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Abstract:
We present examples where the use of belief
functions provided sound and elegant solutions
to real life problems. These are essentially
characterized by  ‘missing’ information. The
examples deal with 1) discriminant analysis
using a learning set where classes are only
partially known; 2) an information retrieval
systems handling inter-documents relationships;
3) the combination of data from sensors
competent on partially overlapping frames; 4)
the determination of the number of sources in a
multi-sensor environment by studying the inter-
sensors contradiction.  The purpose of the paper
is to report on such applications where the use of
belief functions provides a convenient tool to
handle ‘messy’ data problems.
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1. INTRODUCTION.

The models proposed to represent quantified uncertainty
are based on probability, possibility or belief functions.
They are complementary, as they cover different forms of
uncertainty (Smets, 1998a). We consider here only those
based on belief functions, in particular the hint model and
the transferable belief model (TBM).

Showing one theory is better than another is often just
impossible, as it requires a clear definition of 'better'.
Better in what sense? Usually there are no definitive and
absolute quality criteria, and most used criteria are either
ad hoc or biased toward one theory.

What can then be done in order to compare models?
1. One can compare the underlying axioms and evaluate
their respective adequacy and naturalness. Such axioms
exist for each model, but there is no criterion that tells
which one is really adequate.
2. One can compare the consequences of the various
models and discard those leading to inadequate
conclusions. But the conclusions to which they lead, are

usually defendable, even when they don't agree, and there
is no golden standard to select the 'winner'.
3. One can compare their abilities to solve small artificial
delicate problems. But toy examples like the 3 prisoners,
the 3 doors, the 'Peter, Paul and Mary Saga' don't lead to
clear conclusions, as the merits of the solutions cannot be
assessed definitively.
4. One can compare their usefulness in solving 'real'
problems. This is what we try to do here by presenting
some problems where the belief function approach was
quite convenient.

A very important point when modeling uncertainty is to
be clear about what is modeled, an obvious preliminary
step that some skip too easily. Both probability and belief
functions based models represented the weighted opinion
of an agent that the actual world belongs to a given set of
possible worlds, or equivalently that a given proposition
is true in the actual world. Thus there is something called
the 'actual world' and it has to be made clear what is really
meant before even applying any model. In the actual
world, as considered here, every proposition is either true
or false: there is no fuzziness (belief on fuzzy events has
been defined, but is not considered here).

It would be nice to compare the results obtained with
belief functions with those one could obtain with a
probabilistic approach. Some comparisons are presented
here. But we realize the difficulty encountered when
trying such a comparison. In fact belief functions are used
when some of the data needed for a probability analysis
are missing. If all such data were available, they should be
fed into the belief function analysis... in which case the
model reduces itself into the probability model. The
whole argument about using belief functions centers on
how the missing information is handled. Probabilists
usually solve the problem by introducing some ‘natural’
assumptions like equi-probabilities, independence, or a
modelization of the missing-ness. If these assumptions are
‘close’ to reality, the probability solution is often optimal,
in which case using a belief functions approach is useless
(we just hope that belief functions produce results almost
as good as those obtained with probability functions). The
real interest of the belief functions approach is to be found
in its robustness to discrepancies between the assumptions
and the reality. E.g., Appriou (1997) shows an analysis
dealing with missile recognition where the belief
functions approach was much more robust to these
discrepancies than the probabilistic approach.



Besides, comparing the two approaches is difficult, as
there are many methods to handle the missing information
in probability theory. Bad results observed with
probability functions could then be explained either by a
weakness of the probability approach or by an inadequate
choice of the method. Deciding which one applies is
delicate.

We describe four examples where belief functions models
produce nice and efficient solutions. These examples are
more or less 'real life' examples. We nevertheless limit
our presentation to simplified illustrations; their
generalization to large-scale applications is immediate.
These examples were essentially developed by Thierry
Denoeux, University of Compiègne, France (Denoeux,
1995), by Johan Schubert, Royal Institute of Technology,
Stockholm, Sweden (Schubert, 1995), by Justin Picard,
Université de Neuchâtel, Switzerland (Picard, 1998) and
by Janez, ONERA, Paris, France, (Janez, 1996). Another
application of the TBM is presented in the paper
‘Assessing the value of a candidate' by Dubois et al.
(1999, see in this proceeding). The first application is
presented in some detail and includes a comparison with
probabilistic approach. For lack of space, the other three
examples are just shortly described. Their authors
describe in full detail the methods used and their interest.

This paper only reports on the use of belief functions in a
few real applications recently developed. In depth
comparisons with other methods are still missing.
Benchmark exercises should be organized.

2. UNCERTAINTY AND BELIEF
FUNCTIONS.

Shafer (1976) introduces a model to represent quantified
beliefs based on so-called belief functions. Since, many
new results have been obtained that we survey here. We
neglect the computational issue: valuation based system,
fast Möbius transform and approximation methods are
detailed in (Gabbay and Smets, 1998-99, vol. 5).

