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Abstract
In [8, 10], we present an axiomatic justification for the fact that quantified beliefs should
be represented by belief functions. We show that the mathematical function that can
represent quantified beliefs should be a Choquet capacity monotone of order 2. In order
to show that it must be monotone of order infinite, thus a belief function, we propose
several extra rationality requirements. One of them is based on the negation of a belief
function, a concept introduced by Dubois and Prade [2]. This concept was essentially
abstract, and its applicability was neither established nor illustrated. Here we present an
illustrative example of this negation process. This example gives ground to the use of
belief functions to represent quantified beliefs.
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1 Introduction
The use of any mathematical model to represent quantified beliefs, i.e., weighted opinions,
can be supported either by defending convincing definitions with illustrative examples or
by producing a set of axioms that justify it. For what concerns the models based on
belief functions, examples illustrating the first approach can be found among others in
[7, 4, 12, 11] whereas the second approach is developed in [15, 8, 10]).

In any model for quantified beliefs, one considers an agent, the belief holder, called
You hereafter, and a finite frame of discernment, denoted Ω. One of the worlds in Ω,
denoted ω0, is the actual world, but, due to Your limited understanding, You cannot state
which world is the actual one. All You can express is the strength of Your opinions, called
hereafter beliefs, that ω0 belongs to A for every A ⊆ Ω. We assume that this belief is
represented by a pointwise measure defined on 2Ω, the power set of Ω.

This measure is temporarily denoted by Cr and called a ‘credibility function’. So
for every A ⊆ Ω, Cr(A) expresses (the strength of) Your belief that the actual world ω0

belongs to A.
In [8, 10], we produce sets of rationality requirements that should be satisfied by any

credibility function and we prove 1) belief functions satisfy them, 2) probability functions,



that are special cases of belief functions, are insufficiently expressive to represent degrees
of belief and 3) Choquet capacities [1], that are the generalization of belief functions,
violate some of the requirements.

During the demonstration, we produce requirements from which we prove 1) the con-
vexity of the set of credibility functions, 2) how credibility functions are adapted by un-
informative modifications of the frame of discernment (refinement and coarsening), and
3) how they are revised by conditioning. At that level, we prove that Cr is a Choquet ca-
pacity monotone of order 2 [1]. To show that it is monotone of infinite order (i.e., a belief
function), we propose several extra requirements. One of them is based on the negation of
a belief function, a concept invented by Dubois and Prade [2]. It states: ‘the negation of
a credibility function is a credibility function’. In that case credibility functions are belief
functions.

Unfortunately, this negation concept was only a mathematical property. To be used as
a rationality requirement, one must produce at least one practical illustrative and convinc-
ing example where the negation is used.

In this paper, we present such an example. Thanks to it, our axiomatic justification
presented in [8, 10], is simplified.

2 Credibility functions
Let Cr represent Your belief over Ω, a finite frame of discernment. The only properties
of Cr used in this paper are:

1. Bounded non negativity: Cr : 2Ω → [0, 1] where Cr(∅) = 0 and Cr(Ω) ≤ 1

2. Monotony to inclusion: ∀A, B ⊆ Ω, if A ⊆ B, then Cr(A) ≤ Cr(B)

3. Revision: the revision of Cr by a piece of evidence Ev is represented by a 2|Ω| ×
2|Ω| matrix H∗ which depends on Ev but not on Cr, and the revised credibility
function Cr[Ev] is given by the matricial product Cr[Ev] = H∗ · Cr.

The first requirement is quite strong as it eliminates models based on sets of probabil-
ity functions [5, 6, 13] or on interval valued probabilities [14]. We accept the closed world
assumption (Cr(Ω) = 1) in order to avoid useless discussions. The second requirement
is assumed by any model of uncertainty and hardly questionable. The third requirement
translates into the belief function framework the transformation achieved by a Markow
matrix in classical probability theory. It satisfies quite natural requirements, and could
almost be just assumed, what we do here. Proving that it is a necessary property will be
presented in a forthcoming paper. That H∗ is a stochastic matrix can be deduced when
Cr is a belief function. But as far as the purpose of this paper is to prove that Cr is a
belief function, we can neither assume nor deduce it.

We present some needed background material (see [12, 11]).

2.1 Notation convention

CrΩ[Ev](B) is the degree of belief given by You that the actual world belongs to B,
which is a subset of Ω, Ev is a set of propositions (called the Evidential Corpus) and
You accept as true the propositions deduced from those in Ev (Ev covers the classical
conditioning event). The domain will be omitted when no confusion can occur.



