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1 . Introduction.

1 . 1 . Beliefs .

Many new models have been proposed to quantify uncertainty. But usually they don't explain
how decisions must be derived. In probability theory, the expected utility model is well
established and strongly justified. We show that such expected utility model can be derived in
the other models proposed to quantify someone's belief. The justification is based on special
bets and some coherence requirements that lead to the derivation of the so-called generalized
insufficient reason principle. In Smets (1988b, 1988c, 1989) we emphasize the existence
of two levels where beliefs manifest themselves: the credal level where beliefs are entertained
and the pignistic level where beliefs are used to take decisions (pignus = a bet in Latin,
Smith 1961).

Uncertainty induces beliefs, i.e. graded dispositions that guide our behaviour. Translated
within a normative approach, this leads usually to the construction of a model to quantify
beliefs that is linked directly to "rational" agent behaviour within betting and decision contexts
(DeGroot 1970).  Bayesians have convincingly showed that if decisions must be "coherent",
our belief over the various outcomes must be quantified by a probability function.  This result is
accepted here. Hence at the pinistic level beliefs are quantified by probability functions. But
probability functions are used to quantify our belief only when a decision is really involved.
That beliefs are necessary ingredients for our decisions does not mean that beliefs cannot be
entertained without any revealing behaviour manifestations (Smith and Jones, p.147).

The probability function that quantifies our belief at the pignistic level reflects an underlying
credal state. At the credal level, quantified beliefs can be represented by other models like the
transferable belief model (Smets 1988a, 1989a), the possibility theory model (Dubois and
Prade 1988), the upper and lower probabilities models Good (1950), convex sets of probability
functions (Kyburg 1987b), Dempster-Shafer's models (Shafer 1976), etc… The difference
between these models are studied in detail in Smets (1989a, 1989b). The major difference
results from the existence or the absence of an underlying probability function.

In Smets (1989a) we present the semantic of belief functions within the transferable belief
model. It is based on betting behaviors and the consideration of varying betting frames. One
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should notice that the transferable belief model does not correspond to the Dempster-Shafer
model as used in AI, but is very close to what Shafer developed in his book (Shafer 1976).

All beliefs entertained by an agent are defined relative to a given doxastic corpus that
consists of all pieces of information in the agent's possession. Our approach is normative: the
agent is an ideal rational subject and the doxastic corpus is deductively closed.

The function that quantifies our belief at the credal level will be called here a credibility
function, denoted Cr.  We introduce such name as a generic for the familly of functions
proposed to quantify beliefs like the probability functions, the belief functions, the lower
probabilities functions, the necessity functions and their dual.

Our derivation of the pignistic probability function fits with any credibility function. It is not
restricted to any of the above mentioned functions. It fits with Dempster-Shafer model, but is
not restricted to it. Hence the "credibility" qualification used to enhance the generality of our
results.

Beliefs being the governing principles of our decisions, the (pignistic) probability functions
observed at the pignistic level must be derived from the credibility functions present at the
credal level. Some forms of coherence must be satisfied by this transformation. These
coherence requirements lead to the derivation of an unique transformation. This paper presents
these requirements and the derived transformation that turns out to be an application of the
generalized insufficient reason principle (Dubois and Prade 1982, Williams 1982, Smets
1988a)

1.2. The propositional space.

Let Ω be a non empty finite set called the frame of discernment equipped with a Boolean algebra
ℜ  of some of its subsets. Every element of ℜ  is called a proposition. The pair (Ω, ℜ ) is called
a propositional space. By abuse of language, the elements of Ω are called the elementary
propositions. Any algebra ℜ  defined on Ω contains two special propositions: 1Ω and 0Ω
where 1Ω is the set of all elementary propositions of Ω and 0Ω is the complement of 1Ω
relative to Ω. The standard Boolean notation is used for the propositions of ℜ :A stands for the

complement of A relative to Ω, and A∪ B, A∩B denotes the set-theoretic union and intersection

of propositions A and B of ℜ .  A”B means that all elementary propositions of A are

elementary propositions of B. Each proposition in ℜ , except 0Ω, such that its intersection with

any proposition in ℜ  is either itself or 0Ω is called an atom of ℜ . Every proposition in ℜ  can

be described as the union of atoms of ℜ .