In AI, Shafer's model was called  ‘Dempster-Shafer
theory’  (Gordon and Shortliffe, 1984). Unfortunately what
this name covers varies widely from authors to authors
(Smets, 1994). It can correspond to:
1. a lower probability model,
2 .  Dempster’s model derived from probability theory

(Dempster, 1967) and represented by the hints theory
of Kohlas (Kohlas and Monney, 1995),

3 .  Shafer's model unrelated to probability theory
(Shafer, 1977, 1992) and represented by the
transferable belief model (Smets and Kennes, 1994,
Smets 1997a, 1998).

The confusion between these interpretations explains
most errors encountered in the literature where authors
analyze Shafer's ideas.

2.1. The lower probability model.

Let a set Ω, and let Π  be a set of probability functions
defined on Ω. The lower probability of a subsets A of Ω is
defined as:
P*(A) = min P∈Π  P(A) for every A⊆Ω .
The P* function is also called the lower envelope of Π .
Under certain weak constraints P* is a Choquet capacity
monotone of order 2, and it might even be monotone of
order infinite, in which case P* is a belief function. In all
these cases, P* and Π are in one-to-one correspondence.

There are at least two ways to get Π .
1. There exist a P function on Ω band the agent knows

only that P belongs to Π . It can also be obtained by
studying betting behaviors and calling P*(A) the
maximal price the agent, called the player, would pay
to a banker to enter a game where the player gets from
the banker $1 if A occurs, and nothing otherwise
(Walley, 1991). (The difference with the Bayesian
definition is that the agent cannot be forced to be the
banker).

2 .  Beliefs are represented by families of probability
functions that can be defined through their lower
envelop P*  (Kyburg, 1987, Voorbraak, 1993).

An important issue when developing a model to represent
beliefs is to explain its behavior when new pieces of
evidence are introduced like in the conditioning process.
In the first interpretation, the solution is obvious: every
probability function in Π is conditioned by Bayes rule on
A⊆Ω , and P*A is the lower envelop of this new set of
probability functions (Jaffray, 1992). These results were
often used to criticize Dempster's rule of conditioning,
and indirectly Shafer's work. This comparison is
inappropriate, as Dempster's rule of conditioning is not
justified in this context. This approach is not further
considered here after as belief functions are only
marginally concerned.

2.2. The theory of hints.

Historically, the use of belief functions was initiated by
Dempster while justifying fiducial inference (Dempster,
1967, 1968).  Today its most developed model is the hint
theory of Kohlas and Monney (1995). They assume
Dempster’s original structure (Ω, P, Γ, Θ) where Ω and Θ
are two sets, PΩ is a probability measure on Ω and Γ  is a
one-to-many mapping from Ω to Θ. The set Θ is the set of
possible answers to a question whose answer is unknown.
One and only one element of Θ is the correct answer to
the question. ‘The goal is to make assertions about the
answer in the light of the available information.
We assume that this information allows for several
different interpretations, depending on some unknown
circumstances. These interpretations are regrouped into
the set Ω and there is exactly one correct interpretation.
Not all interpretations are equally likely and the known
probability measure PΩ reflects our information in that
respect. Furthermore, if the interpretation ω∈Ω  is the
correct one, then the answer is known to be in the subset



Γ(ω)⊆Θ . Such a structure H  = (Ω, P, Γ , Θ) is called a
hint... An interpretation ω∈Ω  supports the hypothesis H if
Γ(ω)⊆ H because in that case the answer is necessarily in
H. The degree of support of H is defined as the
probability of all supporting interpretation of H’ (Kohlas
and Monney, 1995, page vi).

The hints theory is similar to the probability of
provability theory (Ruspini, 1986, Pearl, 1988, Smets,
1991a, 1993b), a theory that extends the domain of the
probability functions from propositional logic to modal
logic.

2.3. The transferable belief model.

Shafer (1976) proposes to quantify beliefs with belief
functions, instead of probability functions as classically
used for that purpose. He introduces the model and both
Dempster's rule of conditioning that correspond to the
Bayes conditioning rule, and Dempster's rule of
combination that correspond to the probability
aggregation rule.

From these ideas, we develop the TBM, a non-
probabilistic model for representing the quantified beliefs
held by an agent.

Let You denote the agent whose beliefs are considered,
but it should be realized that an agent can also be a piece
of equipment, a computer program, a sensor, etc…
Subjectivity is not essential. Your beliefs manifest
themselves at two mental levels: the credal level where
beliefs are entertained and represented by belief
functions, and the pignistic level where beliefs are used to
act and represented by probability functions.

Suppose a frame of discernment Ω on which Your beliefs
are considered. One world in Ω is the actual world,
denoted ω0. You can only express the strength of Your
opinion, Your belief, that ω0 belongs to this or that subset
of Ω. You allocate parts of Your belief to the fact that
ω0∈ A for every A⊆Ω . The part of belief, denoted m(A),
given to A⊆Ω  represents the part of Your belief that
specifically supports the fact that ω0∈ A and no set more
specific than A. The total amount of belief, denoted
bel(B), that supports ω0∈ B is obtained by adding the
parts of belief m(A) given to the sets A, A≠Ø, A⊆ B.

