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1. Introduction.

Dempster-Shafer theory has received much attention recently in  AI, both in favorable
and unfavorable ways (see the special issues of the Intern. J. Approx. Reasoning, vol.
4, 1990 and vol. 6, 1992). Most criticisms are based on confusion resulting from an
inappropriate mixing of several interpretations of the theory. No specific
interpretation is ‘better’ than any other, each one fits a specific domain. Ruspini
(1986) and Pearl (1988) have considered logical foundations of the model based on
the concepts of the probability of a modal proposition (knowing) or of the probability
of provability. We analyze in detail the probability of provability interpretation and
show how the conditioning rules can be derived. We first present the two
conditioning rules that have been distinguished recently by Dubois and Prade (1991),
the focusing and the revision. We proceed by detailing the concept of the  probability
of the provability of some propositions. We show the relation of these particular
probability functions with the belief functions. Finally, we study two conditioning
processes that correspond to the geometrical rule of conditioning and to the
unnormalized (Dempster) rule of conditioning, respectively.

1 This work has been partially funded by the CEC-ESPRIT III Basic Research Project
6156 (DRUMS II), and the Communauté Française de Belgique, ARC 92/97-160
(BELON).
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2. Revision versus focusing :

Dubois and Prade (1991) have introduced beautifully the difference between two
types of conditioning :

Case 1. A die has been tossed. You2 assess the probability that the outcome is ‘Six’.
Then a reliable witness says that the outcome is an even number. How do You update
the probability that the outcome is ‘six’ taking in due consideration the new piece of
information.

Case 2. Hundred dice have been tossed. You assess the proportion of ‘six’. Then
You decide to focus Your interest on the dice with an even outcome. How do You
compute the proportion of ‘six’ among the dice with an even outcome.

Case 1 corresponds to a revision3  as the probability is modified to take in account a
new piece of information.
Case 2 corresponds to a focusing : no new piece of information is introduced, we
just consider another reference class by focusing our attention on a given subset of the
original set.

In probability theory, the distinction is more conceptual than practical as both cases
are solved by Bayes’ rule of conditioning. It might explain the lack of interest for
such a distinction. Distinction becomes important when degrees of beliefs are
quantified by belief functions like in Dempster model (Dempster 1967), in Shafer
model (Shafer, 1976a), in the Hints Model (Kohlas and Monney, 1990) and in the
Transferable Belief Model (Smets, 1988, Smets and Kennes, 1990).

In the present study of the probability of the provability, we restrict ourselves to the
revision case.

3. Probability of Provability.

3.1. Introduction.

Pearl (1988) presents the ‘probability of provability’ interpretation of Dempster-
Shafer theory. Ruspini (1986) studied a similar problem by using the modal approach,
considering the ‘probability of knowing’. Both approaches fit essentially with the

2 'You' is the agent that entertains the beliefs considered in this presentation.
3 In Dubois and Prade (1991), the  authors called it an ‘updating’ but today they
prefer to call it (Dubois and Prade 1992) a revision in harmony with the Alchouroron,
Gärdenfors and Makinson approach (Gärdenfors, 1988) where revision concerns the
beliefs held by an agent. They reserve ‘updating’ for the case considered by Katsuno
and Mendelzon (1991) that concerns the update of an evolving world.
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same ideas. Conceptually, the probability of provability approach is not different from
the original Dempsterian approach (Dempster 1967) but it provides a nice framework
and explains the origin of the conditioning rules. It can be described as follows.

Let H be a finite Boolean algebra of propositions. These propositions are called the
hypotheses. Let L be another finite Boolean algebra of propositions. We define a
(multi-) mapping from H to L, where satisfies both:

If HL then HL ∨ L’ (right weakening)

If HL and HL’ then H L∧ L’ (and)

can be seen as a form of provability or consequence relation. Hereafter we will
consider it as the provability operator. One property not satisfied by  is:

If HL∨ L’ then H L or H L’

The impact of this extra requirement will be studied in section 4 because of its links
with probability theory.

Related to , we define the M mapping from H to L such that:
∀ H∈ H,   M(H) = ∧ Li  : HLi ,  Li∈ L

in which case: HL iff M(H) ∧ L = M(H).