On Ω, we define a valuation that maps every element of Ω into {true, false} such that at most
one element of Ω is true, this element is called the 'truth'. A proposition in Ω is true iff one of
its elementary propositions is true.

Two propositions A and B are doxastically equivalent (or simply equivalent) if they share the
same truth value for all valuations that satisfy the doxastic corpus constraints: it is denoted
A≅ B.

2. The credibility function.

Suppose an agent, with his/her doxastic corpus, entertains beliefs over a frame Ω, i.e. he/she
assigns degrees of belief to the elements of ℜ , an algebra defined on Ω. It is postulated that



degrees of belief are quantified by a point-valued "credibility" function Cr which maps ℜ  into a
closed interval of the real line, is monotonic for inclusion, reaches its lower limit for 0Ω and its

upper limit for 1Ω if 1Ω is equivalent to a tautology τ. (That 1Ω might be different from a
tautology reflects the distinction between the open-world and the closed-world assumptions as
explained in Smets (1988a).

Axiom A1: Let a propositional space (Ω, ℜ ). Given a doxastic corpus, there exists a unique

function Cr that quantifies the agent's belief for every proposition of ℜ .

The triple (Ω, ℜ , Cr) is called a credibility space and denoted by ℘ . The index i in ℘ i
corresponds to the index of (Ωi, ℜ i, Cri)

Axiom A2: Domain. Given a credibility space ℘ , Cr : ℜ→ [φ , ψ] where [φ , ψ] is an
interval of the real line.

Axiom A3: Monotonicity. Given a credibility space ℘ , ∀ A, B∈ℜ , if     A”B, then
Cr(A)≤Cr(B)

Axiom A4: Lower limit. Given a credibility space ℘ , Cr(0Ω) = φ

Axiom A5: Upper limit. Given a credibility space ℘ , if 1Ω≅τ , then Cr(1Ω) = ψ

Doxastically equivalent propositions should always receive equal credibilities (Kyburg, 1987a)

Axiom A6: equi-credibility of doxastically equivalent propositions.
Suppose two credibility spaces (Ωi, ℜ i, Cri), i=1,2. If A1∈ℜ 1, A2∈ℜ 2 and A1≅ A2,  then
Cr1(A1) = Cr2(A2).

Suppose two credibility spaces (Ω, ℜ i, Cri), i=1,2,  defined on the same space Ω. Axiom A6
implies that those propositions that belong to both algebras will always receive the same
credibility as they are logically equivalent. Hence the credibility given to a proposition does not
depend on the structure of the algebra to which the proposition belongs.

Axiom A6 permits to prove the following anonymity theorem.

Theorem 1: Let G be a permutation function defined on Ω.  For A”Ω, let G(A) = {G(x):
x∈ A}. Let a credibility space (Ω, ℜ , Cr).  Let Cr' be the credibility function defined on ℜ ' =

{G(A): A∈ℜ }.  Then, by axiom A6, ∀ A∈ℜ ,   Cr'(G(A)) = Cr(A)

3. α -combined credibility spaces.

We are going to show that the set of credibility functions defined on a propositional space (Ω,
ℜ ) is a convex set.  To show this we introduce a combined bet schema.  Suppose two

propositional spaces  (Ωi, ℜ i) i=1,2, where the atoms of ℜ i are {Ai1, Ai2, …, Ain}.  Let N =
{1, 2…n}. Such a pair of propositional spaces (and the corresponding credibility spaces) are
said combinable.



Let ℘ i , i=1,2 be two combinable credibility spaces. Suppose a random generator  that

generates event R with P(R=r)=α  and P(R=s)=1-α .  Define the α-combined credibility
space ℘ 12 = (Ω12, ℜ 12 , Cr12) with atoms {A12j: j = 1, 2…n}. The valuation on Ω12 is

such that A12j is true if (r occurs and A1j is true) or (s occurs and A2j is true).  For any I”N,

let  AiI = ∪
j∈Ι

 Aij and A12I = ∪
j∈Ι

 A12j. AiI and  A12I are the propositions of the algebras ℜ i

and ℜ 12. AiI is true if one of the propositions Aij: j∈ I, is true. A12I is true if (r occurs and A1I
is true)  or (s occurs and A2I is true).