When You must take decisions, the belief held at the
credal level, and represented by the basic belief
assignment m defined on Ω, induces a probability
function at the 'pignistic' level, denoted BetP and also
defined on Ω. The transformation is called the pignistic
transformation (Smets, 1989):

BetP(x) = 
m A

m Ø AA x A

( )

( ) | |, 1

1

−⊆ ∈
∑
Ω

  for every x∈Ω .

This probability function can be used in order to make
decisions using expected utilities theory. Its justification

is based on rationality requirements detailed in (Smets
and Kennes, 1994)

The operational definition of a degree of belief is based
on the agent’s betting behaviors and its assessment is
based on exchangeable bets just as it is done for
subjective probabilities (Smets and Kennes, 1994)

The axiomatic of the TBM as a model to represent
quantified beliefs is detailed in Smets (1993A, 1997a),
(see also Wong et al., 1990). Axiomatic justification for
combination rules is given in (Smets, 1990, Dubois and
Prade, 1986, Hajek, 1992, Klawonn and Schwecke 1992).
The generalization of the Bayesian Theorem to the TBM
is presented in Smets 1978, 1993b). Decision process
based on lower expectations are explained in Strat, (1990)
Jaffray (1989), whereas Wilson (1993) studies the
properties of the pignistic probabilities and Smets (1993c)
examines what become the pignistic transformations in a
dynamic decision making context.

Revision of beliefs by specialization are described in
(Kruse and Schwecke, 1990, Klawonn and Smets, 1992)
and several general combination rules have been
developed (Dempster's rule of combination is hardly the
only rule for combining two belief functions. There are
many other rules, like the disjunctive rule of combination
(Smets, 1993d), the α-combination rules (Smets, 1997b,
the cautious combination rules, etc…).

Principles of information content have been developed.
Measures extending entropy measure are detailed in (Klir
and Wierman, 1998), whereas we develop a measure
adapted to the TBM (Smets, 1983). Principle of minimal
commitment that states 'never give more support to a set
that necessary' replaces the maximum entropy principle
used in probability theory (Hsia, 1991)

Classically bel(A) quantifies 'I have good reason to
believe A' and bel(A) is the strength of these 'good
reasons'. In (Smets, 1995), we show how to represents
concepts like ‘good reasons not to believe’, a concept
similar in logic to the retraction à la Gärdenfors.
Similarly, we can also express concepts like ‘I still have
some reasons to believe’, and ‘I still have some reasons
not to believe’.

2.4. Future developments.

Many new developments have been achieved since
Shafer's seminal work. Limiting oneself to the theory as
presented in Shafer's book is no more acceptable. The
distinction between the three interpretations for belief
functions seems essential but it deserves further work to
validate or invalidate it. Works on belief revisions -
finding their nature and the adequate rules for
representing their effect - are necessary. Dempster's rule
of conditioning fits just one kind of revision. There are
still open theoretical issues but it is obvious that real life
applications are needed before the interest of the model



can be assessed. In Europe there are already quite a few
applications under development. They usually concern
problems where some information essential for a
probability approach is missing and cannot be obtained.
The way belief functions can adequately represent partial
or total ignorance is usually acknowledge. Belief
functions are used for pattern recognition, multi-sensor
data fusion, diagnosis… A nice property of belief
functions is that only what is known is used.

3. THE TBM CLASSIFIER.

Discriminant analysis is probably the most classical tool
used for classifying cases into one of several categories
given the values of some measurement variables.
Normally, we use a set of data, called the learning set
(LS). For each case in LS, we know the values taken for
each measurement variable and the classification variable
that tells the class to which the case belongs. The classes
are finite and unordered. Let Ω denote the set of possible
classes: Ω =  {c1, c2,..., cn}.

A learning set with N cases and p measurement variables
is the set {(ci, x1i, x2i, ... xpi): i = 1, 2…N} where Xi is the
'name' of the i'th case, ci is the class to which Xi belongs,
and xji is the value of the measurement variable j for Xi.
The data of a new case, denoted X?, is collected, but the
class to which X? belongs, denoted c?, is unknown. We
want to predict the value of c? given the observed values
of the measurement variables of X?. Solutions to this
problem are well established. One of them, called
discriminant analysis, is fully described in most textbooks
of statistics.

Let us now suppose that instead of the ideal learning set
LS as described here above, we have a learning set PKLS
where the classes of the cases are only partially known.
For instance suppose we only know that case X1 belongs
either to c1 or c2 class, that case X2 does not belong to
class c1, case X3 belongs either to c2 or c5 or c7 class …
Can we adapt the discriminant analysis method to such
'messy' data case?  In fact we face a problem of 'partially
supervised learning'. For some cases, classes are known as
in the supervised learning approach, for some cases, class
in completely as in the unsupervised approach. But here
we also have all the cases where we know partially their
class. Probabilistic solutions could be based on:
1. a Bayesian approach where we assess for each case a

probability function that describes the class to which
it belongs. We then allocate every case to a class (and
get the probability to get that learning set), compute
the needed parameters as in a supervised learning
approach and average the results weighted by the
probability of the learning sets.

