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1. Introduction.

This paper surveys the mathematical models that have been proposed to represent

quantified beliefs. The mathematical representation of the ‘real world’ has been a

permanent subject of research as it provides an objective and unambiguous formalization

of the ‘reality’. That they represent idealized reality does not reduce their value. The 19th.

century has seen the development of mathematical models to represent physical realities.

In the 20th. century, randomness became omnipresent. More recently, the modelization

has been extended toward the representation of subjectivity2, and in particular of

uncertainty.

Uncertainty can take numerous forms (Smets, 1991a, 1993a, Smithson, 1989) and usually

induces ‘beliefs’, i.e. the graded dispositions that guide ‘our’ behavior. Proposed models of

belief can be split into symbolic models as in modal logic (Hintikka, 1962, Chellas,

1980) or numerical models as those studied here. The model we study are normative, the

1  Research work has been partly supported by the Action de Recherches Concertées
BELON funded by a grant from the Communauté Française de Belgique and the ESPRIT
III, Basic Research Action 6156 (DRUMS II) funded by a grant from the Commission of
the European Communities.
2 Nguyen H., 1994, personal communication.



agent that holds the beliefs, called You hereafter, is an ‘ideal rational subject’. That

humans hardly behave as predicted by the normative model reflects essentially their lack of

‘rationality’, a well known fact that does not bear negative connotation. The ‘rationality’

that underlies the models and the so called human rationality do not cover the same

concepts.

The Bayesian model based on probability functions was the first model proposed to

represent quantified beliefs. In spite of its success, alternative models have been proposed.

They can be split into two families: the non-standard probability and the non-probability

models (Kohlas, 1994b). The models based on non-standard probabilities are extensions of

models based on probability functions. They include the upper and lower probabilities

models (Good, 1950, Smith, 1961, Kyburg, 1987, Walley, 1991, Voorbraak, 1993),

Dempster-Shafer's models (Dempster, 1967, Shafer, 1976a, Smets, 1994b), the Hints

models (Kohlas and Monney, 1994a), the probability of provability models (Ruspini,

1986, Pearl, 1988, Smets, 1991c),. The non-probabilistic models are not based on

probability functions, but on alternative functions like the possibility functions and the

belief functions. They include  the transferable belief model (Smets, 1988, 1990a, Smets

and Kennes, 1994), the possibility theory model (Zadeh, 1978, Dubois and Prade, 1985).

The difference between these models and their domain of application is discussed hereafter.

We first define what concept of belief is covered. Belief represent the opinion of the agent,

You, at time t given what You know. We can say “You believe at level .7 that the name

of Philippe Smets’ daughter is Karine”. It means that “You believe at level .7 that the

proposition ‘the name of Philippe Smets’ daughter is Karine’ is true”. So beliefs weight

the strength given by the agent to the fact that a given proposition is true. The domain of

beliefs is the truth status of a proposition. When the truth domain is restricted to True and

False, shortcuts can be used without danger, and we can just say “You believe p at .7”

where p is a proposition. When the truth domain becomes more exotic, like in multi-

valued logics and in fuzzy logics, these shortcuts can be misleading, and the use of the full

expressions will avoided ambiguities, if not plain stupidities.

Coming back to classical logic, the meaning of the sentence ‘You believe at level .7 that

it will rain tomorrow’ can be either: ‘the measure of the belief held by You that the

proposition "it will rain tomorrow" is true is .7’ or: ‘You believe at level .7 that

“tomorrow” belongs to the set of rainy days’. So beliefs given to ‘propositions’ can

equivalently be given to the subset of worlds that denote the propositions. Defining

beliefs on propositions or on sets of possible worlds is equivalent. We will restrict

ourselves to propositions and possible worlds, and left aside more elaborate structures.



What are the needed ingredients for a model for the representation of quantified beliefs? We

must be able to represent static states of belief. Such static states representation should be

able to cover every states of belief, from the state of total ignorance up to the state of

absolute knowledge. We must describe the dynamic of beliefs, i.e., how a new piece of

information changes the belief states. Decisions are the only observable outcomes of a

belief state and the most important practical components of any model for uncertainty. So

we must also explain how decisions will be made. We will see how the various models

answer to these questions.

In Section 2, we present and criticize the justifications that lead to the traditional Bayesian

model based on probability functions. In section 3, we compare various non standard

probability models. In section 4, we present the major non probability models: the

possibility theory and the transferable belief model. In section 5, we just conclude with

small remarks.

2. The Probability Models.

The representation of quantified beliefs really started in the eightieth century with the work

of Bernoulli, De Moivre and Lambert (Shafer, 1978) culminating in the famous essay of

Bayes (1763) where the author defends that beliefs should be mathematically represented

by probability functions. Today three types of justifications are usually proposed in

defense for such a representation: the decision-oriented, the preference-ordering and Cox

algebraic justifications.

2.1. Decision-oriented justifications.

Ramsey (1931) defines a probability as the price one would be ready to pay to bet on an

event which reward is $1 if the event occurs and nothing if the event does not occur. Such

a definition is usually based on a betting scheme in which there is a player and a banker.

The player must pay to the banker a certain amount of money (say $p) to enter a game

where the banker will pay $1 to the player if event A occurs and $0 if A does not occur.

The probability assessor (You) must decide the price $p of the game and I (Your

opponent) decide which position will be held by You, banker or player. Besides, the bet is

“forced” in that You must play. The prices You give to each game are arbitrary except that

they must be coherent, i.e. they must satisfy the axioms of probability theory. If they did

not, then I could always build a set of games where You would loose for sure.

For instance, if You decide to pay $.6 on a game where the winning event is A (Game 1)

and $.3 on a game where the winning event isA (Game 2), then I would force You to be



the banker for both games. If A occurs You loose $.4 on Game 1 (You receive $.6 and

pay $1) and You win $.3 on Game 2 (You receive $.3 and pay $0), hence Your net loss is

$.1. IfA occurs You win $.6 on Game 1 and You loose $.7 on Game 2, hence Your net

loss is also $.1. Therefore in both cases, You suffer a loss.