The term between [ and ] is what You accept as true. In particular, it can be the
conditioning event encountered in probability theory. Note that Your beliefs are based on
what You accept as true, not on what is true. There is no necessity that what You accept as
true is true, it might perfectly be false. Your beliefs would be ‘unjustified’, ’inadequate’,
‘erroneous’, but so it is. Rationality is trying to accept only what is true, but this is only
an ideal goal, and daily reality is far from that ideal.

By convention when we write CrΩ[ω] for ω ∈ Ω, we mean that You accept as true
that ω0 ∈ ω and do not accept as true that ω0 ∈ ω∗ for any ω∗ ⊂ ω (where ⊂ denotes
strict subset). We will say that ω is ‘all You accept as true’.

A credibility function can itself be part of the evidential corpus. For example, we write
CrΩ[ω, CrΘ] to mean that You accept as true both that ω0 ∈ ω and that Your beliefs about
Θ is represented by CrΘ.

2.2 Doxastic equivalence and consistency

The next definition translates the idea that if two propositions are equivalent given what
You know, the credibility functions they induce are equal.

Definition 2.1 Doxastic equivalence. Let Ev be an ‘Evidential Corpus’, that is a set of
propositions that You accept as true. Two propositions p1 and p2 are said to be doxas-
tically equivalent under an Evidential Corpus Ev, what is denoted by p1 ≡Ev p2, when
p1 ∧ Ev and p2 ∧ Ev are logically equivalent.

We then assume:

Proposition 2.1 Doxastic consistency. If p1 ≡Ev p2, then

CrΩ[Ev](p1) = CrΩ[Ev](p2).

2.3 The Möbius transform

Let CrΩ be a credibility function defined on Ω, its Möbius transform, denoted mΩ is
defined as:

mΩ(A) =
∑

B⊆A

(−1)|A|−|B|CrΩ(B), ∀A ⊆ Ω

We call mΩ the Möbius mass function and m(A) a Möbius mass. In particular, the basic
belief assignment is the Möbius transform of a belief function. CrΩ is a belief function
iff mΩ(A) ≥ 0 for all A ⊆ Ω and

∑
A⊆Ω mΩ(A) = 1.

2.4 Coarsening

Let Ω and Ω∗ be two frame of discernments where the elements of Ω∗ are the elements of
a partition of Ω. For B ⊆ Ω, let Coars(B) denote the smallest subset of Ω∗ that contains
B. We call Ω∗ an uninformative (it means ‘just redefining the frame’) coarsening of Ω.
Given CrΩ on Ω, CrΩ∗

(A) = CrΩ(A) for all A ⊆ Ω∗ (if A ⊆ Ω∗, then A ⊆ Ω). It
results from the doxastic consistency requirement. In that case,

∀A ⊆ Ω∗, mΩ∗
(A) =

∑

B⊆Ω,Coars(B)=A

mΩ(B).



2.5 All You accept as true

Let the frame of discernment Ω, and suppose all You accept as true is that ω0 ∈ ω for
an ω ⊆ Ω. What is the credibility function CrΩ[ω] induced on Ω under that condition?
Requiring CrΩ[ω](ω) = 1 and CrΩ[ω](ω) = 0 seem natural.

What about You beliefs about ω∗ ⊂ ω? It seems also natural to require that all strict
subsets ω∗ of ω receive the same belief. For instance, why should any of them be better
supported that it complement relative to ω? The concept of cardinality of the set ω cannot
be used, as beliefs would otherwise violate the doxastic consistency requirement (see
[10]). Let β be that particular value. The term β cannot be negative as it is among others
the belief given to the singletons of ω. If furthermore we require that beliefs can never be
smaller than β, then β = 0 as for ω, CrΩ[ω](ω) = 0.

Finally, the beliefs given to any ω∗ is equal to the beliefs given to ω∗∩ω, as the worlds
in ω∗ but not in ω∗∩ω belong to ω and are thus accepted by You as impossible given You
accept ω as true.

The next proposition express these ideas:

Proposition 2.2 The credibility function that represents Your beliefs given all You accept
as true is ω0 ∈ ω is given by:

[2]CrΩ[ω](ω∗) = 1 if ω ⊆ ω∗

= 0 if ω∗ ⊂ ω

= CrΩ[ω](ω∗ ∩ ω) otherwise

The Möbius transform of CrΩ[ω] is given by:

[2]mΩ[ω](ω∗) = 1 if ω = ω∗

= 0 otherwise

2.6 Revision

The next theorem reexpresses the Cr revision requirement under an equivalent but more
convenient form. We had assumed that the revision of a credibility function Cr by a
piece of evidence Ev can be represented by a matrix H∗ such that the revised credibility
function Cr[Ev] is equal to H∗ · Cr.