2. a maximum likelihood approach where we estimate
the unknown parameters, including the probability
with which the case belong to a given class.

3 .  an adaptation of cluster analysis where partial
constraints are introduced that represent the
knowledge about the class to which each case belong.

Whatever method is used, the computational complexity
is a serious problem and an adequate tuning of some
parameters is not a small matter. The transferable belief
model provides another approach that can handle
elegantly and efficiently such a messy case. The method
was invented by Denoeux (1995). We present results of
the method – called the TBM classifier - and compare
them with those obtained by the classical discriminant
analysis applied to the same data base but using the exact
value for the classes, a method that is then optimal.
Details about these results are given in Denoeux (1995),
Zouhal (1997), De Smet (1998).

3.1. Discriminant Analysis with Partially
Known Classes

Let pkci denote the subset of Ω that represents what we
know about the class to which case Xi belongs. The
learning set PKLS is now the set {(pkci, x1i, x2i, ... xpi): i
= 1, 2…N}

Intuitively the method can be described by an
anthropomorphic model. Each case Xi in PKLS is
considered as an individual. Let ci0 denoted the true class
to which Xi belongs. All Xi knows about ci0 is that
ci0∈ pkci (Denoeux and Zouhal (1999) generalizes to the
case where this knowledge is represented by a belief
function or possibility function on Ω). Then Xi looks at
the unknown case and expresses 'his' belief beli about c?.
If X? is 'close' to Xi, Xi would defend that c? = ci0. As all
what Xi knows about ci0 is that ci0∈ pkci, then all what Xi
can express about case X? is that c?∈ pkci. If X? is not
'close' to Xi, Xi cannot say anything about ci0.

This description is formalized as follows. Xi can only
states: case X? belongs to the same set of classes as
myself, what is represented by a belief function with
mi0(pkci) = 1. Let d(Xi,X?) be the 'distance' between Xi
and X?. If d(Xi,X?) is small, then what Xi stated is
reliable, if d(Xi,X?) is large, it is not reliable, the largest
d(Xi,X?), the less reliable. The impact of this reliability is
represented by a discounting on mi0 into mi. So mi(pkci) =
f(d(Xi,X?)) and mi(Ω) = 1-f(d(Xi,X?)) where f(d)∈ [0,1]
and is decreasing with d. Thus every case Xi generates
such a simple support function beli on Ω that concerns the
value of c?.

Consider now what information X? collects. Case X?
receives all these simple support functions beli, and
combines them by Dempster's rule of combination into a
new belief function bel on Ω that represents the belief



held by case X? about c? and induced by the collected
belief functions beli:

bel? = ⊕ i=1…N beli.
If a decision must be made on the value of c?, we build
the pignistic probability BetP? on Ω from bel? by the
application of the pignistic transformation (described and
justified in Smets and Kennes, 1994) and use the classical
expected utility theory in order to take the optimal
decision.

In the comparison study presented here after (and done by
Y. De Smet 1998), we use the next solutions. Each
measurement variable in PKLS is linearly re-scaled so
that their 5th percentile is 0 and their 95th percentile is 1.
So measurement variables share similar scales, and the
method is robust to outliers.

For f, he uses: f(d) = max(1 – a d, 0) with a>0. More
elaborated formulas were useless. For d, he uses the D2 of
Mahalanobis using a covariance matrix Σi that depends on
Xi and which parameters are based on the cases in the
neighborhood of Xi.

De Smet applied this approach to many sets of data. We
present only six case studies. The quality criterion used in
all comparisons is the classical PCC (percent of correct
classification). The predicted class is always the class
with the highest pignistic probability (the most probable
class).  Furthermore in every artificial case study, the pkc
is never erroneous, i.e. the true class of Xi belongs always
to pkci.

Case Study 1. Isosceles triangle, AB/AC/BC.
Suppose a two dimensional (p=2) trigroup classification
problem with group labels A, B, C. Data in the three
groups are normally distributed, their means are at the
corner of an isosceles triangle with coordinate (0,0), (4,0)
and (2,2), and the covariance matrix is the unit matrix.
200 cases are randomly generated in the 3 groups. Each
set of 200 cases is split in two subsets of 100 cases, those
in the first subsets having their label transformed into
{A,B}, the others into {A,C}. The same is done for the
other two groups. The learning set is made out of 20 A, 20
B, 20 C cases (randomly selected), the other case making
the testing set. Table 1 presents the PCC obtained for 5
unrelated sets of data by the TBM-classifier (denoted
TBM with pkc). For comparison purpose, we also present
the PCC obtained by linear discriminant analysis, denoted
DA, applied to the same data sets but using the true
classes for the data in the learning set. Both methods
produce similar results, an excellent result for what
concerns the TBM-classifier. Indeed it only uses the
partially known classes whereas the DA uses precisely
known classes, a much richer information, and
furthermore DA is the optimal method for these data as
they satisfy exactly the requirements underlying the use of
DA.