This strategy that leads to a sure loss is called a Dutch Book strategy. In order to avoid

such a Dutch Book, it has been shown that the prices given to the various games must

satisfy the axioms of probability theory, in particular, the additivity and the conditioning

rules. In order to derive the conditioning rule, the set of potential events are partitioned in

3 subsets: A, B, C. Bets are posted such that You win if A occurs, You loose if B occurs

and the game is canceled if C occurs in which case the banker returns the ticket price to

the player. Such bet is called a conditional bet and leads to the definition of the conditional

probability of A given A∪ B: P(A|A∪ B) = P(A)/P(A∪ B)

The decision-oriented approach seems quite convincing, except for the fact that it is based

on “forced” bets. Some critics were raised against it as people feel they are not forced to

bet. It leads to a generalization of the probability models where the concepts of upper and

lower probabilities are introduced (Walley, 1991). The lower probability of an event is

defined as the maximum amount You would be ready to pay to enter the game where You

win $1 if the event occurs and nothing otherwise. It does not require that You would

accept to be the banker. The upper probability is defined as the minimum amount You

would require that the player pays to enter the game if you were the banker. So when the

probability assessor can assign prices without committing himself to accept to be the

player or the banker according to his opponent’s orders, the Dutch Book argument

collapses (Smith, 1961, Williams, 1976, Jaffray, 1989, Voorbraak, 1993).

Another critic is oriented towards the idea that what Dutch Book argument leads to are not

a quantified representation of our belief but a quantified representation of our belief qua

basis of decision (Ramsey, 1931). Beliefs held outside any decision context are not

considered in the Dutch Book argument and therefore the argument does not justify that

quantified belief in general must be represented by a probability function. It only says that

when decision must be made, beliefs will induce a probability measure that will be used

for the decision-maker. Therefore, the question is to decide if beliefs can exist outside any

decision process.

2.2. Credal versus pignistic beliefs.

When developing the transferable belief model (see section 4.2), we introduced a two-level

mental model for representing belief. At one level beliefs are entertained without any

regard to decision-making and at the other level beliefs are used to make decision. We call



these two mental levels, the credal level and the pignistic level (respectively from credo = I

believe and pignus = a bet, both in Latin, (Smith, 1961)). That beliefs are necessary

ingredients for our decisions does not mean that beliefs cannot be entertained without any

revealing behavior manifestations (Smith and Jones, 1986, p.147). A belief is a

disposition to feel that things are thus-and-so. It must be contrasted with the concept of

acceptance (Cohen, 1993). A probability measure is a tool for action, not for assessing

strength of evidence (Sahlin, 1993).

Some authors will just discard the existence of a credal level arguing that only the

pignistic level exists and indeed, at that level, beliefs should better be represented by a

probability measure if one wants to avoid Dutch Books or similar sub-optimal behaviors.

We will defend the distinction between the two levels and the whole paper is devoted to

the development of a quantified representation of belief at the credal level. We will

illustrate the impact of considering the two-level model in the transferable belief model

through the ‘Peter, Paul and Mary Saga’.

2.3. The preference-ordering justification.

Arguments based on preference-ordering have been proposed in order to support the use of

probability measures for quantified beliefs. They are based on Koopman’s initial

justification of probability measure from qualitative requirements (Koopman, 1940, Fine,

1973). He introduces an order ≥ on the events where A ≥ B means that the probability of

A is larger or equal to the probability of B. His major axiom is the Disjoint Union

Axiom:

A∪ {B∪ C) = Ø ⇒ (B≥C ⇔ A∪ B≥A∪ C)

This axiom is central to the proof that the ordering relation is represented by a probability

measure (Fine, 1973). Wong et al. (1990) propose to replace the Disjoint Union Axiom

by a more general axiom.

C”B, A∩B=Ø ⇒  (B>C ⇒  A∪ B≥A∪ C)

In that case, they show that the ordering cannot always be represented by a probability

measure, that it can always be represented by a belief function, a family of functions more

general than the family of probability functions, but it can also be represented by other

functions. Which of Koopman axiom or Wong et al. less demanding axiom must be

satisfied is hardly obvious. They both seem reasonable but this cannot provide a definitive

justification for their acceptation. Many other variants of these axioms have been



suggested, but they always encountered the same problems. So whatever its beauty, the

ordering justification is not compelling.

2.4. Cox algebraic justification.

Finally, Cox (1946) proposes an algebraic justification for the use of probability measure

that has become quite popular in artificial intelligence domain (Cheeseman, 1985). He

assumes that any measure of beliefs should essentially satisfy:

P(A) = f(P(A)) (2.1)

P(A∩B) = F(P(A|B), P(B)) (2.2)

for some f and F functions where f is decreasing in its argument. These requirements lead

easily to the use of probability measure. But even the first requirement is criticized

(Dubois et al., 1991). Suppose a medical context where a symptom is very frequent for a

patient in disease class A and quite frequent for patient not in disease class A. Its

observation should support the fact that the patient could belong to group A, this being

translated by an increase in the probability that the patient belongs to group A. By (2.1 )

the fact that the patient belongs to groupA becomes automatically less believable (in the

sense of probable) even though the symptom is quite frequent in that group (but not as

frequent as in group A). This unsatisfactory conclusion led some to reject (2.1) and (2.2).

This was the origin of the certainty factor in artificial intelligence and developed in the

70’s by  Shortliffe and Buchanan (1975). This was also rejected in possibility theory

(Zadeh, 1978, Dubois and Prade, 1985) and in Shafer’s theory of evidence (Shafer, 1976a,

Smets, 1978). Cox’s axioms provide a nice characterization of probability measures.

Nevertheless they are not really necessary.

2.5. Objective and subjective probabilities.

We deal with subjective probabilities but their link to objective probabilities must be

considered. Hacking’s Frequency Principle states that (Hacking, 1965):

If the objective probability of A is p then the subjective probability of A is p.