M(H) is the most specific proposition in L that can be deduced from H. In particular,
if M(H) = ⊥ , then H = ⊥ , but not the converse.

Suppose there is a probability measure PH : 2H→[0,1] on 2H and let pH :

H→[0,1] be the related probability function on H with pH(H) = PH({H}) for every

H∈ H. Note that H  is already an algebra, usually the power set of some set. As

⊥∈ H, pH(⊥ ) may be positive4.

Given the function M : H→L, we can define on L the probability that L∈ L is

provable and ¬L is not provable. It is denoted by PL( >L). We use the symbol > in
PL to enhance the fact that those H that would also prove ¬L are eliminated. PL( >L)
is the probability that an hypothesis selected randomly in H  (according to the
probability measure PH) proves L and does not prove ¬L:

PL( >L) = def PH({H : H∈ H, HL, H ;/ ¬L}) = ∑
H:H∈ H,H;L,H;/ ¬L

                  pH(H)

Example 1: (This didactic example will be studied throughout the paper). To
illustrate the meaning of the various components of the model, let the propositions:

R = ‘It rains’
W = ‘It is windy’
C = ‘Paul spend the evening with Carol’
J = ‘Paul spend the evening with John’

4 In Smets (1992) a similar problem is analyzed, i.e., belief functions where m(⊥ )
might be positive.
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Let H = P ( {R, ¬R} x {W, ¬W} ) where  P  denotes the power set and x denotes the
Cartesian product.  Let L = P ( {C, ¬C} x {J, ¬J} ) . Let  T denotes the tautology.

Hi∈ H pH M(Hi)∈ L

H1  T .10 L1 J

H2 R .15 L2 ¬C∧ J

H3 W .18 L3 C
H4 R∧ W .24 L4 C∧ ¬J

H5 R∧ ¬W .30 L5 ¬C∨ ¬J

H6 R∧ ¬R .03 L6 ⊥
Table 1: Elements of H, L and the probability distribution pH on H.

Table 1 presents a set of hypotheses (H1 to H6), their M values (L1 to L6) and the
probability distribution pH. The origin of such data could be that You are trying to
guess with whom Paul will spend his evening (an element of L ), and Paul’s
intentions depend on the ‘exact information’ that Paul will have about the weather (an
element of H). By ‘exact information’ we mean ‘all what is known’. So Paul knows
exactly H4 does not implies that Paul knows exactly H3. Table 1 says:
1) There are 6 weather reports (Hi : i=1, ..6) available about tonight weather (Hi),
2) Paul will obtain only one of them and the probability that Paul obtains report Hi is
pH(Hi) , and
3) the M values are the most specific information You know about Paul’s intentions
(M(Hi)) according to what Paul exactly knows about the weather (Hi).

In particular, if the weather report available to Paul says  ‘it will be windy’ (H3), then
Paul will spend the evening with Carol. For what concerns John, he may or not be
present. In case H6, the report says ‘R ∧  ¬R’ (i.e. ⊥ ). In that case, every proposition in

L is provable, hence M(⊥ ) = ⊥ .

Then for instance:
PL( >T) =  pH (H1)+ pH (H2) +pH (H3)+ pH (H4) + pH (H5) = .97
PL( >J)  =  pH (H1)+ pH (H2) = .25
PL( >¬J)  =  pH (H4) = .24
PL( >C∧ J) = 0.00

PL( >¬C∧ J) = pH (H2) = 0.15.