             PCC
1 TBM with pkc 93 93 92 89 94

DA true class 94 94 93 93 92
2 TBM with pkc 94 94 93 93 89
 DA true class 96 95 96 95 95
3 TBM with pkc 85 81 84 86 80

DA true class 88 86 89 85 86
Table 1: For each case studies 1 to 3, PCC obtained in
five experiments with the TBM classifier using partially
known classes and with discriminant analysis (DA) using
the true classes.

Case Study 2. Collinear, A/B/AC-BC.
Data are generated as in case study 1, except the means
are collinear, located at (-3,0), (3,0) and (0,0). The pkc of
the A cases is A, and the pkc of the B cases is B (there is
no missing information for these two sets of data). The C
cases where all classified are either {A,C} or {B,C}. The
difficulty comes from the fact that the C cases are
essentially located between the A and B cases. The results
in table 2 support the conclusions of case study 1.

Case Study 3. 5 classes, in R5

We use p=5 and 5 classes, denoted A, B…E. The mean of
group 1 is located on the first axis at 2 2 , for group 2, on
the second axis at 2 2 , etc… The covariance matrix = I.
The pkc are build as follows. Suppose a case in group 2 as
indicated by the vector  (0, 1, 0, 0, 0). Then for every 0 in
the vector, we toss a fair coin: if heads we put a 1, if tails
we leave the 0. Then the 1's in the resulting vector
indicate those subsets included in the pkc of that case. So
if the end vector is (1, 1, 0, 1, 0), the pkc is {A, B, D}.
The learning set is made out of 30 cases from each class.
Even though the knowledge about the class was quite
poor, the TBM-classifier provided results (see table 3)
almost as good as the discriminant analysis approach
applied on perfectly known classes (again optimal here).
That the PCC with the TBM-classifier are lower is
normal, no miracle can be expected, the TBM-classifier
used a very imprecise information, and a method using
more information should provided better results.

σ2 TBM Classifier Linear Discrimination
10 84 85
15 78 79
20 75 77
25 75 77
30 73 74
50 65 65

Table 2: Case study 4: impact of large variances.

Case Study 4. Triangle, No pkc.
In order to see if the TBM-classifier behaves well when
the classes are precisely known, we use the isosceles
triangle of case study 1, with side length = 10, and a
covariance matrix σ2I with σ2 varying from 10 to 50. The
linear discriminant is against the optimal method in such a



case. Table 2 shows that the TBM-classifier performs as
well as the linear discriminant method, whatever σ2.

Case Study 5. Collinear, No pkc.
As in cased study 2, we use 3 groups with 100 cases per
group and the means are collinear located at (10,0) (20,0)
(30,0). With the covariance matrices ΣA = ΣB = ΣC = 50.I,
both the TBM and the linear discriminant classifiers
produce PCC of 69%. When  ΣA = ΣC = 10.I and  ΣB =

10 0

0 1






, the PCC are  73%  for the TBM classifier and

51% for the linear discriminant classifier (which condition
for optimality are unsatisfied here, but in real life it is not
obvious to realize it and linear discriminant  classifiers are
often applied in such cases). The nice conclusion is that
the TBM classifier is robust against such bad data.

Case Study 6: Real Data, no pkc.
We move now to real data where the classes are precisely
known, just to show that the TBM-classifier behaves
similarly to some of its competitors (De Caestekere,
1997). She uses a 1-Nearest Neighbor classifier, a multi-
layers perceptron method, a prototype Nearest Neighbor
method and we apply to the same data sets the TBM-
classifier. these classifiers are applied to the too famous
Iris data set, the diabetes data set and the wave data sets
presented in De Caestekere. Their major characteristics
are presented in table 3. Data where used as given, or with
added white noises. Results of the TBM-classifier (table
4) are as good as those obtained  with the other three
approaches that are usually acknowledged as being
among the best.

Data Set Dimension Classes Training Test
Iris 1 4 3 75 75
Iris 2 4 3 30 120
Wave 21 3 300 5000

Diabetes 5 3 71 74
Table 3: Major characteristics of the data sets used in
table 4.

Data 1-NN MLP PNN TBM
Iris 1 94.2 96.8 93.8 90.8
Iris 2 94,7 96,0 95,6 95,7

Iris 1B 79,3 81,5 82,0 78,0
Iris 2B 80.7 83.0 83.0 82.8

Diabetes 97.3 98.0 99.1 93.5
Wave 76.4 84.9 83.8 82.5

Table 4: PCC observed on data of table 3 with four
classification methods.