It provides a very reasonable scale for Your subjective probability but it is based on the

assumption that the objective probability exists. When You toss a coin and say that the

probability of heads is 0.5, what is the 0.5 about? Hacking suggests it is a property of the

chance set-up, i.e. the coin and the procedure that tosses the coin.... In that case, the .5

would preexist to the belief holder and a rational belief holder should use the .5 to quantify

his belief about observing heads on the next toss. So in Hacking’s perspective, there

exists something called the objective probability and the subjective belief induced by a

chance set-up and its related objective probability should share the same scale. Again, this



does not justify that beliefs in general are quantified by probability measure. It only

justifies the representation of beliefs by probability functions when they are induced by a

chance set-up. Life is not just a bunch of chance set-ups, and the domain of our beliefs is

much larger then those relate to some chance set-ups.

De Finetti takes a much more extreme position by rejecting any form of probability that

is not subjective. For De Finetti, the .5 is not even a property of the chance set-up but it

is a property of the belief holder. De Finetti goes as far as claiming that You are free to

assign whatever probability You would like to heads under the provision that You allocate

the remaining probability to tails. A .7 to heads is perfectly valid (if tails receive .3).

We will not further discuss of the existence of objective probability. It seems that this is

an acknowledged property in quantum mechanics (d’Espagnat, 1976). We feel that

Hacking’s ideas of objective probability, chance set-up and his Frequency Principle are

ideas that could be accepted, what we will do in our development. Nevertheless, it does not

lead to the use of probability function to quantify all forms of beliefs.

2.6. Conclusion about the probabilistic models.

None of the justifications proposed for the use of probability functions to represent

quantified beliefs leads to the necessity of their use. We present in this paper alternative

models that will represent belief at the credal level, i.e. at the mental level where beliefs

are only “entertained” outside of any consideration for some underlying decision. I feel I

can have some belief about the weather in Hawaii...... even though I do not take any

decision based on that weather. Degrees of belief can be assimilated to degree of

conviction, degree of support, degree of justified belief.... (Voorbraak, 1993).

3. Non-Standard Probability Models.

We successively examined models based on upper and lower probabilities, sets of

probability functions, Dempster-Shafer theory, second order probabilities and probabilities

of provability. All these models have in common the existence of some additive measure

that underlies somehow the agent’s beliefs.

3.1. Static components.

Smith (1961, 1965), Good (1950, 1983) and Walley (1991) suggested that personal

degrees of belief cannot be expressed by a single number but that one can only assess

intervals that bound them. The interval is described by its boundaries called the upper and



lower probabilities. Such interval can easily be obtained in a two-person situation when
one person, Y1, communicates the probability of some events in Ω to a second person,

Y2, by only saying, for all A”Ω, that the probability P(A) belong to an interval.

Suppose Y2 has no other information about the probability on Ω. In that case, Y2 can

only build a set P of probability measures on Ω compatible with the boundaries provided
by Y1. All that is known to Y2 is that there exists a probability measure P and that

P∈ P. Should Y2 learn then that an event A”Ω has occurred, P should be updated to PA
where PA is this set of conditional probability measures obtained by conditioning the

probability measures P∈ P on A. (Smets, 1987, Fagin and Halpern, 1990, Jaffray, 1992).

One obtains a similar model by assuming that one’s belief is not described by a single

probability measure as do the Bayesians but by a family of probability measures
(usually the family is assumed to be convex). Conditioning on some event A”Ω is

obtained as in the previous case.

A special case of upper and lower probabilities has been described by Dempster (1967,

1968) and underlies most interpretations of Dempster-Shafer theory. He assumes the

existence of a probability measure on a space X and a one to many mapping M from X to

another space Y. Then the lower probability of A in Y is equal to the probability of the

largest subset of X such that its image under M is included in A. The upper probability of

A in Y is the probability of the largest subset of X such that the images under M of all its

elements have a non empty intersection with A.

Example 1: Dempster model.
Suppose a space X = {x1, x2} and PX({x1}) = .3, PX({x2}) = .7. Suppose a mapping M

form X to Y where Y = {y1, y2} and M(x1) = {y1}, M(x2) = {y1, y2}. What can we say

about the probability PY over the space Y. We know PY({y1}) is at least .3, and might be

1.0 if x2 was indeed mapped onto y1. We know PY({y2}) is at most .7 as the probability

.3 given to x1 cannot be given to y2. Finally PY({y1,y2}) = 1. Our knowledge about PY
can be represented by the lower probability function PY*, with PY*({y1}) = .3, PY*({y1})

= .7, PY*({y1,y2}) = 1. It happens that the lower probability function obtained through

the M mapping is a belief function, what does not necessary mean that the lower

probability function quantifies the agent’s beliefs.

But what is a belief function? It is a Choquet capacity monotone of order infinite

(Choquet, 1953) that Shafer (1976a) introduces in order to represent beliefs. Let Ω be a set

and let 2Ω be the Boolean algebra of subsets of Ω. A belief function is a function bel

from 2Ω to [0, 1] such that :

1) bel(Ø) = 0
2) ∀ A1,A2,...An ∈ℜ,



  bel(A1∪ A2∪ ...An)≥∑
i

bel(Ai) - ∑
i>j

bel(Ai∩Aj)....-(-1)nbel(A1∩A2∩...An) (3.1)

Notice that we do not require that bel(Ω) = 1 as is usually accepted. We can have

bel(Ω)<1, the difference 1-bel(Ω) quantifies the amount of internal conflict in the

information that leads to the construction of bel (Smets, 1992a). This unnormalization of

bel is not very important at this point and will not be further discussed.

Associated to every belief function bel, the is another function m from 2Ω to [0, 1], called

the basic belief assignment, which values m(A) for A”Ω are called the basic belief

masses.

m(A) = ∑
B:B”Ω,Ø≠B”A

      (-1)|A|-|B|.  bel(B) ∀ A”Ω, A≠Ø

m(Ø) = 1 - bel(Ω)
and, bel(A) = ∑

B:B”Ω,Ø≠B”A
      m ( B ) ∀ A∈ℜ, A≠Ø

Coming back to the upper and lower probability models, their generalization into

second-order probability models is quite straightforward. Instead of just
acknowledging that P∈ P, one can accept a probability measure P* on pΩ , the set of

probability measures on Ω. So for all A”pΩ, one can define the probability P*(A ) that

the actual probability P on Ω belongs to the subset A  of probability measures on Ω. In

that case, the information P∈ P  induces a conditioning of P* into P*(A |P ) =

P*(A∩P)/P*(P).