A 12nA 1n

A 1 2 i

A 1 1 A 1 2 1 A 2 1

A 1 2 2

A 2 i

A 1 2 A 2 2

A 2n

  …           …            …

  …           …            …

A 1 i

Figure 1: Two combinable credibility spaces with atoms A1i and A2i, i=1,…n, and the α
combined credibility space with atoms A12i. Atom A12i is true whenever (R=r and A1i is true)

or (R=s and A2i is true) where P(R=r)=α and P(R=s)=1-α.

We will show in §4 that under natural requirements, one has:
Cr12(A12I) = α Cr1(A1I) + (1-α) Cr2(A2I)

Suppose two combinable credibility spaces ℘ i, i=1,2, and their associated α -combined

credibility space ℘ 12. The following axioms are postulated for credibility function Cr12.

Axiom C1:pointwise compositionality. There exists a function F:[φ, ψ]2→[φ, ψ] such

that ∀ I”N Cr12(A12I) = F( Cr1(A1I) , Cr2(A2I) )

Axiom C2: continuity. F(x,y) is continuous in (x,y)∈ [φ, ψ]2

Axiom C3: strict monotony. F(x,y) is strictly monotonic for x, y∈ [φ, ψ]

Axiom C4: idempotency. F(x,x) = x    ∀ x∈ [φ, ψ]

Pointwise compositionality is justified by the idea that Cr12(A12I) should not be changed if we

replace ℜ i by the algebra ℜ i' whose only two atoms are AiI and AiI' where I' is the

complement of I relative to N (with parallel definitions for ℜ 12).

Continuity is classically accepted, it could be weakened but without real profit.



Strict monotony is postulated as we consider that Cr12 should be sensitive to both of its

components. The credibility of one proposition in ℜ 1  should not inhibited even locally the

impact of our credibility on another proposition in ℜ 2 (and vice versa).

Finally idempotency reflects the idea that if ℘ 1 and ℘ 2 happen to be the same credibility
spaces, then Cr12 = Cr1= Cr2.

In theorem 2, we show that F satisfies the bisymmetry equation
F( F(x,y) , F(u,v) ) = F( F(x,u) , F(y,v) )

whose solution is detailed in Aczel (1966, pg. 287)

ℜ 1 α α ℜ 1
          → ℜ 12 α α ℜ 13   ←

ℜ 2 1-α 1-α ℜ 3
         → ℜ 1234     ←

ℜ 3 α α ℜ 2
          → ℜ 34 1-α 1-α ℜ 24   ←

ℜ 4 1-α 1-α ℜ 4

Figure 1: creation in the proof of theorem 2 of ℜ 1234 by combining ℜ 12 with ℜ 34, or ℜ 13
with ℜ 24.

Theorem 2: Given two combinable credibility spaces ℘ i, i=1,2, and their associated α-

combined credibility space ℘ 12, given axioms C1 to C4, then the F function in axiom C1
satisfies: F(x,y) = f( a.f-1(x) + (1-a).f-1(y) ) (1)
where f(x)∈ [φ,ψ], is continuous, strictly monotonic, f(φ) = φ and f(ψ) = ψ, and a∈ [0, 1].

Proof: Consider four combinable credibility spaces ℘ i, i=1,4, where the atoms of ℜ i are

{Ai1,… Ain}. Build the α-combined credibility spaces ℘ 12, ℘ 34, ℘ 13 and ℘ 24.

By axiom C1, ∀ I”N, i,j∈ {1, 2, 3, 4}, Crij(AijI) = F( Cri(AiI) , Crj(AjI) )

Consider also the join α-combined credibility space ℘ (12)(34) = (Ω(12)(34), ℜ (12)(34),

Cr(12)(34)) build from ℘ 12 and ℘ 34. Let the result from successive uses of the R-device be
stochastically independent.  Let R1, R2 and R3 be the three independent random variables

generated by the R-device that will be used respectively to select between ℘ 12 and ℘ 34,

between℘ 1 and ℘ 2, between ℘ 3 and ℘ 4. Let Ri∈ {ri, si} with P(Ri=ri) = α  for i=1, 2, 3.

Proposition A(12)(34)j  in ℜ (12)(34)  is true if (r1 and r2 occur and A1j is true) or (r1 and s2
and A2j) or (s1 and r3 and A3j) or (s1 and s3 and A4j).

Consider then the join α-combined credibility space ℘ (13)(24) build from ℘ 13 and ℘ 24.