The conclusions of the comparisons based on the six case
studies illustrated here (and many others done buy De
Smet) are:
4 .  when the classes are precisely known, the TBM-

classifier performs almost as well as the classical
classifiers.

5. the TBM-classifier can be used in cases where classes
are partially known, in which cases performance is
still very good.

That the TBM-classifier can be applied in the case of
partially known classes provides its real interest, as such
messy data situations can hardly be handled with the
classical tools as available today.

3.2. Partial knowledge is real life.

It seems the TBM-classifier provides a nice tool, but does
it fill a real need. The answer is affirmative. Real life
hardly complies with the perfect knowledge usually
required by classical statistical tools. Real life is messy
data, not idealized data as one hopes for. As an example,
consider the clinician who collect during the 1980's the
data from 300 hundred patients suffering from a given
disease Dx. In the 80's such patients were classified as A
or B? Then as science advances, a new category C is
described for patients with disease Dx. So during the 90's,
our clinician collect 200 data classified as A, B or C. The
clinician comes to you and asks for a computerized
classifier. How to handle the first 300 cases, the A cases
were in fact A or C, and the B cases were B or C, and their
exact classes cannot be re-assessed. Are you going to
throw away the 300 cases as useless… With the TBM-
classifier, you can proceed with all the 500 cases, whereas
a plain statistical analysis would have serious troubles with
the learning set.

Suppose another clinician who collects data in 4 classes
denoted A, B, C and D.
Then regulation or knowledge changes and these cases are
supposed to be classified into three classes, denoted X, Y
and Z, where all A cases are now X cases, all D cases are
now Z cases, and the B cases turn out to be either X or Y
cases, and the C cases turn out to be either Y or Z cases.
How to handle the old database? This is exactly what is
illustrated by case study 2.

Suppose a disease with 3 forms denoted A, B and C and
three clinicians, denoted a, b, and c. Dr. a can only
differentiate between A and not-A cases. The A cases are
treated by Dr. a, the not-A cases are send to the hospital H.
The same scenario holds for Dr. b where A is replaced by
B, and for Dr. c where A is replaced by C. So at hospital
H, the only cases they treat where classified as not-A, not-
B or not-C, and there is no way to find out what was the
exact class of these patients (as if the only available
information is the name of the sending doctor). This is
exactly what is illustrated by case study 1.

This shows that ‘artificial’ examples are not that artificial.

It would be interesting to compare these results when
classes are only partially known with other techniques.
The major difficulty is of course in the construction of
alternate methods based on probability theory as extra
assumptions will have to be fed into the models, and the
quality of the results will strongly depends on the



adequacy of these assumptions. In practice the user is not
aware of this adequacy before using the classifier.

4. PAS FOR INFORMATION
RETRIEVAL.

Justin Picard (1998) applies the Probabilistic
Argumentation Systems, denoted PAS, (Kohlas and
Haenni, 1999), an adaptation of the hint model, and a
generalization of the ATMS of Laskey and Lehner (1989)
to a problem of information retrieval, using in particular
the CACM collection (3204 documents, 50 queries). Let a
query Q, a set of documents Di and the citation links
between them, denoted Citing(Di, Dj). The citation link
reflects the idea that if a document Di is relevant to Q and
cites Dj, then Dj is probably also relevant to Q. For each
document Di, he introduces an assumption ai. When
assumption ai holds then Di is relevant to Q. When
assumption ai does not hold, then nothing can be
concluded about the relevance of Di to Q. To assess the
probability α i that assumption ai holds, he uses the rank of
Di as provided by the search engines present on the Web.
He fits αi by a logistic regression.
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Picard then builds the PAS for modeling document
relationship like the one in figure 5. The numerous cycles
in the graph should be enhanced; they do not create any
problem when using the PAS methodology. Another
assumption Iij is introduced. If there is a citation link
between Di and Dj, if Di is relevant to Q and if Iij holds
then document Dj is also relevant to Q.  If Iij does not hold,
noting can be concluded about the relevance of Dj to Q
that would result from the citation link between them. He
accepts that the probability λ that Iij holds does not depend
on the documents involved. The fitted value for λ is .2644.

The figure represents ‘graphically a PAS for a collection
of six documents having some document relationships.

Rules are represented by arrows and assumptions by
w h i t e  d o t t e d  c i r c l e s  ( e . g . ,  a 1 → D1,
a2→D2,...D1∧ I12→D2...) One can see that the support of
D6 (or any document) corresponds to all existing path
from any a priori assumption to D6: the support of D6 is
a6∨ (a1∧ I16). D6 can thus be “proven” either by the
retrieval system (argument a6) or by document D1
through the link from D1 to D6 (argument a1∧ I16).