Second-order probabilities, i.e. probabilities over probabilities, do not enjoy the same

support as subjective probabilities. Indeed, there seems to be no compelling reason to

conceive a second-order probability in terms of betting and avoiding Dutch books. So the

major justification for the subjective probability modeling is lost. Further introducing

second-order probabilities directly leads to a proposal for third-order probabilities that

quantifies our uncertainty about the value of the second-order probabilities.... Such

iteration leads to an infinite regress of meta-probabilities that cannot be easily avoided.

Ruspini (1986) and Pearl (1988) have suggested that the degree of belief given to a

proposition that is quantified by a belief function could be understood as the probability

that the proposition in know, is provable. Indeed, if one applies probability theory to

modal propositions, one discovers easily that the ‘probability of proving’ is a belief

function. This idea is also what Kohlas models in his hints models (Kohlas and Monney,

1994a). He assumes assumptions and hypothesis, knowing under which assumptions each

hypothesis can be proved. These models are in fact part of the Dempster models, as each

assumes a space endowed with a probability function and the provability relation plays the



role of the one-to-many mapping M. The problems with these problems appear once

conditioning is introduced. This will be further discussed in section 3.2, where the

dynamic of beliefs is analyzed.

3.2. Dynamic components.

Suppose the agent had a given beliefs at time t0 belief. At time t1>t0, the agent learns for

sure that ‘the proposition A is true’, or equivalently that ‘the actual world is in A’ for
some A. We denote this information by EvA. We also suppose that, between t0 and t1,

the agent has not learned anything relevant to his beliefs under consideration. So EvA is

the first information relevant to the agent’ beliefs since t0. This situation corresponds to

the one described by the conditioning process in probability theory.

How does the agent change his beliefs once he learns EvA? This is the first question to be

answered when the dynamic of beliefs is studied.

In probability theory, conditioning is achieved by Bayes rule of conditioning. In the upper

and lower probability models, the second-order probability models and the family of

probability functions models, the conditioning is performed for each probability function

compatible with the constraints imposed by the static representation. A new set of

probability functions is computed from these conditional probability functions. This

method is quite immediate. In strict upper and lower probability models, one must be

cautious as conditioning cannot be simply iterated. In fact, the knowledge of the upper and

lower probability functions is not sufficient to represent a state of belief, one must replace

them by upper and lower expectations in which case conditioning can be iterated (Walley,

1991).

With Dempster models as well as with the probability of provability models, conditioning

becomes more delicate. The so-called Dempster's rule of conditioning proposed by Shafer

is not blindly applicable. Suppose the agent learns that the real value of Y belongs to

some B”Y. Does it means that the real value of X belongs to the set of x∈ X such

M(x)”B? If it is the case, then the appropriate rule of conditioning is the so-called

geometric rule (Shafer, 1976b). If the information means that the agent has learned a new

information that states that the true value of Y belongs to B, and if this information
means that the mapping M between X and Y must be revised into MB such that for every

x∈ X, MB(x) = M(X)∩B, then Dempster's rule of conditioning is the appropriate rule

(except for the problem of normalization).

In the probability of provability model, these two forms of conditioning correspond to:



case 1: the probability that the assumption selected randomly according to PX will prove

the hypothesis C given it proves the hypothesis B.
case 2: the probability that the assumption selected randomly according to PX will prove

the hypothesis C given You know that the hypothesis B has been proved by another

pieces of evidence.

Once probabilities are generalized into non-standard probability models, conditioning can

takes many forms, and the selection of the appropriate rules is delicate (Smets, 1991b).

Most criticisms against Dempster-Shafer theories are essentially due to an inappropriate

use of Dempster's rule of conditioning.

3.3. Decisions Making.

The most important quality of the Bayesian model is that is provides an excellent, if not

the best tool, for optimal decision making under risk. But the decisions considered by

Bayesians, an in particular in the Dutch Books arguments they favor so often, are all based

on forced bets. The players must bet, and must be ready to be in either of the two

positions, player or banker. In that case, betting without respecting the probability

axioms would lead the agent to a sure loss, turning him into a money pump, a situation

nobody could accept (see section 2.2). But the argument collapses once bets are neither

forced nor symmetrical. Models based on upper and lower probabilities claim that the

lower probability is the maximal prize the agent is ready to pay if he is the player, and the

upper probability is the minimum prize the agent would ask from the player if the agent

happens to be the banker. Such a model presents the weakness that alternatives are no

more ordered as in the probability approach. Some pairs of decisions cannot be compared

any more in order to decide which is best. Is it a good or a bad property is a matter of

personal opinions.

3. 4. Conclusions about the non standard probability models.

The models answer to the questions that must be answered by any model for the

representation of quantified beliefs (see section 1). They can even solve some of the

weaknesses of the probability model. Total ignorance can be represented by just accepting

that for any A”Ω, A≠Ω, its lower probability is null. Such a state cannot be represented

in pure probability model and the use of the Principle of Insufficient Reason is the best

way to get trapped into paradoxes, inconsistencies, if not plain non-sense. As a matter of

fact, Bayesians usually claim that a state of total ignorance does not exist, a preposterous

attitude. If I ask You what are Your beliefs about the location of Pa’acal burial on Earth, I

hardly think You could give any reasonable and justified answer, as far as You don’t even



know who Pa’acal is3. Claiming total ignorance does not exist is nothing more than

sweeping it under the carpet.

4. Non probability Models.

We analyze the two major non probability models based respectively on possibility

functions and on belief functions.

4.1. Possibility Theory.

4.1.1. Possibility and Necessity Measures.

Incomplete information such as "John's height is above 170" implies that any height h

above 170 is possible and any height equal or below 170 is impossible. This can be

represented by a ‘possibility’ measure defined on the height domain whose value is 0 if h

< 170 and 1 if h is ≥ 170 (with 0 = impossible and 1 = possible). Ignorance results from

the lack of precision, of specificity of the information "above 170".