Proposition A(13)(24)j  in ℜ (13)(24)  is true if (r1 and r2 and A1j) or (r1 and s2 and A3j) or
(s1 and r3 and A2j) or (s1 and s3 and A4j).

Hence to decide that propositions A(12)(34)j  and A(13)(24)j  are true, one check the

propositions within ℜ i where the index i is selected by a random process, each value having the



same chance to be selected in the two join α -combined credibility spaces ℘ (12)(34)
and℘ (13)(24): P(i=1) = α2, P(i=2) = P(i=3) = α(1−α) and P(i=4) = (1-α)2

This identity means that the credibility functions Cr(12)(34) and Cr(13)(24) are identical, hence

the bisymmetry equation: ∀ I”N
F(F( Cr1(A1I) , Cr2(A2I) ) , F( Cr3(A3I) , Cr4(A4I))) =

F(F( Cr1(A1I) , Cr3(A3I) ) , F( Cr2(A2I) , Cr4(A4I)))

By axioms C2 and C3, F is continuous and strictly increasing in both variables x,y∈ [φ,ω],
hence its general solution is

F(x,y) = f( a.f-1(x) + b.f-1(y)+ c )
where f(x)∈ [φ,ψ], is continuous and strictly monotone (see theorem 1, page 287, Aczel 1966).
By axiom C4, F(x,x) = x, then c = 0 and a + b = 1.  Such F function satisfies axioms A4 and
A5 with f(φ) = φ and f(ψ) = ψ. QED

4. The pignistic probability function.

Suppose we have a credibility space ℘  = (Ω, ℜ ,Cr). When a decision must be taken that

depends on the proposition in  ℜ  that will be true, one must construct a pignistic probability

function on ℜ  in order to take the optimal decision that maximizes the expected utility. We

assume, as explained in the introduction, that the pignistic probability function defined on ℜ  is
a function of the credibility function Cr. Hence one must transform Cr into a probability
function P. This transformation is called hereafter the Γℜ  transformation where the ℜ  index

mentions the Boolean algebra on which Cr and P are defined: so P = Γℜ (Cr). It is also

postulated that the transformation depends only on the cardinality of ℜ , not on the nature of its
atoms.

Axiom P1: Let a credibility space ℘  = (Ω, ℜ , Cr) and P = Γℜ (Cr). For any atom ω of ℜ ,

P(ω) = g(ω, {Cr(A): A∈ℜ })

Axiom P1 formalizes the idea that our beliefs guide our behaviours. Evaluation of P for non
atoms of ℜ  is obtained by adding the appropriate probabilities.

Axiom P2: Suppose two combinable credibility spaces ℘ 1 and ℘ 2,  and their associated α-

combined credibility space ℘ 12. Let P1 = Γ ℜ 1(Cr1), P2 = Γ ℜ 2(Cr2) and P12 =

Γℜ 12(Cr12). Let A1j, A2j and A12j  j∈ N={1, 2… n}, be the atoms of the three algebras. Let

A1I = ∪
j∈Ι

A1j,  A2I = ∪
j∈Ι

A2j and A12I = ∪
j∈Ι

A12j where I”N. Then, ∀ I”N,

P12(A12I) = α.P1(A1I) + (1-α).P2(A2I)

Axiom P2 formalizes in the present context the well-known property:
P(X) = P(X|A).P(A) + P(X| A).P( A)

as the Pi(AiI) are the conditional probabilities P12 of A12I in context ℜ i and α  is the

probability of the context ℜ 1. e.g. P1(A1I) = P12(A12I|R=r).



Axiom P2 implies that the function f in theorem 2 is such that f(x) = x.

Indeed suppose Cri are probability functions Pi, then Cr12 is also a probability function P12
with:
Cr12(A12I) = P12(A12I) = P12(A12I|R=r) α + P12(A12I|R=s) (1-α)
As P12(A12I|R=r) = P1(A1I) and P12(A12I|R=s) = P2(A2I), (1) becomes:
P12(A12I) = F(P1(A1I), P2(A2I)) = f(af-1(P1(A1I)) + (1-a)f-1(P2(A2I)))

= αP1(A1I) + (1-α)P2(A2I)

i.e. f(af-1(x) + (1-a)f-1(y)) = α x + (1-α) y

what implies that f-1(x) = x and a = α.