So one has, among others,
PL( >T) = .97 < 1.00
PL( >J) = .25 < 1 - PL( >¬J) = 1 - .24 = .76

and PL( >J) = .25 > PL( >C∧ J) + PL( >¬C∧ J) = 0.00 + 0.15
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Those inequalities are typical of the unnormalized belief functions and indeed
PL( >L) considered as a function of L happens to be a belief function on L as shown
below. ∇

3.2. Belief Functions.

The use of belief functions has been advocated in order to represent quantified beliefs.
It is based on the idea that the impact of a piece of evidence on an agent’s beliefs over
a propositional algebra L can be expressed by an allocation of parts of an initial
unitary amount of belief among the propositions of L. These parts of beliefs are
quantified by a basic belief assignment m: L→[0,1]  where m(A) for A∈ L is that

part of belief that supports A without supporting any proposition B≠A that implies A
because of a lack of information justifying this more specific allocation. The sum of
those masses that support any proposition  B that implies A without implying ¬A is
called the degree of belief given to A, denoted bel(A), where bel: L→[0,1] is a belief

function. The sum of those masses that support any proposition B that is not
contradictory to A is called the degree of plausibility given to A, denoted pl(A),
where pl: L→[0,1] is a plausibility function.

Mathematically these functions are defined by:

bel(A) = ∑
X:X∈ L,X∧ A=X,X≠⊥

  
              m(X)

pl(A) = ∑
X:X∈ L,X∧ A≠⊥  

             m(X)  =  bel(T) - bel(¬A)

Belief functions satisfy the following inequality:
 ∀ n≥1, A1,A2,...An ∈ L

  bel(A1∨ A2∨ ...An) ≥ ∑
i

bel(Ai) - ∑
i>j

bel(Ai∧ Aj)....-(-1)nbel(A1∧ A2∧ ...An)

Probability functions satisfy similar relations except that the inequality is replaced by
an equality.

3.3. The probability of provability is a belief function.

Let belL : L →[0,1] be the (unnormalized) belief function5 on L induced by a

given basic belief assignment mL : L→[0,1]. By definition belL(L) is the sum of the

basic belief masses mL(X) given to the propositions X in L that imply L without

5 bel is an unnormalized belief function as we do not require m(⊥ )=0 (Smets 1988,
1992).
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implying ¬L. It can be shown that PL( >L), L∈ L is equal to the belief function belL
on L induced by the basic belief assignment mL : L→[0,1] with:

mL(L) = ∑
H:H∈ H,M(H)=L

        pH(H) 

and mL(L) = 0 if the sum is taken over an empty set.

One has: 
PL( >L) = ∑

H:H∈ H,H;L,H;/ ¬L

            pH(H)

= ∑
H:H∈ H,M(H);L,M(H);/ ¬L

                   pH(H)

=  ∑
Li:Li∈ L,Li;L,Li;/ ¬L

                       ∑
H:H∈ H,M(H)=Li

         pH(H)

=  ∑
Li:Li∈ L,Li;L,Li;/ ¬L

          mL(Li)

So: PL( >L) =  belL(L).

Similarly the plausibility function plL  : L→[0,1] is :

plL(L) = belL(T) − belL(¬L) = ∑
X:X∈ L,X∧ L≠⊥

    mL(X) for L∈ L

where T is the maximal element of L. It can be shown that:
plL(L) = ∑

H:H∈ H,M(H)∧ L≠⊥
            pH(H)

Example 2: Given the data of table 1, table 2 presents the belief and plausibility
values for several propositions of L. ∇
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belL plL
  C ∧  J .00 .28

¬C ∧   J .15 .55

J .25 .73
  C ∨ ¬J .42 .82

¬C ∨ ¬J .69 .97

¬J .24 .72
T .97 .97

Table 2: Belief and plausibility values for several propositions of L.

This model for the probability of provability is not different from Dempster’s model
(Dempster 1967) and Shafer’s translator model (Shafer and Tversky 1985, Dubois et
al. 1991). Both models consider an X domain (the translator-source domain) endowed
with a probability measure, an Y domain (the message-data domain) and a one-to-
many mapping from X to Y. The H space corresponds to the X domain, the L to the
Y, the M mapping to the one-to-many mapping, and PH to the probability on the X
domain.

3.4. Revision.

All probabilities like PH and beliefs like belL considered in this paper are entertained
by You at a given time t. They are induced relatively to a given evidential
corpus, denoted ECt

Y, i.e., the set of pieces of evidence in Your mind at time t. Our
approach is normative: You is an ideal rational agent and Your evidential corpus is

deductively closed. ECt
Y induces in You at t a credal state representing the partial

beliefs You entertain on which propositions of H are true and which propositions of

L can be deduced. Let [ECt
Y
] represents the conjunction of the propositions in ECt

Y.