When the predicate is vague like in ‘John is tall’, possibility can admit degrees, the

largest the degree, the largest the possibility. But even though possibility is often

associated with fuzziness, the fact that non fuzzy (crisp) events can admit different degrees

of possibility is shown in the following example. Suppose there is a box in which you

try to squeeze soft balls. You can say: it is possible to put 20 balls in it, impossible to

put 30 balls, quite possible to put 24 balls, but not so possible to put 26 balls...These

degrees of possibility are degrees of realizability and they are totally unrelated to any

supposedly underlying random process.

Identically ask a salesman about his forecast about next year sales. He could answer: it is

possible to sell about 50K, impossible to sell more than 100K, quite possible to sell

70K, hardly possible to sell more than 90K... His statements express what are the

possible values for next year sales. What the values express are essentially the sale

capacity. Beside, he could also express his belief about what he will actually sell next

year, but this concerns another problem for which the theories of probability and belief

functions are more adequate.

Let Π :2Ω→[0, 1] be the possibility measure defined on a space Ω with Π (A) for

A”Ω being the degree of possibility that A (is true, occurs...). The fundamental axiom is

3Pa’acal is the Mayan king burried at Palenque.



that the possibility Π (A∨ B) of the disjunction of two propositions A and B is the

maximum of the possibility of the individual propositions Π(A) and Π(B). (Zadeh, 1978,

Dubois and Prade, 1985):

Π(A∨ B) = max ( Π(A) , Π(B) ). (4.1)

Usually one also requires Π(Ω) = 1.

As in modal logic, where the necessity of a proposition is the negation of the

possibility of its negation, one defines the necessity measure N(A) given to a proposition

A by:

N(A) = 1 - Π(¬A)

In that case, one has the following:

N(A∧ B) = min ( N(A) , N(B) )

Beware that one has only:

Π(A∧ B) ≤ min ( Π(A) , Π(B) )

N(A∨ B) ≥ max ( N(A) , N(B) ).

Let Ω be the universe of discourse on which a possibility measure Π is defined. Related to

the possibility measure Π :2Ω→ [0, 1], one can define a possibility distribution
π:Ω→[0, 1],

π(x) = Π({x}) for all x∈Ω .

Thanks to (4.1), one has
Π(A) = max x∈ A π(x) for all A in Ω.

A very important point in possibility theory (and in fuzzy set theory) when only the max

and min operators are used is the fact that the values given to the possibility measure (or

to the grade of membership) are not intrinsically essential. The only important element of

the measure is the order they create among the elements of the domain. Indeed the orders

are invariant under any strictly monotonous transformation. Therefore a change of scale

will not affect conclusions. This property explains why authors insist on the fact that

possibility theory is essentially an ordinal theory, a nice property in general. This

robustness property does not apply once addition and multiplication are introduced as is

the case with probability and belief functions, or when operators different from the min-

max operators are used.

Example 2: Probability versus possibility. Hans eggs.
As an example of the use of possibility measure versus probability measure, consider the

number of eggs X that Hans is going to order tomorrow morning (Zadeh, 1978). Let π(u)

be the degree of ease with which Hans can eat u eggs. Let p(u) be the probability that

Hans will eat u eggs at breakfast tomorrow. Given our knowledge, assume the values of

π(u) and p(u) are those of table 1.



Table 4: The possibility and probability distributions associated with X.

u 1 2 3 4 5 6 7 8

π(u) 1 1 1 1 .8 .6 .4 .2

p(u) .1 .8 .1 0 0 0 0 0

We observe that, whereas the possibility that Hans may eat 3 eggs for breakfast is 1, the

probability that he may do so might be quite small, e.g., 0.1. Thus, a high degree of

possibility does not imply a high degree of probability, nor does a low degree of

probability imply a low degree of possibility. However, if an event is impossible, it is

bound to be improbable. This heuristic connection between possibilities and probabilities

may be stated in the form of what might be called the possibility/probability
consistency principle (Zadeh, 1978).

4.1.2. Physical and Epistemic Possibility.

Two forms of (continuous valued) possibility have been described: the physical

and the epistemic. These 2 forms of possibility can be recognized by their different

linguistic uses: it is possible that and it is possible for (Hacking, 1975). When I

say it is possible that Paul's height is 170, it means that for all I know, Paul's height

may be 170. When I say it is possible for Paul's height to be 170, it means that

physically, Paul's height may be 170. The first form, 'possible that', is related to our state

of knowledge and is called epistemic. The second form, 'possible for', deals with actual

abilities independently of our knowledge about them. It is a degree of realizability. The

distinction is not unrelated to the one between the epistemic concept of probability (called

here the credibility) and the aleatory one (called here chance). These forms of possibilities

are evidently not independent concepts, but the exact structure of their interrelations is not

yet clearly established.

4.1.3. Relation between fuzziness and possibility.

Zadeh has introduced both the concept of fuzzy set (1965) and the concept of possibility

measure (1978). The first allows us to describe the grade of membership of a well-known

individual to an ill-defined set. The second allows us to describe what are the individuals

that satisfy some ill-defined constraints or that belong to some ill-defined sets.

For instance µTall(h) quantifies the membership of a person with height h to the set of

Tall men and πTall(h) quantifies the possibility that the height of a person is h given the



person belongs to the set of Tall men. Zadeh’s possibilistic principle postulates

the following equality :

πTall(h) = µTall(h) for all h∈ H

where H is the set of height = [0, ∞)

This writing of Zadeh’s possibilistic principle is the one most usually encountered but its

meaning should be interpreted with care. It states that the possibility that a tall man has a

height h is equal numerically to the grade of membership of a man with height h to the

set of tall men.  The writing is often confusing and would have been better written as

π(h|Tall) = µ(Tall|h) for all h∈ H

or still better

If µ(Tall|h) = x then π(h|Tall) = x for all h∈ H

The last expression avoids the confusion between the two concepts. Just as with Hacking

Frequency Principle, it shows that they share the same scale without implying that a

possibility is a membership and vice versa. The previous expression clearly indicates the

domain of the measure (sets for the grade of membership µ and height for the possibility

distribution π) and the background knowledge (the height h for µ and the set Tall for π).