Therefore (1) becomes:
Cr12(A12I) = α Cr1(A1I) + (1-α) Cr2(A2I)  (2)

The anonymity property of theorem 1 is generalized to pignistic probabilities.

Axiom P3:  anonymity : Let G be a permutation function defined on Ω.  For     A”Ω, let
G(A) = {G(x): x∈ A}. Let a credibility space (Ω, ℜ , Cr)  and P = Γℜ .  Let the credibility

space (Ω, ℜ ', Cr') where ℜ ' = {G(A): A∈ℜ }. Let P' = Γℜ '.

Then ∀ A∈ℜ ,  P'(G(A)) = P(A).

Let a credibility space ℘  = (Ω, ℜ , Cr) and P = Γℜ (Cr). As far as P is a probability function, it
must satisfy the following obvious properties:

Axiom Q1: Sum property: If Cr(1Ω) = ψ, then P(1Ω) = 1

Axiom Q2: False event: If X∈ℜ and X≅ Ø, then Cr(A) = Cr(A∪ X) ∀ A∈ℜ and P(X) = 0.
(Ø is the logical contradiction)

Axiom Q3: Credibility = Probability: If Cr happens to be a probability function P
defined on ℜ , then Γℜ (P) = P.

Axiom Q1 tells that if ℜ  is rich enough so that 1Ω is equivalent to a tautology, then the

probabilities given to the atoms of ℜ  add to one.

Axiom Q2 tells that the credibility given to a proposition is not changed when one adds any
impossible proposition to it.

Axioms Q3 recognizes that if someone's credibility is already described by a probability
function, then the pignistic probabilities and the credibilities are equal.

Theorem 3  shows that the g function of axiom P1 is a linear function of its arguments Cr(A):
A∈ℜ . Figure 3 illustrates the origin of this linearity. There are two ways by which P12 can be
constructed: either build each Pi and combine them or combine both Cri into Cr12 and
transform the last into P12. Both approaches must give the same answer.
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Figure 3: Graphical representation of the linearity of Γ.

Γℜ 12( αCr1+ (1-α)Cr2 ) =  α Γℜ 1(Cr1) + (1-α) Γℜ 2(Cr2)

Theorem 3.  Given a credibility space (Ω, ℜ , Cr) and P = Γℜ (Cr). Given (2), axioms P1

and P2, then there exists a and b such that for any atom ω of ℜ ,

P(ω) = ∑
A∈ℜ

   a(ω,A).Cr(A) + b(ω) (3)

Proof.Let P(R=r) = α, β = 1−α, xI = Cr1(A1I) and yI = Cr2(A2I). (2) becomes: ∀Ι ”N

Cr12(A12I) = α.xI + β.yI
Replacing P in axiom P2, one has: (as ω is fixed, it is dropped from the notation)

g(α .x1+β.y1, α .x2+β.y2,…) =

α.g(x1, x2…) + β.g(y1, y2…) 
The proof is based on the transformation of this relation into a Pexider equation (Aczel, 1966,
p. 141) and then a Cauchy equation (Aczel, 1966, p. 214). Hence g is linear in its components
and the coefficients may depend only on I and ω. QED

As a consequence of the anonymity axiom P3 and theorem 1, it can easily be shown that the
coefficients a and b in (3) depend only on the number of atoms in A and ω∩A.

Theorem 4. Given theorem 3, theorem 1 and axiom P3, relation (3) becomes: ∀ atom ω of Ω
P(ω) = ∑

A∈ℜ
   a(|ω∩A|,|A|).Cr(A) + b

where |A| is the number of atoms of ℜ  in A.

Axioms Q1 to Q3 permit then to derive all the coefficients of (3).

Theorem 5: Given a credibility space (Ω, ℜ , Cr) and P=Γℜ (Cr). Given theorem 4. Axioms

Q1 to Q3 imply:      φ = 0 ψ = 1     and (3) becomes for any atom ωj of ℜ ,

P(ωj) = Cr(ωj) + ∑
i=1

n
1
n 

1

(
n-1
 i )

∑
j∉ I
|I|=i

(Cr(ωj∪ AI)) - Cr(AI)) (4)

where I”N = {1, 2…n}



The transformation Γℜ  permits the construction of a probability function (called the pignistic
probability function) at the pignistic level given any credibility function at the credal level.