Theorem 2.1 Let Cr and Cr∗ be two credibility functions defined on Ω. If Cr∗ = H∗ ·
Cr, there exists a 2|Ω| × 2|Ω| matrix H such that Cr∗ = H · m where m is the Möbius
transforms of Cr. In that case,

Cr∗(A) =
∑

B⊆Ω

h(A, B)m(B), ∀A ⊆ Ω

where h(A, B) are the elements of the matrix H .

Proof. Let M be the operator (a matrix) that transforms any credibility function on Ω into
its Möbius transforms [11]. M is not singular, so M−1 exists. Cr∗ = H∗ · Cr can be
rewritten as Cr∗ = H∗ · M−1 · M · Cr, thus Cr∗ = H · m where H = H∗ · M−1. The
equation is just a rewriting of the matricial equality. �



In order to prove that Cr is a belief function, we must produce an example that shows
that if some of the values of m are negative, there exists a H matrix such that some values
of Cr∗ are negative. To produce such a matrix is mathematically trivial, but the challenge
was to find a practical example that leads to such a matrix. This is what we achieve in the
next section.

3 The Mischievous Killer
We consider here only the proof that the Möbius mass given to the Ω when |Ω| = 3 may
not be negative. The case with 2 was proved in [10]. The real challenge was to go from 2
to 3. So we consider that case first.

Our example is based on a murder scenario, but could as well be rephrased as any
diagnostic - detection problem.

3.1 The scenario

Suppose a murder has been committed by a single killer, denoted k0, and there are three
suspects named A, B, and C. We denote by D ‘anybody else’. So You know for sure that
the killer k0 ∈ Ω with Ω = {A, B, C, D}.

You collect a piece of evidence, a cigarette butt which brand, denoted θ0. The domain
for θ0 is Θ = {a, b, c, d}. The butt you observe can only be one of {a, b, c}. You look at
the butt and build a belief CrΘ about the actual value θ0.

The CB piece of evidence. You know the next piece of evidence, denoted CB for
cigarette butt,

1. θ0 = a iff k0 = A

2. θ0 = b iff k0 = B

3. θ0 = c iff k0 = C

4. θ0 = d iff k0 = D

5. θ0 ∈ {a, b, c}

Using the doxastic consistency property, CrΘ induces a credibility function CrΩ[CB]
about k0 given by:

CrΩ[CB](A) = CrΘ(a),

CrΩ[CB](B) = CrΘ(b),

CrΩ[CB](C) = CrΘ(c),

CrΩ[CB](A, B) = CrΘ(a, b),

CrΩ[CB](A, C) = CrΘ(a, c),

CrΩ[CB](B, C) = CrΘ(b, c),

CrΩ[CB](A, B, C) = CrΘ(a, b, c),

CrΩ[CB](D, ω) = CrΩ[CB](ω), ∀ω ⊆ {A, B, C}



The FT piece of evidence. Now You learn for sure that if the killer was one of
A, B, C, the killer would manage to create a false track. Cigarettes a, b and c can be
recognized because, respectively, they have the letters XY , XZ and Y Z written on them.
The killer will purposely drop a butt that points to the other suspects and surely not to him.
For example, if the killer was A, A would have managed to let a butt with XZ or Y Z or
Z written on it, the last case corresponding to the case where A has erased the missing
letter. In the three cases, the butt does not point to A.

What D would do is unknown to You.
Let W be the predicate ‘You accept as true that exactly . . . is written on the butt’,

so W (Z) means that ‘You accept as true that exactly Z is written on the butt’ (and thus
nothing more, what means in fact that the butt is either a b or a c butt). This information
can be written as:

1. If k0 = A then W (XZ) ∨ W (Y Z) ∨ W (Z)

2. If k0 = B then W (XY ) ∨ W (Y Z) ∨ W (Y )

3. If k0 = C then W (XY ) ∨ W (XZ) ∨ W (X)

We write W () to express that nothing is written on the butt. The proposition
W () ∨ W (X) ∨ W (Y ) ∨ W (Z) ∨ W (XY ) . . .

∨ W (XZ) ∨ W (Y Z)
is true. So we have:
¬(W (XZ) ∨ W (Y Z) ∨ W (Z)) = . . .