The difference between µ and π is analogous to the difference between a probability

distribution p(x|θ) (the probability of the observation x given the hypothesis θ) and a

likelihood function l(θ|x) (the likelihood of the hypothesis θ given the observation x) in

which case Zadeh’s possibilistic principle becomes the likelihood principle:

l(θ|x) = p(x|θ)

The likelihood of an hypothesis θ given an observation x is numerically equal to the

probability of the observation x given the hypothesis θ.

4.2. The Transferable Belief Model.

4.2.1. Static and Dynamic Representations.

We are now exploring a model for representing quantified beliefs based on belief functions,

the transferable belief model. No concept of randomness, or  probability, is involved. We

want to study the appropriate model that should be used to represent beliefs at the credal

level. When randomness is not involved, there is no necessity for beliefs at the credal

states (the psychological level where beliefs are entertained) to be quantified by probability

measures (Levi, 1984). The coherence principle advanced by the Bayesians to justify

probability measures is adequate in a context of decision (Degroot, 1970), but it cannot be

used when all we want to describe is a cognitive process. Beliefs can be entertained outside

any decision context. In the transferable belief model (Smets, 1988) we assume that

beliefs at the credal level are quantified by belief functions (Shafer, 1976a). When



decisions must be made, our belief held at the credal level induces a probability measure

held at the so-called 'pignistic' level (the level at which decisions are made). This

probability measure will be used in order to make decisions using expected utilities

theory. But it is important to stress that this probability measure is not a representation of

our belief, but is only induced from it when decision is involved.

The next example illustrate the concept we want to cover with the transferable belief

model.

Example 3. Let us consider a somehow reliable witness in a murder case who testifies

to You that the killer is a male. Let α = .7 be the reliability You give to the testimony.

Suppose that a priori You have an equal belief that the killer is a male or a female. A

classical probability analysis would compute the probability P(M) of M = ‘the killer is a

male’. P(M) = .85 = .7 + .5 x.3 (the probability that the witness is reliable (.7) plus the

probability of M given the witness is not reliable (.5) weighted by the probability that the

witness is not reliable (.3)). The transferable belief model analysis will give a belief .7 to

M: bel(M) = .7. In P(M) = .7 + .15, the .7 value can be viewed as the justified

component of the probability given to M (called the belief or the support) whereas the .15

value can be viewed as the aleatory component of that probability. The transferable belief

model deals only with the justified components. (Note: the Evidentiary Value Model

(Ekelof, 1982, Gärdenfors et al., 1983) describes the same belief component, but within a

strict probability framework, and differs thus from the transferable belief model once

conditioning is introduced.)

Further suppose there are only two potential male suspects: Phil and Tom. Then You

learn that Phil is not the killer. The testimony now supports that the killer is Tom. The

reliability .7 You gave to the testimony initially supported 'the killer is Phil or Tom'. The

new information about Phil implies that .7 now supports 'the killer is Tom'. t

Hence the major component of the transferable belief model are the parts of beliefs that

supports some proposition without supporting any strictly more specific propositions.

These parts of beliefs are called the basic belief masses. A basic belief mass given to a set

A supports also that the actual world is in every subsets that contains A. The degree of

belief bel(A) for A∈ℜ  quantifies the total amount of justified specific support given to A.

It is obtained by summing all basic belief masses given to subsets X∈ℜ  with X”A (and

X≠Ø)

bel(A) = ∑
Ø≠X”A,X∈ℜ

  
      m ( X )



We say justified because we include in bel(A) only the basic belief masses given to

subsets of A. For instance, consider two distinct atoms x and y of ℜ . The basic belief

mass m({x,y}) given to {x,y} could support x if further information indicates this.

However given the available information the basic belief mass can only be given to {x,y}.

In example 3, the .7 was given to the set {Phil, Tom} and not split among its elements.

We say specific because the basic belief mass m(Ø) is not included in bel(A) as it is given

to the subset Ø that supports not only A but alsoA.

Given a belief function bel, we can define a dual function that formalizes the concept of

plausibility. The degree of plausibility pl(A) for A∈ℜ  quantifies the maximum amount of

potential specific support that could be given to A. It is obtained by adding all those basic

belief masses given to subsets X compatible with A, i.e., such that X∩Α≠Ø:

pl(A) = ∑
X∩A≠Ø,X∈ℜ  

      m(X)  =  bel(Ω) - bel( A)

We say potential because the basic belief masses included in pl(A) could be transferred to

non-empty subsets of A if new information could justify such a transfer. It would be the

case if we learn thatA is impossible.

The function pl is called a plausibility function. It is in one-to-one correspondence with

belief functions. It is just another way of presenting the same information and could be

forgotten, except inasmuch as it often provides a mathematically convenient alternate

representation of our beliefs.

If some further evidence becomes available to You and implies that B is true, then the

mass m(A) initially allocated to A is transferred to A∩B. This transfer of the basic belief

masses characterizes the conditioning process described in the transferable belief model. It

is called the Dempster's rule of conditioning, and provides the major element to describe

the dynamic of beliefs.

Total ignorance is represented by a vacuous belief function, i.e. a belief function such

that m(Ω) = 1, hence bel(A) = 0 ∀ A ∈ ℜ , A≠Ω, and bel(Ω) = 1. The origin of this

particular quantification for representing a state of total ignorance can be justified.

Suppose that there are three propositions labeled A, B and C, and You are in a state of

total ignorance about which is true. You only know that one and only one of them is true

but even their content is unknown to You. You only know their number and their label.