[ECt
Y
] is the background knowledge.

The probability measure PH : 2H→[0,1] is induced from ECt
Y. Revision process

consists in changing ECt
Y by adding to it some new piece of information. In this

paper, we consider only the case where the added information is compatible with

ECt
Y, i.e. its conjunction with [ECt

Y] is not contradictory. Therefore the revision
processes we are going to described are the result of computing Your beliefs once

[ECt
Y] has been transformed into [ECt

Y]∧ A where A is the proposition that represent

the new piece of information. In order to simplify the notation, we will not mention

ECt
Y. It is understood in each revision considered here after.

We proceed by considering two revision processes that correspond to some data-
conditioning and some source-conditioning, i.e., conditioning on an information
relative to the data or to the source (Kruse and Gebhardt, 1993).
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3.5. Data-conditioning.

The data-conditioning fits the scenario where You learn that a particular
proposition L* of L is true. In that case, the hypothesis H that was proving in the

context [ECt
Y] all those propositions in L proved by M(H) now proves in the revised

context all those propositions in L proved by M(H)∧ L*. The basic belief assignment

mL is revised into mL* with:

mL*(L) =  ∑
H:H∈ H,M(H)∧ L*=L

             pH(H) if LL*

and mL*(L) = 0 otherwise

Note that for all L∈ L such that LL*, one has L∧ L*≡L. The revised plausibility

plL* on L for all L∈ L  is:

plL*(L) = ∑
X:X∈ L,X∧ L≠⊥

       mL*(X)

=  ∑
X:X∈ L,X∧ L≠⊥

               ∑
H:Η∈ H,M(H)∧ L*=X

             pH(H)

=  ∑
H:Η∈ H,M(H)∧ L∧ L*≠⊥

               pH(H)    =   plL(L∧ L*)

One has for all L∈ L, L≠⊥,
belL*(L) = plL*(T) − plL*(¬L) = plL(L*) − plL(¬L∧ L*) =

   = belL(T) − belL(¬L*) − belL(T) + belL(L∨ ¬L*)

   = belL(L∨ ¬L*) − belL(¬L*).

These relations for belL* and plL* correspond to the unnormalized rule of
conditioning  (Smets 1993b)  Normalization is achieved by further conditioning on
L being not equivalent to a contradiction. After normalization, the resulting relation is
Dempster's rule of conditioning.

Example 3: Suppose You learn the extra information that Paul has decided without
regard to the weather report to spend the evening with John. So L* = J. What can You
say about Carol. Table 3 presents the result of the revision of the data of table 2 by
this information. The data are obtained by replacing the Li by Li∧ J in table 1. In

particular under H3 (windy) You knew that Paul would spend his evening with Carol.
You know that John will also be there. So You know now that under H3, Paul will
spend his evening with Carol and John. ∇
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belL* plL*

  C ∧  J .18 .28

¬C ∧   J .45 .55

J .73 .73

Table 3: Belief and plausibility values for several propositions of L after data-
conditioning on L* = J.

3.6. Source-conditioning.

The source-conditioning fits to the following scenario. Given L**∈ L, You

consider only those hypotheses H that prove L** (without proving ¬L**) and ask
then what is the probability that L is provable, for L∈ L. This revision corresponds to

the impact on the evidential corpus of the information ‘H proves L**’, or equivalently
‘L** is provable’. Therefore You restrict Your attention to those H∈ H such that

H;L**, H;/ ¬L**.

Let L;L**. So L∧ L** = L. Let PL**( >L) be the probability that L is provable by

one of those hypotheses that prove L** without proving ¬L**. It is:

belL**(L) = 
PH({H: H;L∧ L**, H;/ ¬(L∧ L**)})

PH({H: H;L**, H;/ ¬L**)}

= 
belL(L∧ L**)

belL(L**)

This relation is known as the geometrical rule of conditioning (Shafer 1976b,
Suppes and Zanotti, 1977).