Document D4 illustrates how PAS deal with cycles. There
are links from D4 to D3, D3 to D5 and D5 to D4. Even if
there is a cycle here, evidence is counted only once: recall
that the support of D4 is the disjunction of all arguments
for which D4 becomes true. a5∧ I54 is one such argument.
Since it implicitly contains (a5∧ I54∧ I43∧ I35∧ I54) ( =
a5∧ I54∧ I43∧ I35) which would correspond to the cycle D4-
D3-D5-D4, this last argument is not considered. Anyway,
the algorithm for determining the symbolic support
eliminates  cycles.’ (Quotations are from Picard, 1998).

5. SENSORS ON PARTIALLY
OVERLAPPING FRAMES.

Suppose a sensor S1 that has been trained to recognize A
objects and B objects and another sensor S2 that has been
trained to recognize B objects and C objects (like A =
airplanes, B = helicopters and C = rockets). Sensor S1
never saw a C object, and we know nothing on how S1
would react if to a C object. Beliefs provides by S1 are
always on the frame of discernment {A, B}. The same
holds for S2 with A and C permuted. A new object X is
presented to the two sensors. Both sensor S1 and S2
express their belief m1 and m2, the first on the frame {A,
B}, the second on the frame{B, C}. How to combine
these two beliefs on a common frame Ω = {A, B, C}?
Solutions have been proposed in Janez (1996).

Solutions are based on the next constraint. If both m1 and
m2 are conditioned on {B}, and combined b y Dempster's
rule of combination (unnormalized), the resulting belief
function should be the same as the one obtained after
'combining' the original m1 and m2 on [A, B, C}, and
conditioning the result on {B}. The problem is of course
how to 'combine' m1 and m2. The original Dempster's
rule of combination is inadequate as it requires that both
belief functions are defined on the same frame of
discernment, what is not the case here.

A general solution is as follows. Let Ω1 and Ω2 be the
frame of discernment of m1 and m2, respectively. Let Ω =
Ω1∩Ω2. For all A ⊆  Ω1∪Ω 2, let A1 = A∩Ω1, A2 =
A∩Ω2, A0 = A∩Ω, and

m(A) =
m A
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where m1[Ω] and m2[Ω] are the basic belief assignments
obtained by conditioning m1 and m2 on Ω. In table 5, we
illustrate the computation. We have m1[B]⊕ m2[B](B) =
(.1+.3)*(.7+.1) = .32. This mass is distributed on {B}, {A,
B}, {A, C} and {A, B, C} according to the next ratios:
(.1/.4).(.7/.8), (.3/.4).(.7/.8), (.1/.4).(.1/.8), and
(.3/.4).(.1/.8). In this example the first sensor supports that
X is an A, whereas the second claims that X is a B. If X
had been a B, how comes the first did not say so? So the
second sensor is probably facing an A and just states B
because it does not know what an A is. So we feel that the
most plausible solution is X = A, what is confirmed by
BetP12 being the largest for A: BetP12(A) = .455.

Just to enhance the simplicity of the belief function
solution, we examine what this problem would be when
expressed within probability theory. Suppose two sensors
S1 and S2. Sensor S1 generates a probability function on
{A, B, C}, denoted P*1, but we only know P1  =
P*1(.|{A,B}), the value of P*1 after conditioning it on {A,
B}. The same holds for sensor S2 with P2 = P*2(.|{B,C}).
Aggregate P1 and P2 in order to derive a probability
function on {A, B, C}. The major issue is on how to
reconstruct P*1 and P*2 from P1 and P2. It means how to
'de-condition' a probability function on Ω when all you
know is the result of its conditioning on some strict subset
of Ω. Suppose Ω = {a, b, c, d} and you know
P({a}|{a,b)). What would be P({c}) and P({c,d})?  There
are infinitely many solutions. Introducing the maximum
entropy principle leads to P({c}) = .P({d}) = .25 and
P({a}) = .5 * P(a|{a,b}). Such a solution is strongly linked
to the insufficient reason principle and suffers of all its
weaknesses.

Ω  m1 m2 m pl etP

{A}  .6 .00 92 455
{B}  .1 .7 .07 32 190
{C} .2 .00 72 355

{A, B}  .3 .21 1
{A, C} .68 93
{B, C} .1 .01 1

{A, B, C} .03 1
Table 5. Basic belief assignment m1 and m2 on the two
partially overlapping frames, with their combination m
and its related plausibility and pignistic probability
functions.

6. ANALYZING CONTRADICTION
AND THE NUMBER OF SOURCES.

Suppose a piece of equipment has failed. We collect data
from four sensors S1, S2, S3 and S4. Each sensor produces
a belief function on the set of possible component that
might have failed. Table 6 presents a highly simplified
example where each sensor produces a simple support
function pointing toward one component. S1 and S2 both
point toward component C1, whereas S3 and S4 point

toward component C2. If the four sources S1 to S4 were
highly reliable, you would conclude that both C1 and C2
are broken. Indeed if only one has failed, the source are
contradictory, whereas if two components have failed,
results are coherent if S1 and S2 report on one broken
component and S3 and S4 report on a second broken
component.