Then You have no reason to believe any one more than any other, hence, Your beliefs

about their truth are equal: bel(A) = bel(B) = bel(C) = α for some α∈[0,1] . Furthermore,

You have no reason to put more or less belief in A∪ B than in C: bel(A∪ B) = bel(C) = α



(and similarly bel(A∪ C) = bel(B∪ C) = α). The vacuous belief function is the only belief

function that satisfies equalities like: bel(A∪ B) = bel(A) = bel(B) = α . Indeed the

inequalities (3.1) are such that bel(A∪ B) ≥ bel(A) + bel(B) - bel(A∩B). As A∩B=Ø,

bel(A∩B) = 0. The inequality becomes α  ≥ 2α  where α∈ [0,1], hence α  = 0. The basic

belief assignment related by the vacuous belief function is called a vacuous basic belief

assignment.

In general, the basic belief assignment looks similar to a probability distribution function

defined on the power set 2Ω of the frame of discernment Ω. This analogy led several

authors to claim that the transferable belief model is nothing but a probabilistic model on

2Ω. Such an interpretation does not resists once conditioning is introduced, as far as it

does not lead to Dempster's rule of conditioning we derive in section 4.4 (Smets, 1992b).

Even though the conditioning process is by far the most important form of belief

dynamic, other forms of belief dynamic have been developed within the transferable belief

model. Most famous is the Dempster's rule of combination rules that allows us to

combine conjunctively the belief functions induced by two distinct pieces of evidence. The

disjunctive combination rule has been studied in Smets (1993b). Cautious rules applicable

when the two pieces of evidence are not distinct are being developed. Generalization of the

Bayesian theorem, so important in any inferential procedure within the Bayesian approach,

has also been developed and justified in Smets (1993b).

4.2.2. Decision Making.

When a decision must be made that depends on the actual world, the agent constructs a

probability function in order to make the optimal decision, i.e., the one that maximizes

the expected utility (Savage, 1954, DeGroot, 1970). As far as beliefs guide our actions,

the probability function is a function of the belief function bel that describes the agent’s

belief at the credal level. Hence one must transform bel into a probability function,

denoted BetP. This transformation is called the pignistic transformation. We call BetP a

pignistic probability to insist on the fact that it is a probability measure used to make

decisions (Bet is for betting). Of course BetP is a classical probability measure.

The structure of the pignistic transformation is derived from and justified by the following

scenario.

Example 4: Buying Your friend’s drink. Suppose You have two friends, G and J.

You know they will toss a fair coin and the winner will visit You tonight. You want to

buy the drink Your friend would like to have tonight: coke, wine or beer. You can only

buy one drink. Let D = {coke, wine, beer}.



Let belG(d), for all d”D, quantifies Your belief about the drink G is liable to ask for.

Given belG, You build the pignistic probability BetPG about the drink G will ask by

applying the (still to be defined) pignistic transformation. You build in identically the
same way the pignistic probability BetPJ based on belJ, Your belief about the drink J is

liable to ask for. The two pignistic probability distributions BetPG and BetPJ are the

conditional probability distributions about the drink that will be asked for given G or J
comes. The pignistic probability distributions BetPGJ about the drink that Your visitor

will ask for is then:
BetPGJ (d) = .5 BetPG(d) + .5 BetPJ(d) for all d∈ D

You will use these pignistic probabilities BetPGJ(d) to decide which drink to buy.

But You might as well reconsider the whole problem and first compute Your belief about

the drink Your visitor (V) would like to have. It can be proved that:
belV(d) = .5 belG(d) + .5 belJ(d) for all d”D

Given belV, You could then build the pignistic probability BetPV You should use to

decide which drink to buy. It seems reasonable to assume that BetPV and BetPGJ must be

equal. In such a case, the pignistic transformation is uniquely defined. t

Given a belief function defined on Ω, its pignistic transformation BetP is:

BetP(ω) = ∑
A:ω∈ A”Ω

   
m(A)

 |A| (1-m(Ø))
      for ω∈Ω . (4.2)

and BetP(A) = ∑
ω∈ A

  BetP(ω)

where |A| is the number of atoms of ℜ  in A (Smets, 1990b, Smets and Kennes, 1994).

It is easy to show that the function BetP is a probability function and the pignistic

transformation of a probability function is the probability function itself.

Historical note. In a context close to ours, Shapley (1953) derived relation (4.2).

Amazingly, the model he derived was called the ‘transferable utility model’ whereas,

independently, we called our model the ‘transferable belief model’.

4.2.3. The impact of the two-level model.

In order to show that the introduction of the two-level mental model based on the credal

and the pignistic levels,  is not innocuous, we present an example where the results will

be different if one takes the two-level approach as advocated in the transferable belief

model  or a one-level model like in probability theory.



Example 5: The Peter, Paul and Mary Saga.
Big Boss has decided that Mr. Jones must be murdered by one of the three people present

in his waiting room and whose names are Peter, Paul and Mary.  Big Boss has decided that

the killer on duty will be selected by a throw of a dice: if it is an even number, the killer

will be female, if it is an odd number, the killer will be male. You, the judge, know that

Mr. Jones has been murdered and who was in the waiting room. You know about the dice

throwing, but You do not know what the outcome was and who was actually selected.

You are also ignorant as to how Big Boss would have decided between Peter and Paul in
the case of an odd number being observed. Given the available information at time t0,

Your odds for betting on the sex of the killer would be 1 to 1 for male versus female.

At time t1 > t0, You learn that if Big Boss had not selected Peter, then Peter would

necessarily have gone to the police station at the time of the killing in order to have a

perfect alibi. Peter indeed went to the police station, so he is not the killer. The question

is how You would bet now on male versus female: should Your odds be 1 to 1 (as in the

transferable belief model) or 1 to 2 (as in the most natural Bayesian model).

Note that the alibi evidence makes 'Peter is not the killer' and 'Peter has a perfect alibi'

equivalent. The more classical evidence 'Peter has a perfect alibi' would only imply

P('Peter is not the killer' | 'Peter has a perfect alibi') = 1. But P('Peter has a perfect alibi' |

'Peter is not the killer') would stay undefined and would then give rise to further

discussion, which would be useless for our purpose. In this presentation, the latter

probability is also 1.

The transferable belief model solution.