Example 4: Suppose You learn that H proves L** = J, i.e., You learn that the
weather report (the source) was such that John will spend the evening with Paul (not
that John just did it). What can You say about Carol? Only H1 and H2 remain relevant
and :

belL**(¬C) = 
.15

.10 + .15 = .60

belL**(C) = .00
belL**(C ∨  ¬C) = 1.00.

The beliefs computed here are those given to these propositions considered in table 3.
Resulting beliefs are different,  enhancing the difference between the two forms of
revisions. ∇

It might be worth reconsidering the conditioning events. In the first case (data
conditioning), You revise Your belief  on the extra information ‘L* is true’. In the
second case (the source conditioning), You revise Your beliefs on the fact ‘L** is



Proba Deductibility July 27, 1999 10

deducible from the hypotheses in H’. The first case seems the most natural form of
conditioning, what does not mean it always applies. The second form is the one
encountered more naturally in the random set approach to belief functions (Nguyen
1978, Smets 1991a, 1991b). It is also the one encountered by applying Bayes’ rule of
conditioning blindly. If one writes:

bel(A|B) = P( >A| >B),
then it becomes very tempting to write:

P( >A| >B) = 
P( >A ∧  >B)

P( >B) 
 = 

P( >A∧ B)

P( >B)
in which case,

bel(A|B) = 
bel(A∧ B)

bel(B) .

The adequate choice between the two rules is straightforward when the conditioning
event is well understood. The important point is not to apply Bayes’ rule blindly, as
the geometrical rule would automatically result, even when Dempster’s rule would be
the adequate rule.

The data conditioning (and its derived Dempster's rule of conditioning) is the case
classically considered in Dempster-Shafer theory and in the transferable belief model,
where conditioning is performed on a new piece of evidence related to the data
domain L.

The normalized Dempster's rule of conditioning as described in Dempster-Shafer
theory can be explained as the result of a combination of both the source and the data
conditioning. The conditioning event L* concerns the data domain L, and induces a
data conditioning, i.e., the unnormalized rule of conditioning is the appropriate rule.
But atop of such conditioning, there is a supplementary hidden permanent assumption

held by You in Your evidential corpus ECt
Y: every hypothesis H in H should be

compatible with some proposition of L at any time, i.e., after conditioning on any L*
one may keep only those H in H such that M(H)∧ L* ≠ ⊥ . The other hypothesis are

‘eliminated’ through a source-conditioning, i.e., they get a zero probability, or

equivalently are considered as impossible under the revised ECt
Y.

So given an initial probability measure PH on H (such that PH({H: M(H) = ⊥ }) = 0

as the initial probability measure must also satisfy the hidden assumption), the impact
of a data conditioning on L* is obtained as follows:
1° determine H* = {H : M(H)∧ L* = ⊥ }

2° compute PH* on H* by conditioning PH on H* (by Bayes’ rule)
3° condition on L* with Dempster's rule of conditioning, using PH* as the probability
measure on the hypothesis space.
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The results are normalized by construction. The order of the conditioning is irrelevant
as the same results are obtained by first applying the unnormalized rule of
conditioning (a data-conditioning) on L* and then applying the hidden assumption,
i.e. applying the geometrical rule of conditioning (a source-conditioning) on H*. This
explanation might help in understanding the origin of the normalization factor after
conditioning as always advocated by Shafer. It also enhance the presence of the

hidden assumption in ECt
Y that could be relaxed, as done in the transferable belief

model where we do not apply the normalization automatically, but only when
explicitly justified and required.

4. The probability case.

There are cases where the probability of provability happens to be a probability
measure over L  (i.e. belL happens to be a probability function).

Case 1: Suppose there is a partition Π  of L such that for all H, {M(H)} is an

element of Π  iff pH(H)>0. In that case belL becomes an additive measure on 2Π (a

probability measure if it were normalized). When all belief functions are normalized,
the whole model collapses into a classical probability model and both revision cases
degenerate into the classical Bayes’ rule of conditioning.

Case 2: Going back to the definition of PL( >L), suppose we add the following
requirement on the provability relation :

If HL∨ L’ then H L or H L’. (4.1)

This relation is the disjunctive property of intuitionistic logic. Here we require that
the provability relation be so restricted.