5. Co-credibility function.

Given a credibility function Cr on a propositional space (Ω, ℜ ), define the co-credibility

function CoCr as CoCr(A) = Cr(1Ω) - Cr( A)  ∀ A”Ω
Replacing Cr by its dual CoCr in theorem 3 leads to the same probability function P. For any
pair (Cr, CoCr) Γℜ (Cr) = Γℜ (CoCr)
Using Cr or its dual CoCr is equivalent.

6. The Moebius transformations of Cr.

For any credibility space ℘ , there are two Moebius transforms v and w of the credibility

function defined on ℜ  such that ∀ A∈ℜ  (with all summations taken on those B that are

propositions of ℜ ):

v(A) =  ∑
B”A

 (-1)|A|-|B|.Cr(B) v(0Ω) = 1 - Cr(1Ω) Cr(A) = ∑
Ø≠B”A

  v(B)

w(A) =   ∑
B”A

 (-1)|A|-|B|.(Cr(1Ω)-Cr( B)) w(0Ω) = 1 - Cr(1Ω) Cr(A) = ∑
B∩A≠Ø

  w(B)

The transformation between Cr, v and w are one to one. In belief functions theory, the v's are
the basic belief masses if Cr is a belief function, and the w's are the basic belief masses if Cr is
a plausibility function.

Given the v and w functions, one has:
CoCr(A) = ∑

Ø≠B”A
  w(B) CoCr(A) = ∑

B∩A≠Ø
  v(B)

Should Cr be respectively a belief, necessity, lower probability or probability function then
CoCr would be a plausibility, possibility, upper probability or probability function, and vice
versa.

Replacing Cr by v or w,  (4) becomes:
P(ωj) = ∑

j∈ I”N

  v(AI) / |I|   = ∑
j∈ I”N

  w(AI) / |I|

where the AI's are the propositions of ℜ .

Hence P(Α) = ∑
B”Ω

  v(B) 
|A∩B|

|B|     = ∑
B”Ω

  w(B) 
|A∩B|

|B|         ∀ A∈ℜ

a solution that corresponds to the generalized insufficient reason principle: for each
B∈ℜ , v(B) (or w(B)) is distributed equally among the atoms of B, and P(ω) is the sum of

those parts of v (or w) that were given to the atom ω.



7. Conclusions.

The generalized insufficient reason principle had already been proposed intuitively as a potential
solution to derive a probability function from a belief function (Dubois and Prade 1982,
Williams 1982, Smets 1988a) but never justified. We provide an axiomatic justification of this
principle based on coherence between combined bets and applicable for any measure of belief
whose major property is to be monotonic for set inclusion.

Hence any model for quantified beliefs can be endowed with the needed procedure to transform
someone's beliefs entertained at the credal level into a pignistic probability that can be used at
the pignistic level when decisions must be taken. This transformation and its justification
should answer to the classical criticism of the Dempster-Shafer model and other models based
on belief functions, on possibility functions, on upper and lower probabilities functions, etc…
Decisions are then based on expected utility theory, using the pignistic probability function to
compute the needed expectations.

The link of this model with practical decision problems is straighforward. Given a credibility
function Cr that quantifies your degree of belief, if you must make a decision, transform Cr into
the pignistic probability  function by applying the generalized insufficient reason principle and
then use this probability function to select the optimal decision. The whole classical decision
theory (the expected utility theory) applies directly (DeGroot 1970, Raiffa 1970)

A final question is: why to bother with a two-level model if decisions are to be based on
probability functions as advocated by the Bayesians. What is the need for introducing a credal
level and credibility functions. The answer is fully developed in Smets (1989a) where examples
are provided that show that the introduction of a two-level model leads to decisions different
from those obtained when only one level is considered. Let a first doxastic corpus with the
induced credibility function Cr on some propositional space (Ω, ℜ ) and the corresponding

pignistic probability function P=Γℜ (Cr). Suppose a new piece of evidence "A is true" with

A ∈ ℜ  is added to the doxastic corpus. Where to apply the updating that reflects this
conditioning on A. We advocate it should be applied at the credal level, by conditioning Cr into
CrA. The pignistic probability Γℜ (CrA) is derived from CrA. It is usually different from the
conditional probability function PA obtained by conditioning P on A (see Mr. Jones murdering
paradigm in Smets, 1988b, 1988c, 1989a).
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