Let k be the killer. The information about the waiting room and the dice throwing pattern
induces the following basic belief assignment m0:

k ∈ Ω = {Peter, Paul, Mary}
m0( { Mary} ) =  .5 m0( { Peter, Paul} ) = .5

The .5 belief mass given to {Peter, Paul} corresponds to that part of belief that supports

"Peter or Paul", could possibly support each of them, but given the lack of further

information, cannot be divided more specifically between Peter and Paul.

Let BetP0 be the pignistic probability obtained by applying the pignistic transformation

to m0 on the betting frame which set of atoms is {{Peter], {Paul}, {Mary}}. By relation

(4.2), we get:
BetP0({Peter}) =.25 BetP0({Paul}) = .25 BetP0({Mary}) = .50

Given the information available at time t0, the bet on the killer's sex (male versus female)

is held at odds 1 to 1.



Peter's alibi induces an updating of m0 into m2 be Dempster's rule of conditioning:

m2( {Mary} ) = m2( {Paul} ) = .5

The basic belief mass that was given to "Peter or Paul" is transferred to Paul.

Let BetP2 be the pignistic probability obtained by applying the pignistic transformation

to m2 on the betting frame which set of atoms is {{Paul}, {Mary}}.

BetP2({Paul}) = .50 BetP2({Mary}) = .50

Your odds for betting on Male versus Female would still be 1 to 1.

The probabilistic solution:

The probabilistic solution is not obvious as one data is missing: the value α  for the

probability that Big Boss selects Peter if he must select a male killer. Any value could be

accepted for α , but given the total ignorance in which we are about this value, let us

assume that α =.5, the most natural solution. Then the odds on male versus female before

learning about Peter’s alibi is 1 to 1, and after learning about Peter’s alibi, it becomes 2

to 1. The probabilities are then:
P2({Paul}) = .33 P2({Mary}) = .66

The 1 to 1 odds of the transferable belief model solution can only be obtained in a

probabilistic approach if α  = 0. Some critics would claim that the transferable belief

model solution is valid as it fits with α  = 0. The only trouble with this answer is that if

the alibi story had applied to Paul, than we would still bet at 1 to 1 odds. Instead the

probabilistic solution with α = 0 would lead to a 0 to 1 bet, as the probabilities are:
P2({Peter}) = .0 P2({Mary}) = 1.

So the classical probabilistic analysis does not lead to the transferable belief model

solution.

We are facing two solutions for the bet on male versus female after learning about Peter’s

alibi: the 1 to 1 or at 1 to 2 odds? Which solution is ‘good’ is not decidable, as it would

require the definition of ‘good’. Computer simulations have been suggested for solving the

dilemma, but they are impossible. Indeed for every simulation where the killer must be a

male, one must select Peter or Paul, and as far as simulation are always finite, the

proportion of cases when Peter was selected in the simulations when a male has to be

selected will be well defined. The value of the two solutions under comparison will only

reflect the difference between that proportion and the missing probability α . Such a

comparison is irrelevant for what we look for. We are only left over with a subjective

comparison of the two solution... or an in depth comparison of the theoretical foundations

that led to these solutions, an alternative that explains why we try to develop a full

axiomatization of the transferable belief model (Smets, 1993c)



Example 6: The Five Breakable Sensors.
To show that the choice between a Bayesian and a transferable belief model approach is

important in practice, we analyze the story of the five breakable sensors where the two

approaches completely disagree in their conclusions, and would led to acting differently.

These examples might help the reader in deciding which approach is better.

Suppose I must check the temperature of a process. To do it I have five sensors, and I

have the same information for each of them.

Each sensor can check the temperature of the process. The temperature can only be hot or

cold. If the temperature is hot (TH), the sensor light is red (R) and if the temperature is

cold (TC), the sensor light is blue (B). Each sensor is made of a thermometer and a device

that turns the blue or the red light on according to the temperature reading. Unfortunately

the thermometer can be broken.

The only known information is what is written on the box containing each sensor.

"Warning: the thermometer included in this sensor can be broken. The probability that it

is broken is ...%. ( a number is written there that depends on the box). When the

thermometer is not broken, the sensor is a perfectly reliable detector of the temperature.

When the thermometer is not broken, red light means the temperature is hot, blue light

means that the temperature is cold. When the thermometer is broken, the sensor answer is

unrelated to the temperature".

I am a new technician and I never saw the five sensors before. On box 1, the probability is

1% that the thermometer is broken, on the boxes 2 to 5, the probability is 35%. I know

nothing about these sensors except the warnings written on the boxes. I use them and the

red light gets on for the box 1 sensor, and the blue light gets on for boxes 2 to 5 sensors.

How do I make up my mind about the temperature status? What is my opinion (belief)

that the temperature status is hot or cold? Let us assume that the consequences (utilities)

of the good and bad decisions are symmetrical: I am either right or wrong. We can thus

avoid discussions about possible consequences. The problem is: does the agent belief that

the temperature is hot increases or decreases given the five observations. With the

transferable belief model, the probability increases, with the Bayesian analysis it decreases.

Bayesians could conclude that the temperature is cold. The transferable belief model could

concludes that the temperature is hot. To decide which is more natural is left to the reader!

The lesson of the examples 5 and 6 is that the choice of the model is important and

interferes with real decisions.



5. Conclusions.

No definitive conclusions can be taken from our presentation, except that uncertainty can

take several forms, and that the choice of the appropriate model is a necessity. Any claim

like ‘my model is the best and the only valid model for representing quantified belief’ is

just nonsensical. It characterized a dogmatic approach without any relation with a

scientific attitude.

We did not tackle the problem of assessing the values of the belief. This problem is well

solved in probability theory, thanks to the exchangeable bets schema. The same solution

is used within the transferable belief model. For upper and lower probability models, the

assessment is not so well defined as forced symmetrical bets are not available. The

assessment problem is not acute in ordinal possibility theory, i.e., the one where only the

ordering is relevant, not the value themselves. In cardinal possibility theory, the problem

is not yet resolved.

The problem of finding which is the appropriate model for which model is hardly solved,

and justifies further researches. We hope we have provided some tools in that direction by

presenting the various models that have been so far proposed for the quantified

representation of beliefs.
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