Under the requirement (4.1),

PL( >L∨ L’) = PH({H:H∈ H, HL∨ L’, H;/ ¬L∨ L’}) =

= PH({H:H∈ H, HL or H L’, H ;/ ⊥ })

= PH({H:H∈ H, HL, H ;/ ⊥ }∪ {H:H∈ H, HL’, H ;/ ⊥ })

= PH({H:H∈ H, HL, H ;/ ⊥ }) + P({H:H∈ H, HL’, H ;/ ⊥ })

- PH({H:H∈ H, HL∧ L’, H;/ ⊥ })

= PL( >L) + PL( >L’) - PL( >L∧ L’)

Therefore,
belL(L∨ L’) = belL(L) + belL(L’) - belL(L∧ L’).
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This relation means that bel is an additive measure. It is not yet a probability function
as belL(T) = 1 is not required. belL(T) = 1 corresponds to the extra requirement that
PL( >T ) = 1, i.e. for every H∈ H  such that pH(H)>0 one has M(H)≠⊥ , or

equivalently pH(⊥ )=0. This property might easily be assumed, but is not

fundamentally required.

The property (4.1) can be shown to be equivalent to the requirement that M(H) is an
atom of L (where L is viewed as a lattice, i.e., an atom of L is a proposition that
corresponds to an interpretation of L). Indeed let L = l1 ∨  l2 ∨  .. ∨  ln where the li ‘s

are atoms of L. Then if HL, then by 4.1 there is a li such that M(H) = li. It is
interesting to note that the requirement (4.1) is equivalent to both the additivity of
belL and the fact that for every H∈ H, M(H) is an atom of L.

5. Conditioning by adding a new hypothesis.

One might be tempted to find a revision rule when the conditioning event results in

adding a new hypothesis H* to ECt
Y that must be accepted. So the probability initially

given under ECt
Y to the hypothesis H would be given to H∧ H* after revision of ECt

Y.

Unfortunately, the revised beliefs induced on L cannot be derived from the beliefs
held on L  before learning about H*. Computation must be completely redone,
starting from the initial PH.

Example 5: As an example, consider example 1 and let H* = W (You know and
Paul knows that it will be windy). We do not say that the weather report will say ‘it
will be windy’, what would result in a conditioning of pH on H3∨ H4 by the classical

Bayesian rule. Table 4 presents the result of transforming the data of table 1 by
adding the hypothesis H*=W to every Hi∈ H. The difficulty in computing the revised

belL from the initial belL  is due to the fact that in general M(Hi∧Η∗) is not a

function of M(Hi) and Μ(Η∗ ). ∇

Hi∈ H Hi∧Η∗ M(Hi∧Η∗) M(Hi)∧Μ(Η∗ )

H1  T W L3 C C∧ J

H2 R R∧ W L4 C∧ ¬J ⊥
H3 W W L3 C C
H4 R∧ W R∧ W L4 C∧ ¬J C∧ ¬J

H5 R∧ ¬W ⊥ L6 ⊥ C∧ ¬J

H6 R∧ ¬R ⊥ L6 ⊥ ⊥
Table 4: Transformation of table 1 data by the added hypothesis H*=W. Elements
of H, their transformation by H*, the correct related L value with L = M(Hi∧Η∗) and

the value of M(Hi)∧Μ(Η∗ ).
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Suppose the special case where M satisfies M(H1∧Η 2) = M(H1)∧Μ(Η 2) for all H1

and H2∈ H (a constraint not satisfied in the example of table1: e.g., L4 = C∧ ¬J =

M(R∧ W) ≠ M(R)∧ M(W) = L2∧ L3 = ⊥ ). Under such a condition (modulo the ‘and’

and ‘right weakening’ of section 3.1), one has:
If H1L1 and H 2L2 , then H1∧ H 2L1∧ L 2.

that would be obtained if the operator satisfies also ‘monotonicity’ (if H1L then
H1∧ H2L). In that case M satisfies M(H) = M(H)∧ M (T) for every H∈ H, and

M(H)∧ M(H’) = ⊥  only if H∧ H’ = ⊥ . From these properties, one has belL(L) =

PH({H’: H’∧ H=H’, H’≠⊥ }) where L = M(H). The revision plL* of plL induced by

the acceptation of a new hypothesis H* can now be obtained directly from plL
plL*(L) = plL(L) for L∧ M(H*)=L,

i.e., the result is the one obtained by conditioning the initial plausibility function plL

on L*=M(H*) with the unnormalized rule of data-conditioning. This relation does not
seem very useful as the constraints on M are quite artificial. Nevertheless this
example may help to understand the difference between the two types of conditioning
analyzed in  this paper.