Ω m1 m2 m3 m4

C1 .7 .8
C2 .6 .9
Ω .3 .2 .4 .1

Table 6. The simple support functions generates by the
four sensors on the frame of discernment Ω = {C1, C2, …
Cn}.

How do we translate this problem into belief functions
language? The solution is obtained by considering the
mass m(Ø) given to Ø that may be positive in the
transferable belief model. When applying Dempster's rule
of combination to two basic belief assignments m1 and
m2, the result is given by:
m12(A) = 

X Y X Y A, ,⊆ ∩ =
∑

Ω
m1(X)m2(Y) for all A ⊆Ω .

We do not normalize the resulting basic belief assignment
m12, m(Ø) is among the computed masses and it does not
have to be 0 like in Shafer's original presentation. The
mass m(Ø) quantifies the amount of contradiction
between the various sources of belief functions.

Schubert (1995) has proposed a strategy to decide the
number of events under consideration by the various
sensors producing the several collected belief functions.
He analyses m(Ø) and finds the association between
sensors and events that somehow brings the total conflict
to an acceptable level .

Suppose the data of table 6. If there is only one broken
component the four sensors are speaking about the same
event. The contradiction computed after combining the
four basic belief assignments is 90, what reflect an
enormous conflict between the four sources. If there is
two broken components, then some sources might speak
about one, the other about the second. So we split the four
sensors into two groups, compute what is the
contradiction within each group, and sum these
contradictions. For instance, suppose sensors S1, S2 and
S3 speak about one component, then the contradiction is
0.56, whereas there is no contradiction for sensor 4. Total
contradiction is thus 0.56. Now if we consider that sensor
S1 and S3 speak about one component, whereas S2 and S4
speak about the other, the total contradiction is 1.14.
Contradiction completely disappears when S1 and S2 are
grouped as reporting on one component, and S3 and S4 on
the second. This result fits with common sense analysis of
the data. In real life applications, the basic belief
assignments are usually quite elaborated, and finding an



adequate grouping is not obvious. The technique of
'peeling' the mass given to the empty set (to the
contradiction) is nevertheless still applicable. The level of
'tolerable contradiction' is itself determined by the
analysis of the conflict present in the given belief
functions (and obtained by the use of the canonical
decomposition of the belief functions (Smets, 1995)).

The mass m(Ø) acts in fact as a measure of discrepancy
between several belief functions. The proposed algorithm
leads to grouping sources which belief functions are
'close' to each other. In probability theory using cross-
entropy or chi-square coefficients can achieve this
purpose. Comparisons between these approaches are not
available (as far as we know). The advantage of the belief
function approach resides in the well-founded nature of
the approach. The mass m(Ø) is part of the transferable
belief model, whereas the cross-entropy, the chi-square
and the likes need always extra assumptions in order to
justify their use.

Groups Conflict
G1 G2 G1 G2 total

1234 - .90 - .90
123 4 .56 .00 .56
124 3 .85 .00 .85
134 2 .67 .00 .67
234 1 .77 .00 .77
12 34 .00 .00 .00
13 24 .42 .72 1.14
14 23 .63 .48 1.11

Table 7. Masses m(Ø) computed from the belief
functions included  in each group when considering two
objects.

7. FINAL REMARKS.

We have presented a few 'real' life problems where the
use of belief functions is interesting. These problems are
characterized by the presence of some missing
information that are needed to apply the probability
approach.  Probabilists normally  try to obtain some
'estimation' of the values for these missing data and apply
their model with these data (using sensitivity analysis in
order to check the robustness of their conclusions to
reasonable variations around the guessed 'estimation').
Usually the belief function models do not need such
assumptions and is well adapted to work with the
information as really available. This power comes from
the ability of belief functions to represent any form of
uncertainty: full knowledge, partial ignorance, total
ignorance (and even probability knowledge). Probability
functions do not have such expressiveness power. Equi-
probability is not full ignorance, it is already a quite
precise form of knowledge.

In practice, the major interest of the belief function
approach as presented here comes from its robustness
(Appriou, 1997, Picard, 1998). When the 'estimations' of

the missing data are close to what they are in reality, the
probability model is normally perfect. But once
differences increase between the 'estimations' and reality,
the probability models deteriorate much faster then the
belief function models. It is amazing to note that long
before belief functions had been introduced, Hüber (1973)
had developed robust methods in statistics and his results
have some similarity with those of the belief functions
approach.

The computational issue is real but as shown in these
examples, it seems manageable. No serious studies are
available on that issue. We feel that the computational
complexity will be similar to those encountered in
probability theory, but of course brute force approaches
must be avoided. E.g., in the Schubert's example, it is
obvious that the sensor clustering will not be achieved by
testing every partition, and that some stepwise approaches
have to be used. The fact that belief functions are defined
on the power set, whereas probability functions are
defined on the set has often been used as an argument
against the use of belief functions. Theoretically the
argument is correct, but in practice situations will hardly
be so complex and there are even cases where the
complexity is smaller with belief functions. In any case
approximations will be used.
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