W () ∨ W (XY ) ∨ W (X) ∨ W (Y )
and similarly with the other two consequences.

The three rules can be rewritten as

1. If W () ∨ W (XY ) ∨ W (X) ∨ W (Y ) then k0 ∈ {B, C, D}

2. If W () ∨ W (XZ) ∨ W (X) ∨ W (Z) then k0 ∈ {A, C, D}

3. If W () ∨ W (Y Z) ∨ W (Y ) ∨ W (Z) then k0 ∈ {A, B, D}

Let this piece of evidence be denoted by FT (from False Track).
The problem is to build CrΩ[FT ] and to find out what is the matrix H that trans-

forms CrΩ[CB] into CrΩ[FT ]. This revision is achieved by a contraction on CB and an
expansion by FT [3]. The whole subtlety of the example comes from the fact that both
CrΩ[CB] and CrΩ[FT ] can be deduced from CrΘ and that CrΘ is not changed by the
pieces of evidence CB or FT . It results from the fact that Your beliefs about the cigarette
brand is not affected by what it implies on who is the killer.

3.2 Building the H matrix

Case 1. Suppose You accept as true that the butt is a c butt, thus W (Y Z). So the
antecedent of the third rule in FT is true and You deduce k0 ∈ {A, B, D}.

In that case, Your belief state is represented by CrΘ(c) = 1, in which case:



A B C A A B A
B C C B

C

A 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0

A, B 0 0 0 0 0 0 0
A, C 0 0 0 0 0 0 0
B, C 0 0 0 0 0 0 0

A, B, C 0 0 0 0 0 0 0
D 0 0 0 0 0 0 1

A, D 0 0 0 0 0 1 1
B, D 0 0 0 0 1 0 1
C, D 0 0 0 1 0 0 1

A, B, D 0 0 1 0 1 1 1
A, C, D 0 1 0 1 0 1 1
B, C, D 1 0 0 1 1 0 1

A, B, C, D 1 1 1 1 1 1 1

Table 1: The H matrix to transform CrΩ[CB] into CrΩ[FT ].

• before revision on FT , Your beliefs were represented by

CrΩ[CB, W (Y Z)](ω) = 1 if C ∈ ω

= 0 otherwise

which Möbius transform is given by

mΩ[CB, W (Y Z)](ω) = 1 if ω = C

= 0 otherwise.

• after revision on FT , it becomes

CrΩ[FT, W (Y Z)](ω) = 1 if {A, B, D} ∈ ω

= 0 otherwise

In that case the coefficients of the {C} column of H satisfy

h(ω, {C}) = 1 if {A, B, D} ⊆ ω

= 0 otherwise

The same holds up to a permutation with a and b (see Table 1).

Case 2. Suppose You are sure that Z is written on the butt, but You could not recognize
the other letter. So You accept W (Z) as true. It means in fact that You are sure the butt is a
b or a c butt and You have no idea to decide if it is a b or if it is a c. So the antecedents of the



second and third rules in FT are satisfied and You deduce k0 ∈ {A, C, D}∩{A, B, D} =
{A, D}

In that case, Your belief state on Θ is represented by CrΘ(θ) = 1 if {b, c} ⊆ θ, and 0
otherwise. (see proposition 2.2) in which case:

• before revision on FT , the unique non mull mass of the Möbius transform of Your
beliefs CrΩ[CB, W (Z)] was mΩ[CB, W (Z)](B, C) = 1

• after revision on FT , Your beliefs become: CrΩ[FT, W (Z)](ω) = 1 if {A, D} ⊆
ω and 0 otherwise.

In that case the coefficients of the {B, C} column of H satisfy

h(ω, {B, C}) = 1 if {A, D} ⊆ ω

= 0 otherwise.

The same hold up to a permutation with a and b (see Table 1).

Case 3. Suppose You are sure that something is written on the butt, but You could not
recognize any letter. It means in fact that You are sure the butt is a a or a b or a c butt and
nothing more. So you accept W() as true. So the antecedents of the three rules in FT are
satisfied and You deduce k0 ∈ {A, C, D} ∩ {A, B, D} ∩ {B, C, D} = {D} This implies
that CrΘ(θ) = 1 if θ = Θ and 0 otherwise, in which case:

• before revision on FT , the unique non mull mass of the Möbius transform of Your
beliefs CrΩ[CB, W ()] was mΩ[CB, W ()](A, B, C) = 1

• after revision on FT , Your beliefs become: CrΩ[FT, W ()](ω) = 1 if {D} ⊆ ω
and 0 otherwise.