When the M mapping satisfies the above constraints (‘and’ and ‘monotonicity’), both
source-conditioning and data-conditioning can be performed by appropriately
transferring the probabilities pH among the hypotheses. The data-conditioning on
L*∈ L can be realized by accepting the hypothesis H* where M(H*) = L*. The

source-conditioning on L** can be realized by keeping only those hypotheses H such
that M(H)∧ L**= M(H). If one defines the (maybe new) hypothesis H** such that

M(H**) = L**, then source-conditioning is obtained by keeping only those
hypotheses H such that H∧ H**=H (and normalizing). The data-conditioning is

obtained by allocating pH(H) to H∧ H* whereas the source-conditioning is obtained

by keeping pH(H) to H iff H∧ H**=H, otherwise pH(H) is transferred to ⊥ (and

normalization will take care of it). The essential difference between the two
conditioning rules is found for those hypotheses compatible with both the
conditioning hypothesis and its negation: they are kept in the data-conditioning and
eliminated in the source-conditioning. Source-conditioning results in a much more
radical revision than the data-conditioning.

6. Conclusions.

We have presented the probability of provability interpretation of Dempster-Shafer
theory. We have derived the revision rules that can be described under that
interpretation. Both Dempster's rule of conditioning and the geometric rule of
conditioning are obtained. These derivations cover the cases considered by Dempster-
Shafer theory (Dempster 1967), but not all those considered by the transferable belief
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model (Smets and Kennes 1990) where we do not necessarily assumed a probability
measure on some hypothesis space.

Dempster-Shafer theory has been criticized by some Bayesians as inappropriate: they
claim that conditioning by Dempster's rule of conditioning is inadequate. A strict
Bayesian would claim the existence of a probability measure PH x L on the product
space H  x L  that represents the agent’s belief on that space6. They ask for the
application of Bayes’ rule of conditioning on PH x L, and the marginalization of the
result on L. Of course, the available information consists only of the marginalization
of PH x L on H. The conditioning process cannot be achieved in general for lack of
appropriate information. Only upper and lower conditional probabilities can be
computed (Fagin and Halpern, 1990, Jaffray, 1992). Bayesians conclude that
Dempster's rule of conditioning is inappropriate (Levi, 1983) what is exact once their
preliminary assumption (the probability measure on H  x L  that represents the
agent’s belief on that space) is accepted.

To get out of the Bayesian criticisms, it is sufficient to reject the probability measure
on the product space H  x L i.e. to reject the Bayesian dogma that there exists a
probability measure representing the agent’s  beliefs on ANY and EVERY space. Not
to assume such a probability measure on H x L  represents the agent’s belief is what
is done explicitly in the Hints’ model of Kohlas (and implicitly in Dempster-Shafer
theory).  In the transferable belief model we even go further by not requiring the
existence of any hypothesis space H and considering ONLY the L space by itself,
cutting therefore all links with the Dempster-Shafer model.

In the transferable belief model, we consider only the basic belief assignment mL and
its related belief function belL and plausibility function plL. No concept of some H
space endowed with a probability measure is needed. The meaning of mL(L) for
L∈ L is that mL(L) is the part of belief allocated to L and that could be allocated to

any proposition L’ that proves L if further information justifies such transfer.
Dempster's rule of conditioning is directly introduced as it is part of the overall
description of the transferable belief model. The geometrical rule is derived if one
asks for the proportion of the belief that supports L∈ L given it supports L**∈ L.

Both rules have also been derived axiomatically in Smets (1993a) while looking for
quantitative representations of credibility in general.
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