paul and
Mary, with equal chance on male and female, i.e., this is another betting problem.

To further advocate our thesis, notice that the story might have started before it was
established that the killer was Peter, Paul or Mary only. Suppose originally, Sue and Deborah
were suspected as well but they produced their alibi quite a long time before Peter. Then, the
Bayesian method would start with

P(Paul) = P(Peter) = 1/4 and P(Mary) = P(Sue) = P(Deborah) = 1/6

(since P(male) = P(female) from Item 2 and using the indifference principle). But then

P(Mary | Mary ∨ Paul) = 
1/6

1/6 + 1/4 = 
2
5 < P(Paul | Mary ∨ Paul) = 

3
5
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Hence the results of  Bayesian conditionning depend on where the story starts from. Especially
if it starts with n females and m males then

P(Mary | Mary ∨ Paul) = 
1/n

1/n + 1/m = 
m

m +  n

i.e., anything between 0 and 1 according to the n and m. This is reasonable in a frequentist
perspective, since it is a focusing process from a population of m + n persons. Indeed, this is a
typical piece of generic knowledge. This is much less convincing in a subjectivist belief
revision perspective (F-revision), when the end of the story seems to depend on which page the
reader starts reading the novel. What we claim here is that a sequence of focusing steps
exploiting generic knowledge does not produce the same results as a sequence of F-revision
steps modifying an uncertain body of evidence. Indeed, posterior probabilities computed from a
previous episode usually do not agree with the prior probabilities which would be given to the
same remaining alternative if we ignore this episode. Moreover, although the distribution we
start with in the above example seems to correctly encode Item 2 about the equal probability of
male and female, it leads to results which are intuitively unexpected, like the following:

P(¬Deborah ∧  ¬Sue | ¬Mary) = P(Paul ∨ Peter | Paul ∨ Peter ∨ Deborah ∨ Sue)

= 
1/4 + 1/4

1/4 + 1/4 + 1/6 + 1/6 = 
3
5.

Item 2 seems to suggest the value 1/2.

Conversely if P(Mary) = 1/6 and P(Paul ∨ Peter|Paul ∨ Peter ∨ Deborah ∨ Sue) = 1/2

are assumed from indifference principles, it would lead to strange priors on the set of 5
persons.

The above example does not question the value of the Bayesian approach that exploits
generic knowledge in order to explain a particular situation via focusing on the proper reference
class. It just confirms that if all uncertain information on a case is factual, and a F-revision
process must take place, a Bayesian representation of partial ignorance can hardly be defended.
How to represent total ignorance within classical probability theory is in fact an open question
(and maybe an impossible one), often answered by strict Bayesians as being a non-existing
problem. As they claim, total ignorance does not exist, one always has a state of knowledge
quantifiable by a single probability measure on ANY and EVERY space. Total ignorance is a
state where every proposition that is neither a tautology nor a contradiction is believed with the
same strength. It cannot be represented in probability theory, as shown in Section 3. Total
ignorance is therefore often considered as non-existing, a quite Procustean attitude. Other
theories often cope easily with states of partial ignorance, usually because they are tailored for
it, like possibility theory, or because of their higher expressive power, like belief functions that
may account for any intermediary state between total ignorance, full probabilistic knowledge
and complete (plain deterministic) knowledge. On the contrary possibility theory covers a more
restricted range of epistemic states between total ignorance and complete (deterministic)
knowledge almost without overlap with Bayesian representations.
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9 - Conclusion

The main messages that this paper conveys are as follows:

-) The representation of partial ignorance is not necessarily related to the problem of making
decisions. The Bayesian probability approach is tailored for decision but not necessarily for
other kinds of reasoning (e.g., not always for belief revision).

-) A single number is not enough to quantify belief as expressing partial ignorance. As a
consequence, frameworks that explicitly encode higher-order uncertainty must be used for that
purpose, such as possibility theory, belief functions or upper and lower probabilities.

-) The extension of conditioning to partial ignorance formalisms reveals that this notion is two-
sided. Conditioning can account for the idea of a shift of reference class (that is named focusing
here), as well as for belief revision. In formalisms involving higher-order uncertainty, these
two tasks are not necessarily implemented in the same way.

Our analysis strongly suggests a distinction between two mental levels where beliefs are
involved (Smets and Kennes, 1994): a credal level where beliefs are entertained, combined and
revised, and a so-called pignistic level where beliefs are used in a decision process. Deduction,
plausible reasoning and belief change are processed at that credal level.  The important point is
that decision is not explicitly involved in those tasks and that beliefs can be maintained
regardless of any subsequent decision. The absence of any forced link to any underlying
decision process explains why the probability representation is not required, and other,
alternative models can be advocated.

A good coherence between most theories of partial ignorance (possibility theory, belief
functions, upper lower probabilities) can be observed. All of them insist on the use of two
functions (a certainly-like lower function, a possibility-like upper function) in order to model
the state of belief in a proposition. These theories basically differ by their relative power of
expressiveness which is dictated by their basic interpretive settings (specified by canonical
examples, for instance) or  by a modeling assumption, e.g., ordinal levels instead of numerical
ones in the case of possibility theory. Qualitative possibility theory represents belief in a purely
ordinal setting by ranking propositions in terms of their certainty of being true and their
possibility of being true in a separate manner. Possibility theory then comes close to
mainstream approaches in nonmonotonic reasoning.The transferable belief model suggests that
beliefs should be quantified by belief functions, but other alternatives might be considered,
such as probability intervals. The latter approaches differ from Bayesian probability theory
because they are more general. All non-purely probabilistic settings have in common, contrary
to the Bayesian approach, the idea of leaving room for partial ignorance.
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Of course beliefs are governing our acts. So when a decision must be made and insofar
as the paradigm of fair bets applies, there must be a transformation between the beliefs held at
the credal level into some additive measure to be used at the so-called pignistic level, i.e., the
level where beliefs induce some probability measures used to compute the expected utilities
needed in order to make rational optimal decisions. At the pignistic level, the probability
measure does not quantify our beliefs but only our propensity to choose among prescribed acts.
It is induced by our beliefs held at the credal level.

The paper has also pointed out that two ways of envisaging conditioning exist, and that
they can only be told apart in frameworks that deal with generic knowledge and factual evidence
separately. This distinction is especially clear in frameworks accounting for higher order
uncertainty. Most of the debates that took place in the past concerning the relevance of
Dempster rule of conditioning seem to have their origin in the lack of distinction between belief
revision, that involve pieces of information at the same level, and focusing, that consists of
projecting generic knowledge on a particular reference class pointed out by factual evidence.

On the whole, it is claimed here that a proper treatment of knowledge-based systems that
can accommodate partial ignorance requires new tools for representing uncertainty that
somewhat contradict a significant part of the probabilistic tradition. To enforce each and every
problem involving partial ignorance into the Bayesian jacket sounds much too restrictive, if not
blatantly erroneous.
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