In that case the coefficients of the {A, B, C} column of H satisfy

h(ω, {A, B, C}) = 1 if {D} ⊆ ω

= 0 otherwise.

The nature of the columns of H for those ω that contain D is not required here as
mΩ[CG, mΘ](ω) = 0 for all ω such that D ∈ ω.

3.3 General belief on Θ
In general, Your belief on Θ is represented by a credibility function CrΘ with mΘ being
its Möbius transform. Under CB, this credibility function on Θ induced a credibility
function CrΩ[CB, CrΘ] on Ω. Its Möbius transform is given by: mΩ[CB, CrΘ](ω) =
mΘ(θ) where ω contains the same letters as θ, but capitalized, and mΩ[CB, CrΘ](ω) = 0
if D ∈ ω.

Suppose mΘ(θ) < 0 for some θ ⊆ Θ. We consider only two cases: either θ = Θ or θ
satisfies |θ| = |Θ| − 1.

Suppose mΘ(Θ) is negative. Then mΩ[CB, CrΘ]({A, B, C}) = mΘ(Θ) < 0. Ap-
ply the H transform. That negative mass is allocated to the belief given under FT to



D, and no other mass is given to D, so CrΩ[FT, CrΘ](D) < 0 what violates the non
negativity of the credibility functions. Hence mΘ(Θ) may not be negative.

Suppose θ = {a, b} and mΘ({a, b}) is negative. Then mΩ[CB, CrΘ]({A, B}) =
mΘ({a, b}) < 0. Apply the H transform. We have

CrΩ[FT, CrΘ](D) = mΩ[CB, CrΘ]({A, B, C}) ≥ 0

as just shown and

CrΩ[FT, CrΘ]({C, D}) = mΩ[CB, CrΘ]({A, B, C}) + mΩ[CB, CrΘ]({A, B}).

The negativity of mΩ[CB, CrΘ]({A, B}) implies that CrΩ[FT, CrΘ]({C, D}) ≤ CrΩ[FT, CrΘ]({D})
what violates the monotony to inclusion requirement. Hence mΘ({a, b}) may not be neg-
ative.

4 Generalization to any Ω
The previous example can be extended to any set Θ. It is just a matter of rephrasing it
accordingly by multiplying the number of cigarette brands and of suspects. So what it
proves is that for any Θ, mΘ(θ) ≥ 0 whenever |θ| ≥ |Θ| − 1.

To prove that credibility functions are belief functions, all we need is to show that if
a Möbius mass of the credibility function is negative, we can generate an example where
such a credibility function would induce another credibility function where some values
are negative.

Suppose a credibility function CrΩ with mΩ its Möbius masses. Suppose that for
ω ⊆ Ω, mΩ(ω) < 0. Three cases must be considered. Either ω = Ω or ω ⊂ Ω, ω 
= ∅ or
ω = ∅.

Case ω = ∅. In that case, CrΩ(Ω) > 1 contrary to the boundness requirement.

Case ω = Ω. We already know that this case is not acceptable.

Case ω ⊂ Ω, ω 
= ∅. Build a coarsening Ω∗ of Ω such that the elements of ω are mapped
into one singleton of Ω∗, the others being mapped into themselves. Then mΩ∗

(ω) =
mΩ(ω) is negative. Thus we have build a credibility function on Ω∗ that allocates a
negative mass to a subset of Ω∗ such that |ω| = |Ω∗| − 1. We know that this case is not
acceptable.

Therefore the Möbius mass of any credibility function must be non negative, thus
credibility functions are belief functions.

4.1 The Negation of a belief function

Dubois and Prade [2] have introduced the concept of the negation of a belief function. The
basic belief assignment of the negation of a belief function is obtained by transferring the
basic belief mass mΩ(ω) to mΩ(ω) for all ω ⊆ Ω. In [9], we have shown that this
transformation fits with the idea of a source of evidence that is an absolute liar. Our
present example illustrates how to generate such a belief function.



5 Conclusions
We show that if revision of any measure representing quantified beliefs can be represented
by a matrix multiplication of the initial beliefs, then the Möbius mass related to the mea-
sure must be non negative. This implies that any measure representing quantified beliefs
is a belief function. The challenge was to produce an example that produces this effect.
Our Mischievous Killer story provides such an example. During this derivation we also
illustrate how one can produce the negation of a belief function.
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